
RESEARCH Revista Mexicana de Fı́sica62 (2016) 317–324 JULY-AUGUST 2016

Heat transfer over a stretching cylinder due to variable prandtl number
influenced by internal heat generation/absorption: a numerical study

Abid Majeed, Tariq Javed, Irfan Mustafa and Abuzar Ghaffari∗

Department of Mathematics and Statistics, International Islamic University,
Islamabad 44000, Pakistan,

∗e-mail: abuzar.iiui@gmail.com

Received 31 August 2015; accepted 11 March 2016

An analysis is carried out to investigate the two dimensional flow of an electrically conducting Newtonian fluid over a permeable stretching
cylinder. The main objective of this study is to analyze the thermo-physical properties on the axisymmetric flow with Prandtl variable in the
presence of internal heat generation/absorption. Unlike typical studies, the temperature dependent physical properties are discussed in highly
coupled velocity and temperature fields. The solution of the problem is computed numerically with Chebyshev Spectral Newton’s Iterative
Scheme (CSNIS) and results are shown through graphs for various emerging parameters. Moreover the exchange of energy from the surface
to the fluid is examined through variations in Nusselt number. To verify our results, comparisons are made with the published studies which
provides authentication of our present results and numerical scheme.
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1. Introduction

The study of fluid and heat transfer over stretching surfaces
have gained considerable attention in last decade due to its
applications in wide range of industrial mechanism like poly-
mer extrusion, crystal growing, wire drawing, cable coating,
spinning of filaments and many more. Further an important
phenomenon of suction or injection in the fluid through the
bounding surfaces can significantly change the flow field and,
as a result affects the skin friction coefficient and the heat
transfer rate at the surface. It is well known that, suction helps
to slow down the fluid motion which results in increasing of
skin friction and heat transfer rate, whereas injection has to-
tally different behavior [1]. In all these cases, controlling the
rate of heat transfer on the stretching surface is responsible
for the good quality of product. The study on this topic was
first considered by Crane [2], who investigated the boundary
layer flow initiated due to stretching sheet and found the so-
lution analytically. After the pioneering work of Crane [2],
investigators subsequently extended the work to Newtonian
and non-Newtonian fluids under different physical conditions
(see [3-9]).

The aforementioned references are related to heat and
fluid flow characteristics over a stretching sheet and very
less attention is given for the stretching cylinder. The study
of fluid flow over stretching cylinder was first initiated by
Wang [10]. In his study he converted the Navier Stoke equa-
tion in polar form. Following the Wang [10] some researcher
have extended his work by incorporating different physical
phenomena. Uniform suction/blowing effect on flow and heat
transfer due to stretching cylinder is discussed by Ishaket
al. [11]. Ishak and Nazar [12] have studied the flow around
stretching cylinder. They assumed that cylinder is stretching
linearly in axial direction and found similarity solution. This

work was extension of Grubka and Bobba [13] and Ali [14],
from a stretching sheet to a stretching cylinder. Ishaket
al. [15], Ganesan and Loganathan [16] discussed boundary
layer flow and heat transfer over an unsteady stretching verti-
cal surface and the magnetic effects on horizontal and vertical
stretching cylinder, respectively. Abbaset al. [17] have stud-
ied the combine effects of MHD and porous medium over
stretching cylinder. The thermal radiation through a porous
medium was also incorporated by considering the fluid as
transparent. Recently, Mukhopadhyay [18-19] studied the
effects of MHD and mixed convection boundary layer flow
over a stretching cylinder.

