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Analytical calculation of radiative corrections of a THDM potential
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We obtain a closed form effective potential at the one-loop level of a Two Higgs Doublet Model. Through the loop expansion we reproduce
the expression presented by Weinberg and Coleman, showing explicitly every step involved in the calculation. The formalism is then extended
to include interaction terms between two scalar doublets and a final expression of the one-loop level contributions is presented.
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1. Introduction potential has been obtained even up to the three loop level in
some scenarios [6].

In the Standard Model (SM) spontaneous symmetry breaking The rest of our paper is structured as follows: In Sec. 2

is performed making use of tree level terms in the potentialwe present the general features used in the derivation of the

but this is only an approximate method in the full quantumeffective potential. And then proceed to calculate the mass-

theory, since it disregards the quantum corrections comindgss self interacting real scalar field potential in Sec. 3. We

from virtual processes at the loop level, which are particuthen work out the case of a massive self interacting real scalar

larly important when considering zero and finite temperaturdield potential in Sec. 4, and in Sec. 5 we obtain the expres-

studies. In Ref. 1 a first effort to extend the potential con-sion for the THDM effective potential. Our conclusions are

sidered taking into account the one-loop level corrections, irpresented in Sec. 6.

order to study the phase transition between SSB and non-SSB

scenarios for different models: the authors u_sed explicity the  Derivation of the Effective Potential

Landau gauge for the scalar electrodynamics theory. Later

on, Jackiw [2] made the calculation in an arbitrary gauge ugFor a single real massless self interactive scalar, whose La-

to two-loop level for a set of scalars with @(n) internal  grangian is given by

symmetry. Subsequently, Arnokt al. [3] extended the re- 1 I\

sult for the whole SM with a single Higgs doublet including L= 5(&,@5)2 — Edfl, Q)

the thermal contributions. . . .
, the one loop level corrections to the potential are given by an
However, as far as we know, no one has determined from

) o - ._Infinite series of Feynman diagrams; the first four of which
first principles the one-loop level vacuum contributions in

) . . are shown in Fig. 1.
which more than one scalar field are present and have in- : . .
The first diagram contains only one vertex, so we only

teraction terms, such as in the Two Higgs Doublet Modelneed one factor o (the factor ofi cancels with the one
(THDM). Although different models have been presented in i . ! -
of the propagator); and it has a single propagator inside the

which several non interacting scalar fields are present. In thFoo The second diaaram. has two vertices and two propa
cosmological arena the scalar sector effective potential is use- P gram, brop

ful to study the electroweak phase transition [4], on whichgators‘ In general, the-th diagram containg vertices and:

both vacuum and finite-temperature contributions must b ropaggtors, each one correspondmg to a side of the polygon
. ormed in the center of each diagram.
taken into account.

, So, from the first diagram we obtain:

In a recent paper [5] a first attempt was made to have
an effective potential in which two scalar fields have cou- 1 )
pling terms present in the potential. Unfortunately the way k2 + i€’
in which multiple scalar potentials have been constructedvhere k& represents the momentum of the particle going
makes use of a generic expression coming from the singlaround the loop. It is a virtual particle, so we actually have
scalar one-loop contribution, without an explicit and detailedto integrate over all of its possible values, that is, from minus
derivation. In the present work, we obtain an effective poteninfinity to plus infinity (for each component):
tial for the scalar sector of a generic THDM. We first perform d A
a detailed analysis for the single massless and massive field / 1 3)
theories and then work out the THDM extension, we do this (2m)T k2 + e
only for the scalar sector, since all other sectors are equal t6he denominatof27)* is conventional, and the integration
those of the Minimal Standard Model, for which the effective limits are usually left implicit when they ar¢oo. Now we
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p ; also identify the infinite sum with the following Taylor series
N/ expansion of the logarithm:

