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Analytical calculation of radiative corrections of a THDM potential
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We obtain a closed form effective potential at the one-loop level of a Two Higgs Doublet Model. Through the loop expansion we reproduce
the expression presented by Weinberg and Coleman, showing explicitly every step involved in the calculation. The formalism is then extended
to include interaction terms between two scalar doublets and a final expression of the one-loop level contributions is presented.
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1. Introduction

In the Standard Model (SM) spontaneous symmetry breaking
is performed making use of tree level terms in the potential,
but this is only an approximate method in the full quantum
theory, since it disregards the quantum corrections coming
from virtual processes at the loop level, which are particu-
larly important when considering zero and finite temperature
studies. In Ref. 1 a first effort to extend the potential con-
sidered taking into account the one-loop level corrections, in
order to study the phase transition between SSB and non-SSB
scenarios for different models: the authors used explicitly the
Landau gauge for the scalar electrodynamics theory. Later
on, Jackiw [2] made the calculation in an arbitrary gauge up
to two-loop level for a set of scalars with anO(n) internal
symmetry. Subsequently, Arnoldet al. [3] extended the re-
sult for the whole SM with a single Higgs doublet including
the thermal contributions.

However, as far as we know, no one has determined from
first principles the one-loop level vacuum contributions in
which more than one scalar field are present and have in-
teraction terms, such as in the Two Higgs Doublet Model
(THDM). Although different models have been presented in
which several non interacting scalar fields are present. In the
cosmological arena the scalar sector effective potential is use-
ful to study the electroweak phase transition [4], on which
both vacuum and finite-temperature contributions must be
taken into account.

In a recent paper [5] a first attempt was made to have
an effective potential in which two scalar fields have cou-
pling terms present in the potential. Unfortunately the way
in which multiple scalar potentials have been constructed
makes use of a generic expression coming from the single
scalar one-loop contribution, without an explicit and detailed
derivation. In the present work, we obtain an effective poten-
tial for the scalar sector of a generic THDM. We first perform
a detailed analysis for the single massless and massive field
theories and then work out the THDM extension, we do this
only for the scalar sector, since all other sectors are equal to
those of the Minimal Standard Model, for which the effective

potential has been obtained even up to the three loop level in
some scenarios [6].

The rest of our paper is structured as follows: In Sec. 2
we present the general features used in the derivation of the
effective potential. And then proceed to calculate the mass-
less self interacting real scalar field potential in Sec. 3. We
then work out the case of a massive self interacting real scalar
field potential in Sec. 4, and in Sec. 5 we obtain the expres-
sion for the THDM effective potential. Our conclusions are
presented in Sec. 6.

2. Derivation of the Effective Potential

For a single real massless self interactive scalar, whose La-
grangian is given by

L =
1
2
(∂µφ)2 − λ

4!
φ4, (1)

the one loop level corrections to the potential are given by an
infinite series of Feynman diagrams; the first four of which
are shown in Fig. 1.

The first diagram contains only one vertex, so we only
need one factor ofλ (the factor ofi cancels with the one
of the propagator); and it has a single propagator inside the
loop. The second diagram, has two vertices and two propa-
gators. In general, then-th diagram containsn vertices andn
propagators, each one corresponding to a side of the polygon
formed in the center of each diagram.

So, from the first diagram we obtain:

λ
1

k2 + iε
, (2)

where k represents the momentum of the particle going
around the loop. It is a virtual particle, so we actually have
to integrate over all of its possible values, that is, from minus
infinity to plus infinity (for each component):

∫
d4k

(2π)4
λ

k2 + iε
. (3)

The denominator(2π)4 is conventional, and the integration
limits are usually left implicit when they are±∞. Now we
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FIGURE 1. First four one-loop Feynman diagrams that contribute
to the effective potential.

must add combinatoric factors: the diagram stays the same if
we interchange thetwo external legs attached to the vertex,
so we add a1/2; and it is also invariant under a reflection
through a vertical axis passing through the center of the loop,
so we have another1/2:

∫
d4k

(2π)4
1
2

1
2λ

k2 + iε
. (4)

Finally, because of the definition of the connected generating
functional, we have a factor ofi and because of the form of
the Taylor series expansion, we must add aφ2 for each vertex
in the diagram, so the final expression for the first diagram is

i

∫
d4k

(2π)4
1
2

1
2λφ2

k2 + iε
, (5)

where theφ is defined as the functional derivative of the
connected generating functional with respect to the external
source.