In all aforementioned studies, the fluid physical proper-
ties were taken to be constant. The physical properties of
the fluid may change with temperature variation. Heat gener-
ated in lubricants effect the physical properties, so that these
properties can no longer be remained constant. The increase
of temperature significantly increases the fluid carriage phe-
nomena by the reduction of physical properties across the
momentum boundary layer and the heat transfer rate is also
effected near the wall. Therefore, to predict the flow behavior
accurately it is essential to take physical properties as func-
tion of temperature. After examine the literature on variable
fluid properties (see [20-23]), it is disclosed that lot of work
can be done for flow and heat analysis over stretching cylin-
der with variable fluid properties. In present study, we ana-
lyze the effects of magnetic field and variable Prandtl number
on flow and heat transfer over stretching cylinder. The gov-
erning non-linear ordinary differential equations have been
solved numerically using the Chebyshev Spectral Newton’s
Iterative Scheme (CSNIS) [24]. The accuracy of the results
is verified with previous studies through tables. All the calcu-
lations are carried out with thermo-physical effects and vari-
able Prandtl number.
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FIGURE 1. A sketch of physical plane of considered problem.

2. Mathematical formulation

We considered the steady two dimensional flow over a hol-
low cylinder with radiusa. The fluid is assume to be viscous,
incompressible and electrically conducting. The axis of the
cylinder is alongx-axis andr-axis is measured along radial
direction as shown in Fig. 1.

It is assumed that the cylinder is stretched along axial di-
rection withUw = b(x/L) and surface temperature of the
cylinder is taken asTw = c(x/L) whereL andb represents
the reference length and stretching rate of the cylinder respec-
tively, c represents dimensionless constant. The phenomenon
of suction/blowing prevails all over the surface of the cylin-
der with constant radial velocityvw. All the thermos-physical
properties are considered as constant except that the fluid vis-
cosity and thermal conductivity which are assumed as a func-
tion of temperature [26] in the following form.

µ(T ) =
µ∞

[1 + γ(T − T∞)]
,

k(T ) = k∞

[
1 + ε

(
T − T∞

∆T

)]
(1)

Wherek∞ andµ∞ are thermal conductivity and viscos-
ity of the fluid at the ambient temperature,ε = (k−k∞)/k∞
is small parameter,γ is thermal property of the fluid,
∆T = Tw − T∞ is the temperature difference,Tw andkw

are temperature and thermal conductivity at the surface. The
temperature dependent viscosity in Eq. (1) can be simplified
as

µ(T ) =
1

A(T − Tr)
(2)

A =
γ

µ∞
and Tr − 1

γ
, (3)

HereA andTr are constant dependent on physical sit-
uations. In general,A > 0 represents gases andA < 0
represents liquid. Typical values ofγ and A for air are
γ = 0.026240 andA = −123.2 (see Weast [29]). Let fluid
viscosity parameterθr is constant and defined by

θr =
Tr − T∞
Tw − T∞

=
1

γ(Tw − T∞)
, (4)

which can be determined by the viscosity/temperature prop-
erties of the fluid under consideration. It is important to men-
tion here that forγ → 0, i.e., µ(T ) = µ∞ (constant, from
Eq. (3)),θr →∞. As the viscosity is decreasing function of
temperature for liquids and gases, it is increasing function of
temperature. Thereforeθr is positive for gases and negative
for liquids. The boundary layer equations for continuity, mo-
mentum and energy with variable fluid properties under the
above assumptions are

∂(ru)
∂x

+
∂(rv)
∂r

= 0 (5)

u
∂u

∂x
+ v

∂u

∂r
=

1
ρ∞r

∂

∂r

(
µ(T )r

∂u

∂r

)
− σB2

0

ρ
u (6)

u
∂T

∂x
+ v

∂T

∂r
=

1
ρ∞cpr

∂

∂r

(
k(T )r

∂T

∂r

)

+
Q

ρ∞cp
(T − T∞) (7)

whereρ∞ be the density,Bo be magnetic field strength,T
is the temperature of the fluid,cp is the specific heat,T∞
is the ambient temperature andQ represents temperature de-
pendent volumetric rate. WhereQ > 0 refers to internal heat
generation andQ < 0 represents internal heat absorption.
The relevant boundary conditions are

u = Uw, v = vw, T = Tw at r = a,

u → 0, T → T∞ as r →∞. (8)

Following Ishak and Nazar [12], we define the similarity
transformations for Eqns. (6)-(8) as

η =
r2 − a2

2a

(
Uw

ν∞x

) 1
2

, ψ = (Uwν∞x)
1
2 af(η)

θ(η) =
T − T∞
Tw − T∞

(9)

Hereη be the similarity variable,f(η) andθ(η) are di-
mensionless quantities andν∞ be the kinematic viscosity.ψ
be the stream function for which we find the expressions of
u = ∂ψ/r∂r andv = −∂ψ/r∂x The expression of velocity
takes the following forms

u = Uwf ′ and v = −a

r

(
v∞b

L

) 1
2

f, (10)

and Eqns. (6,7) becomes

θr

θr − 1

[
(1 + 2Kη)

(
f ′′′ +

1
θr − θ

f ′′θ′
)

+ 2Kf ′′
]

− f ′2 + ff ′′ −Mf ′ = 0 (11)

(1 + εθ)[(1 + 2Kη)θ′′ + 2Kθ′] + ε(1 + 2Kη)θ′2

− P r∞(f ′θ − fθ′) + P r∞βθ = 0 (12)
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With corresponding boundary conditions

f(η) = fw, f ′(η) = 1, θ(η) = 1 at η = 0

f ′(η) → 0, θ(η) → 0, as η →∞ (13)

Here

K =

√
Lv∞
ba2

, M =
σB2

0

ρ∞b
, Pr∞ =

µ∞cp

k∞
,

β =
QL

bρ∞cp
, fw = ±vw

√
L

bv∞
, (14)

and prime denotes the differentiation with respect toη, K
be the curvature parameter,M be the magnetic parameter,
Pr∞ be the ambient Prandtl number,β be the heat source
sink andfw be suction/injection parameter, respectively. As
by definition of Prandtl number, it is relation of viscosity,
thermal conductivity and specific heat. It is well known
that fluid viscosity and thermal conductivity varies across
the boundary layer, therefore Prandtl number also varies.
Moreover the assumption of constant Prandtl number inside
the boundary layer with temperature dependent viscosity and
variable thermal conductivity may leads to unrealistic results
(see [25-28]). Due to said reason, the variable Prandtl num-
ber is used here. The Prandtl number under the assumption
of variable fluid properties is defined as

Prv = Pr∞

((
1− θ

θr

)
(1 + εθ)

)−1

(15)

Upon using Eq. (15), the non-dimensional energy
Eq. (12) can be expressed as

(1 + εθ)[(1 + 2Kη)θ′′ + 2Kθ′] + ε(1 + 2Kη)θ′2

−
(

1− θ

θr

)
(1 + εθ)Prv(f ′θ − fθ′)

+
(

1− θ

θr

)
(1 + εθ)Prvβθ = 0 (16)

The quantities of interest for engineers and scientists are
skin friction coefficientCf and Nusselt numberNu respec-
tively defined as

Cf =
τw

ρ∞U2
w

2

, Nu =
xqw

k∞(Tw − T∞)
(17)

τw =
(

µw

(
∂u

∂r

))
r = R,

qw =
(

k∞

(
∂T

∂r

))
r = R (18)

Utilizing the variables in (9), we get

Cf = 2Re
− 1

2
x f ′′(0) and Nu = −Re

1
2
x θ′(0) (19)

WhereRex is Local Reynolds number.

3. Numerical method

The solution of dimensionless boundary layer Eqs. (11,16)
subject to the boundary conditions (13) is obtained by effi-
cient numerical method named as Chebyshev Spectral New-
ton’s Iterative Scheme [24] (CSNIS). For the validity of nu-
merical scheme the results are equated with already published
studies as a limiting case and found excellent agreement (see
Table I and II). The outline of the employed scheme is as
follows:

i Equations (11) and (16) with conditions (13) are
linearize by Newton’s linearization scheme.

ii The infinite domain is truncated to finite domain and
then reduced to the interval [-1,1] by using transforma-
tion ξ = 2η/L− 1.

iii The grid point between -1 and 1 are defined by
ξj = cos(πj/N), j = 0, 1, 2,. . .N , and are known
as Gauss-Lobatto collocation points.

iv The derivatives are replaced by a differential Matrix
D, which is used to find the derivatives at collocation
points.

v Obtained matrix is solved by inverse method.