Repeating the above reasoning, we arrive at the conclu-
sion that then-th diagram is represented by the expression

i

∫
d4k

(2π)4
1
2n

( 1
2λφ2

k2 + iε

)n

. (6)

Summing all of them, we obtain

i

∫
d4k

(2π)4

∞∑
n=1

1
2n

( 1
2λφ2

k2 + iε

)n

. (7)

Performing a Wick rotation, that is, making the change of
variablek0 → ik0 of the time component of the momentum;
we eliminate the pre-factor ofi and leave a minus sign. We

also identify the infinite sum with the following Taylor series
expansion of the logarithm:

ln(1− x) = −
∞∑

n=1

xn

n
, (8)

and dropping theiε,

i

∫
d4k

(2π)4

∞∑
n=1

1
2n

( 1
2λφ2

k2 + iε

)n

=
1
2

∫
d4k

(2π)4
ln

(
1 +

λφ2

2k2

)

=
Λ4

64π2
ln

(
1 +

λφ2

2Λ2

)

+
λφ2Λ2

128π2
− λ2φ4

256π2
ln

(
1 +

2Λ2

λφ2

)
. (9)

In general, we set the second derivative of the potential, eval-
uated atφ = 0, equal to the (squared) renormalized massµ
of the particle:

d2V

dφ2

∣∣∣
φ=0

= µ2. (10)

and for the the particular case of a massless scalar (which we
will treat in the following section), we have

d2V

dφ2

∣∣∣
φ=0

= 0. (11)

Another renormalization condition that is employed concerns
the fourth derivative of the potential which is equated to the
coupling constantλ

d4V

dφ4

∣∣∣
φ=M

= λ, (12)

where we evaluateφ at M to avoid IR divergences.M is
called therenormalization masswhich is an arbitrary quan-
tity.

3. Massless Self Interacting Real Scalar Field

The Lagrangian for a real massless self interacting scalar field
model is of the form

L=
1
2
(∂µφ)2+

1
2
A(∂µφ)2− λ

4!
φ4−1

2
Bφ2− 1

4!
Cφ4, (13)

where the terms containingA, B, andC are the counterterms.
Hence the one-loop-level effective potential is

V (φ) =
λ

4!
φ4 +

1
2
Bφ2 +

1
4!

Cφ4

+ i

∫
d4k

(2π)4

∞∑
n=1

1
2n

( 1
2λφ2

k2 + iε

)n

, (14)
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the integral over the sum of the diagrams can be expressed as
the logarithm

1
2

∫
d4k

(2π)4
ln

(
1 +

λφ2

2k2

)
=

Λ4

64π2
ln

(
1 +

λφ2

2Λ2

)

+
λφ2Λ2

128π2
− λ2φ4

256π2
ln

(
1 +

2Λ2

λφ2

)
. (15)

The detailed derivation of the integral is found in Ap-
pendix A. We can drop the first term because it vanishes in
the limit of largeΛ; also in this limit we have

ln
(

1 +
2Λ2

λφ2

)
= − ln

(
λφ2

2Λ2

)
, (16)

substituting the analytical solution of the logarithmic integral
that we solve we now arrive at the following expression for
the potential

V (φ) =
λ

4!
φ4 +

1
2
Bφ2 +

1
4!