TABLE I. The comparison of−f ′′(0) for different values offw whenK = 0, M = 0, θr →∞ andε = 0.

fw Numerical solution [23] Analytical solution [23] Present solution

-1.0 0.618063 0.618034 0.618041

-0.5 0.780800 0.780780 0.780781

-0.25 0.882798 0.882782 0.882784

-0.1 0.951260 1.951250 0.951250

0.0 1.000180 1.000000 1.000001

0.1 1.051255 1.051249 1.051249

0.25 1.132786 1.132780 1.132782

0.5 1.280778 1.280780 1.280776

1.0 1.618034 1.618034 1.618033
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TABLE II. The comparison of−θ′(0) for different values of Pr∞ whenK = 0, M = 0, fw = 0, ε = 0, β = 0 andθr →∞.

Pr∞ [13] [14] [15] [23] Present results

0.72 0.8086 0.8058 0.8086 0.808631 0.808682

1.0 1.0000 0.9961 1.0000 1.000000 1.000000

3.0 1.9237 1.9144 1.9237 1.923663 1.923660

10.0 3.7207 3.7006 3.7207 3.720649 3.720614

FIGURE 2. The impact ofK andM on temperature profile with
Prv = 0.71,ε = 0.2, θr = −3, β = −0.1 when (a)fw = 0.0
(b) fw = −0.5 (c) fw = 0.5.

4. Results and discussion

The obtained boundary layer flow and energy equations are
numerically solved by Chebyshev Spectral Newton’s Itera-
tive Scheme. The numerical results are plotted graphically
for different emerging parameters including curvature param-
eterK, magnetic parameterM , fluid viscosity parameterη,
injection/suction parameterfw, variable thermal conductiv-
ity parameter, heat source/sink parameterβ and the variable
Prandtl number Prv.

FIGURE 3. Temperature profile for different values ofK andθr

with Prv = 0.71,ε = 0.2, M = 0.2, β = −0.1 whenfw = 0.0.

FIGURE 4. Temperature profile for different values ofK andθr

with Prv = 0.71,ε = 0.2, M = 0.2, β = −0.1 whenfw = −0.5.
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FIGURE 5. Temperature profile for different values ofK andθr

with Prv = 0.71,ε = 0.2, M = 0.2, β = −0.1 whenfw = 0.5.

FIGURE 6. Temperature profile for different values ofK andβ
with Prv = 0.71, ε = 0.2, M = 0.2, θr = −5.0 when (a)
fw = −0.5 and (b)fw = 0.5.

Figures 2(a), 2(b) and 2(c) demonstrate temperature pro-
files for different values of curvature and magnetic param-
eters by keepingfw = 0.0, -0.5, 0.5 respectively. The in-
creasing values of curvature parameter leads to enhancement
in thermal boundary layer thickness. This behavior is equally
true for magnetic parameter, which in turn increases the tem-

FIGURE 7. Temperature profile for different values ofK andε with
Prv = 0.71,β = −0.1, M = 0.2, θr = −5 when (a)fw = −0.5
and (b)fw = 0.5.

perature profile. It is noticed that in Figs. 2(b) and 2(c) ther-
mal boundary layer thickness increases and decreases due to
injection and suction respectively. Figures 3, 4 and 5 cap-
ture the effects of fluid viscosity parameter over a stretch-
ing cylinder for various curvature parameterK, keeping
fw = 0.0, -0.5, 0.5 respectively. These lead to observa-
tion that with increasing values ofθr temperature decreases
slightly for all values offw. The decreasing trend of tem-
perature profile and thermal boundary layer is observed with
increasing values of injection parameterfw. The temperature
distribution for different values of the curvature parameterK
and the heat source/sink parameterβ for both blowing and
suction are presented in Figs. 6(a,b). From these graphs, we
observe that the temperature distribution is lower within the
boundary layer for negative value ofβ (heat sink) and higher
for positive values ofβ (heat source). It is observed that
temperature and thermal boundary layer thickness increase
with the increasing value of the heat source/sink parameter
β. Same behavior is observed for all values of the trans-
verse curvature parameterK. Figures 7(a,b) is drawn to show
the effects of curvature parameterK on temperature profile
againstη for different value of variable thermal conductivity
parameterε for both blowing and suction cases. These fig-
ures clearly indicate that temperature and thermal boundary
layer thickness
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TABLE III. Values ofNuRe−1/2
x for different values ofθr andε = 0.1.