Cφ4

+
λφ2Λ2

128π2
+

λ2φ4

256π2
ln

(
λφ2

2Λ2

)
, (17)

the counterterm coefficientB is obtained through Eq. 11

B = − λΛ2

64π2
, (18)

and the counterterm coefficientC, from the condition given
by Eq. 12

C = −
λ2

[
25 + 6 ln

(
λM2

2Λ2

)]

64π2
, (19)

after substituting them into the effective potential, and a little
bit of work, we get

V (φ) =
λ

4!
φ4 +

λ2φ4

256

[
ln

(
φ2

M2

)
− 25

6

]
. (20)

It is important to notice that although the coefficients of the
counter termsB andC that we obtained are different to those
obtained in Ref. 1, our final expression for the potential is the
same.

4. Massive Self Interacting Real Scalar Field

The Lagrangian for a massive self interacting scalar field the-
ory is given by

L =
1
2
(∂µφ)2 +

1
2
A(∂µφ)2 − µ2

2
φ2

− λ

4!
φ4 − 1

2
Bφ2 − 1

4!
Cφ4, (21)

so we identify the potential as

V (φ) =
µ2

2
φ2 +

λ

4!
φ4 +

1
2
Bφ2 +

1
4!

Cφ4

+ i

∫
d4k

(2π)4

∞∑
n=1

1
2n

( 1
2λφ2

k2 − µ2 + iε

)n

. (22)

FIGURE 2. Scalar propagator correction diagrams.

Once again we are left with an integral over the sum of the
one loop level self interacting contributions which we write
as a logarithmic integral (the detailed derivation is found in
Appendix B)

1
2

∫
d4k

(2π)4
ln

(
1 +

λφ2

2(k2 + µ2 − iε)

)
= −2µ4 ln

(
µ2

Λ2

)

+
1
2
(2µ2 + λφ2)2 ln

(
2µ2 + λφ2

2Λ2

)
+ λΛ2φ2, (23)

from which we arrive at the effective one loop level potential
for a massive interacting scalar field

V (φ) =
µ2

2
φ2 +

λ

4!
φ4

+
1

64π2

[(
µ2 +

λφ2

2

)2

ln
(

1 +
λφ2

2µ2

)

− 1
2
λµ2φ2 − 25

24
λ2φ4 +

1
4
λ2φ4 ln

(
2µ2

λM2

)]
. (24)

The methodology used in obtaining the analytical solution
for this case will now be extended to calculate the potential
of interacting scalar fields in the THDM.

5. Effective Potential for a Two Higgs Doublet
Model

Because we are interested in the one-loop vacuum corrections
of the scalar sector of the THDM (a review on the THMD can
be found in Ref. 7), we will only work with the contributions
arising from the scalar potential

V (Φ1, Φ2) = m2
1Φ

†
1Φ1 + m2

2Φ
†
2Φ2 −m2

12

(
Φ†1Φ2 + Φ†2Φ1

)

+ λ1

(
Φ†1Φ1

)2

+ λ2

(
Φ†2Φ2

)2

+ λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)

+ λ5

[(
Φ†1Φ2

)2

+
(
Φ†2Φ1

)2
]

, (25)
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where the Higgs doublets can be written as

Φ1 =
(

φ+
1

φ0
1

)
, Φ2 =

(
φ+

2

φ0
2

)
, (26)

but the physical fields of the charged sector are defined
through the transformation

(
G±

H±

)
=

(
cosβ sin β
− sin β cos β

)(
φ±1
φ±2

)
, (27)

while the imaginary terms are transformed via

(
H0

h0

)
=

(
cosα sin α
− sin α cosα

)(
Reφ0

1

Reφ0
2

)
, (28)

and the real neutral sector is obtained with the transformation
(

G0

A0

)
=

(
cosβ sin β
− sin β cosβ

) (
Imφ0

1

Imφ0
2

)
. (29)

Through the previously defined transformations we are able
to obtain all of the self interaction vertices between each of
the fieldsh0, H0, A0, H±, G0 and G± found in Ref. 8.
But since we choose to work in the unitary gauge, the Gold-
stone bosons will be “eaten” by the SU(2)×U(1) gauge fields.
Therefore, we will only be dealing with the physical fields.

Furthermore, we only consider quartic vertices. Dia-
grams containing triple vertices such as those shown in Fig. 2
give loop corrections to the propagator, but they are not rel-
evant to our present work, so we do not consider them. The
effective potential in integral form is given in Appendix C,
from which we obtain the effective potential as a function of
the physical fields:

V (Φ1,Φ2) = Vtree

+ VH0H0H0H0 + Vh0h0h0h0 + VA0A0A0A0

+ VH0h0h0h0 + Vh0H0H0H0 + VH0H0h0h0

+ VH0H0A0A0 + Vh0h0A0A0 + VH+H+H−H−

+ Vh0h0H−H+ + VH0H0H−H+ + VA0A0H−H+

+ VA0A0H0h0 + VH0h0H−H+ , (30)

the first three terms corresponding to neutral Higgs of the
same typeVSSSS whereS = h0, H0, A0 are given by

VSSSS = −λµ2
SS2 − 25

12
λ2S4 +

λ2S4(16λµ2
SM2 − 64µ4

S)
12(λM2 + 2µ2

S)2

+ 2λµ2
SS2 ln

(
1 +

λS2

2µ2
S

)
+ 2µ4

S ln
(

1 +
λS2

2µ2
S

)

+
1
2
λ2S4 ln

(
µ2

S + λS2

2

µ2
S + λM2

2

)
, (31)

next we have the coupling of three fields of the same type
(S1) with another one of a different kind (S2) given by

VS1S1S1S2 = −λµ2
S1

S2S1

(
1− 2 ln

(
1 +

λS2S1

2µ2
S1

))

+
λ2

4
S2

2S2
1

(
2 ln

(
1 +

λS2S1

2µ2
S1

)
− 3

)

+ 2µ4
S1

ln
(

1 +
λS2S1

2µ2
S1

)
, (32)

during the calculation for this case, we set the one of the mass
counter term coefficientsB = 0, because if one includes all
the mass counter terms you end up with a divergent loga-
rithm.

The subsequent four terms of the effective potential
which have two equal pairsS1, S2 are given by

VS1S1S2S2 = −λµ2
S(S2

1 + S2
2)− 3

4
λ2(S4

1 + S4
2)

+
4(S4

1 + S4
2)M2λ3

3(M2λ + 2µ2
S)2

(µ2
S −M2λ)

+ 2λµ2
SS2

1 ln
(

1 +
λS2

1

2µ2
S

)

+ 2λµ2
SS2

2 ln
(

1 +
λS2

2

2µ2
S

)

+
λ2

2
S4

1 ln

(
µ2

S + λS2
1

2

µ2
S + λM2

2

)

+
λ2

2
S4

2 ln

(
µ2

S + λS2
2

2

µ2
S + λM2

2

)
. (33)

Finally we have the terms in which we have a single pair of
scalars of the same kind and the remaining two are of a dif-
ferent type

VS1S1S2S3 = −λµ2
S1

S2S3

(
1− 2 ln

(
1 +

λS2S3

2µ2
S1

))

+
λ2

4
S2

2S2
3

(
2 ln

(
1 +

λS2S3

2µ2
S1

)
− 3

)

+ 2µ4
S1

ln
(

1 +
λS2S3

2µ2
S1

)
. (34)

the last term in the potential involves the coupling of fields
which are all of a different kind, such asH0h0H+H−, this
type of coupling does not permit a polygon diagram whose
series is constructible.

6. Conclusions

We calculated the contributions of the THDM effective po-
tential that come from one-loop diagrams with quartic cou-
pling vertices which are dimensionally consistent and renor-
malizable. We hope this analytical scheme will be of use to
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model builders interested in theories that must take in to con-
sideration vacuum corrections to two or more scalars.