θr (a) For constant Prandtl (b) For variable Prandtl Relative error:
∣∣a−b

a

∣∣ ∗ 100

-100 0.96856739 0.97277067 0.432

-10 0.95825554 0.99980816 4.33

-5 0.94741344 1.02950040 8.66

-2 0.91822850 1.11649181 21.59

-1 0.87827569 1.25537543 42.93

-0.1 0.65401886 3.25430276 397.58

2 1.03980677 0.81373482 21.74

5 0.99496662 0.90848050 8.69

10 0.98196039 0.93930895 4.34

100 0.97093519 0.96672094 0.434

FIGURE 8. Temperature profile for different values ofK and Prv with ε = 0.2,β = −0.1, M = 0.2, θr = −5 when (a)fw = −0.5 and
(b) fw = 0.5.

FIGURE 9. Variation of variable Prandtl number Prv with ε = 0.2 for several values ofθr (a) positive and (b) negative.

increases with increase ofε andK where as in case of in-
jection, temperature and thermal boundary layer thickness is
larger as compared to suction. Figure 8 (a,b) show the tem-
perature profile for different value of variable Prandtl num-
ber Prv for both blowing and suction cases respectively. One
can clearly see from these figures that an increase in variable

Prandtl number leads to decrease in temperature profiles and
hence thermal boundary layer thickness decreases.

Figures 9 and 10 exhibits the variations in variable
Prandtl number in the domain of boundary layer for various
values of the viscosity parameterθr with the fixed value of
ambient Prandtl number Pr∞ = 0.71. Both figures show that
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FIGURE 10. Variation of variable Prandtl number Prv with ε = 0 for several values ofθr (a) positive and (b) negative.

the variable Prandtl Prv asymptotically converges to the fix
value of ambient Prandtl Pr∞ asη → ∞. It is noticed that
at the surface of cylinder Prv approaches Pr∞ for large val-
ues ofθr. It is also observed that Prv decreases with increase
in θr when it is positive while opposite behavior is observed
for negative values ofθr. Table III demonstrates the signifi-
cance of variable viscosity parameterθr on the Nusselt num-
ber within the domain of boundary layer for both constant
and variable Prandtl number.

Numerical data shows that values of Nusselt number are
smaller in a fluid of constant Prandtl number than a fluid of
variable Prandtl number whenθr is negative and opposite be-
havior is seen for positive values ofθr. The relative error is
increasing whenθr is decreasing and decreasing whenθr is
increasing. These variations in rate of heat transfer clearly
support the argument that constant Prandtl number produce
unrealistic results.

5. Conclusions

Hydromagnetic flow and heat transfer is examined in the
present article. The fluid properties and Prandtl number are

considered as a function of temperature. The solution of
present problem is achieved by Chebyshev Spectral method
having excellent agreement with published studies and fast
convergent. The results of detailed information concerning
the effects of emerging parameters is discussed. Important
deductions of the present theoretical study are

• Increase of curvature parameter results in enhancement
of temperature in presence of variable fluid properties
and Prandtl number

• The increasing value of heat source/sink parameter
boost up the temperature field.

• Variable Prandtl Prv asymptotically converges to the
fix value of ambient Prandtl Pr∞ asη →∞.

• At the surface of cylinder Prv approaches Pr∞ for large
values ofθr

• Prv decreases with increase inθr when it is positive
while opposite behavior is observed for negative val-
ues ofθr.
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