Appendix

A. Solution to the integral of the massless effec-
tive potential

We proceed to solve the integral by first changing from an in-
tegral over 4-momentum to an integral over hyper spherical
coordinates

k0 = ρ cos ψ,

k1 = ρ sin ψ cos θ,

k2 = ρ sin ψ sin θ cosφ,

k3 = ρ sin ψ sin θ sin φ,

d4k = ρ3 sin2 ψ sin θdρdψdθdφ,

whereθ, ψ ε (0, π) andφ ε (0, 2π).
From which we obtain

1
2

∫
d4k

(2π)4
ln

(
1 +

λφ2

2k2

)
=

1
2(2π)4

π∫

0

sin2 ψdψ

×
π∫

0

sin θdθ

∫ 2π

0

dφ

Λ∫

0

ρ3 ln
(

1 +
λφ2

2ρ2

)
dρ. (A.1)

We now solve the integral by

I =
1

16π4

Λ∫

0

ρ3 ln
(

1 +
λφ2

2ρ2

)
dρ

=
1

16π2

∞∫

0

ln
(

1 +
λφ2

2ρ2

)
d

(
1
4
ρ4

)

=
1

16π2

[
1
4
ρ4 ln

(
1 +

λφ2

2ρ2

) ∣∣∣∣∣

Λ

0

− 1
4

Λ∫

0

ρ4 1

1 + λφ2

2ρ2

(−λφ2

ρ3
)

]
=

Λ4

64π2
ln

(
1 +

λφ2

2Λ2

)

+
1

64π2

Λ∫

0

ρ4 2ρ2

2ρ2 + λφ2

λφ2

ρ3
dρ, (A.2)

the first term cancels because whenΛ → ∞ the logarithm
goes to zero, as for the last term

I1 =
λφ2

32π2

Λ∫

0

ρ3dρ

2ρ2 + λφ2
, (A.3)

makingx = 2ρ2 =⇒ dx = 4ρ dρ =⇒ xdx = 8ρ3dρ,

I1 =
λφ2

256π2

2Λ2∫

0

xdx

x + λφ2
. (A.4)

Now definingy = x + λφ2 =⇒ dy = dx

I1 =
λφ2

256π2

2Λ2+λφ2∫

λφ

y − λφ2

y
dy (A.5)

=
λφ2

256π2

2Λ2+λφ2∫

λφ

(
1− λφ2

y

)
dy

=
λφ2

256π2

[
2Λ2 − λφ2 ln

(
2Λ2 + λφ2

λφ2

)]

=
λφ2Λ2

128π2
− λ2φ4

256π2
ln

(
1 +

2Λ2

λφ2

)
. (A.6)

In the large cutoff limit,Λ À 1, we have

ln
(

1 +
2Λ2

λφ2

)
= − ln

(
λφ2

2Λ2

)
, (A.7)

so the effective potential is

V =
λ

4!
φ4 +

1
2
Bφ2 +

1
4!

Cφ4

+
λφ2Λ2

128π2
+

λ2φ4

256π2
ln

λφ2

2Λ2
. (A.8)

B. Solution to the integral of the massive effec-
tive potential

In this case we have that the sum of 1-loop diagrams is given
by the following integral:

I ≡ 1
2

∫
d4k

(2π)4
ln

(
1 +

λφ2

2(k2 + µ2 − iε)

)

=
1
2
(2π2)

1
(2π)4

∫
ρ3 ln

(
1 +

λφ2

2(ρ2 + µ2)

)
dρ, (B.1)

Rev. Mex. Fis.62 (2016) 344–350



ANALYTICAL CALCULATION OF RADIATIVE CORRECTIONS OF A THDM POTENTIAL 349

we now make the change of variablex = 2ρ2 ⇒ dx = 4ρdρ
⇒ xdx = 8ρ3dρ. Then dropping theiε,

I =
1

16π2

1
8

∫
x ln

(
1 +

λφ2

x + µ2

)
dx

=
1

16π2

1
8

∫
ln

(
1 +

λφ2

x + µ2

)
d

(
1
2
x2

)

=
1

128π2

1
2
x2 ln

(
1 +

λφ2

x + 2µ2

)

− 1
128π2

∫
1
2
x2 1

1 + λφ2

x+2µ2

−λφ2

(x + 2µ2)
dx

=
1

256π2
x2 ln

(
1 +

λφ2

x + 2µ2

)

+
λφ2

256π2

∫
x2dx

(x + 2µ2 + λφ2)(x + 2µ2)
. (B.2)

Let’s now solve the rightmost integral (redefining somex-
independent quantities asa andb):

I1 =
∫

x2dx

(x + a)(x + b)
, (B.3)

settingu = x2 anddv = dx
(x+a)(x+b) , to getv we integrate:

v =
∫

dx

(x + a)(x + b)
=

∫
dy

y(y − a + b)

=
−1

−a + b
ln

(
b− a + y

y

)
. (B.4)

We now use the following known integral
∫

du

u(A + Bu)
= − 1

A
ln

(
A + Bu

u

)
, (B.5)

where in our caseB = 1, A = −a + b, andu = y; thus

I1 =
∫

x2dx

(x + a)(x + b)
=

x2

a− b
ln

(
b + x

a + x

)

−
∫

1
a− b

ln
(

b + x

a + x

)
2xdx =

x2

a− b
ln

(
x + b

x + a

)

+
2

b− a

∫
[x ln(x + b)− x ln(x + a)] dx. (B.6)

For each term on the right we have
∫

x ln(x + b)dx =
1
2
(x2 − b2)

× ln(x + b)− 1
4
(x− b)2 + b2, (B.7)

∫
x ln(x + a)dx =

1
2
(x2 − a2)

× ln(x + a)− 1
4
(x− a)2 + a2, (B.8)

putting both together, and doing some algebra,

I1 =
b2

a− b
ln(x + b) +

a2

b− a
ln(x + a) + x +

3
2
(b + a).

Finally, placing a cutoff atk2 = Λ2, or equivalently
x2 = 2Λ2,

I =
1
2

∫
d4k

(2π)4
ln

(
1 +

λφ2

2(k2 + µ2)

)

=
1

256π2
x2 ln

(
1 +

λφ2

x + 2µ2

) ∣∣∣∣∣

2Λ2

0

+
λφ2

256π2

[
1

λφ2

[
4µ4 ln(x + 2µ2)

−(2µ2 + λφ2)2 ln(x + 2µ2 + λφ2)
]
+ x

+
3
2
(λφ2 + 4µ2)

] ∣∣∣∣∣

2Λ2

0

. (B.9)

We neglect the first term since whenΛ →∞ it tends to zero.
Then, evaluating, we’re left only with

I =
1

256π2

[
4µ4 ln

(
1 +

Λ2

µ2

)
− (2µ2 + λφ2)2

× ln
(

1 +
2Λ2

2µ2 + λφ2

)]
+

λφ2Λ2

128π2
. (B.10)

In the limit of largeΛ, we get

I =
1

128π2

[
−2µ2 ln

(
µ2

Λ2

)

+
1
2
(2µ2 + λφ2)2 ln

(
2µ2 + λφ2

2Λ2

)
+ λΛ2φ2

]
. (B.11)

C. THDM intergral form effective Potential

There are essentially three types of vertices involved in the
calculation: those with four equal fields, with two pair of
equal fields, and with only one pair of equal fields. We only
consider the case in which only one particle goes around the
loop. Thus, when we analyze a vertex with more than one
particle interacting, we write only the propagators of the par-
ticle that is “repeated”. In the first case, the integral form of
the potential is

VSSSS = Vtree+
∫

d4k

(2π)4
ln

(
1 +

λS2

2(k2 + µ2
S)

)
, (C.1)

where λ represents genericallly the self-coupling constant
andµS is the mass of the particleS, and we’ve omitted the
iε. In the second case,

VS1S1S2S2=Vtree+
∫

d4k

(2π)4
ln

(
1+

λS2
1

2(k2+µ2
S2

)

)
, (C.2)
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where there’s an obvious symmetry betweenS1 andS2. Fi-
nally, for the last case,

VS1S1S2S3=Vtree+
∫

d4k

(2π)4
ln

(
1+

λS2S3

2(k2+µ2
S1

)

)
. (C.3)
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