\\\ ,/ \\ /,’ \\\ oo "
S o 4 / \ In(l—2)=- Z - (8)
A ! : /I n=1
/// \\ II \\\\ "//
Wt e and dropping thee,
o dE X1 A\
a) b) Z/(zﬂyl;_:lzn <k2+ie>
: . ' 1 [ d'% Ap?
\ ’ - 2 m(1+ 2=
N N 4-- 2/ ey n( +2k2)
\ | | 4 2
RN A A
Vs | | — In(1+ 22
7/ \\ ! | 6472 n( * 2A2>
!
et S T AP?AE N2t 2A°
/ AN [ | ¢2¢21n<1+2). )
y N I | 12872 2567 Ao
C) d) In general, we set the second derivative of the potential, eval-

uated atp = 0, equal to the (squared) renormalized mass
FIGURE 1. First four one-loop Feynman diagrams that contribute of the particle:
to the effective potential. a2V

. . . ) d¢? ‘ -0
must add combinatoric factors: the diagram stays the same if . 1o .
we interchange thewo external legs attached to the vertex, @nd for the the particular case of a massless scalar (which we

so we add a/2; and it is also invariant under a reflection Will treat in the following section), we have
through a vertical axis passing through the center of the loop,

1. (10)

2
so we have anothdr/2: d—V’ = (11)
d¢? lp=0
d*k 1 A o iy :
/ 19732 e (4)  Another renormalization condition that is employed concerns
(2m) T e the fourth derivative of the potential which is equated to the

Finally, because of the definition of the connected generatin§oupling constani
functional, we have a factor afand because of the form of

the Taylor series expansion, we must adgf dor each vertex

in the diagram, so the final expression for the first diagram is

Z/ d'k 1 3A¢7
(2m)4 2 k2 + i€’

d*v

T& Py = A (12)

where we evaluate at M to avoid IR divergencesM is
(5) called therenormalization masswhich is an arbitrary quan-
tity.

where the¢ is defined as the functional derivative of the
connected generating functional with respect to the extern
source.

Repeating the above reasoning, we arrive at the concl
sion that thex-th diagram is represented by the expression

aé. Massless Self Interacting Real Scalar Field

Yhe Lagrangian for a real massless self interacting scalar field
model is of the form

d'k 1 [ Ie?\" 1 1 A, 1 1
] R _ 2 2 4 2 4
Z/ (2m)% 2n <k:2 +ie> ' (6) 5_5(8@) +§A(8H¢) _I¢ —§B¢ _IC(b , (13)
Summing all of them, we obtain where the terms containing, B, andC are the counterterms.
n Hence the one-loop-level effective potential is
/ d4ki1<§m2) @)
) — : . 1 1
(2m)* 125 2n \B* + e V(e) = 0 + 586 + 09"
Performing a Wick rotation, that is, making the change of 47, Ly 2 \ "
variablek® — ik? of the time component of the momentum; + /ﬂ Z L (2 (14)
! P ’ (2m)* = 2n \ k? + ic ’

we eliminate the pre-factor afand leave a minus sign. We
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the integral over the sum of the diagrams can be expressed a RN
the logarithm i [
1 [ d* A2 A4 A2
= n(l+—]= In(l4+-— T -
2 / (27" n( + 2k2) 6472 n( i 2A2) SN
AGZAZ 24 IA2 O A
oA A (2, @) AT i H
12872 25672 Agp? S
The detailed derivation of the integral is found in Ap- SN TN T
pendix A. We can drop the first term because it vanishes in* =% 7 o et
the limit of largeA; also in this limit we have
2A2 o2 FIGURE 2. Scalar propagator correction diagrams.
(1422 ) 2o (22 (16)
Ap? 2A2

o . ) . o Once again we are left with an integral over the sum of the
substituting the analytical solution of the logarithmic integral 5, loop level self interacting contributions which we write

that we solve we now arrive at the following expression for 5 4 |ogarithmic integral (the detailed derivation is found in

the potential Appendix B)

A 1 1

: : /4ln<1+22.)=—2u41n(2)
>\¢2A2 )\2¢)4 | <>\¢2) (17) 2 (27‘1’) 2(]43 + ue = ZE) A
n{s7+35 />

12872 ' 25672 \ 2A2 IRV <2u2 - A¢>2> LA, (29)

the counterterm coefficier® is obtained through Eq. 11 2 272
e (18)  from which we arrive at the effective one loop level potential
6472’ for a massive interacting scalar field
and the counterterm coefficie@t, from the condition given )
by Eq. 12 _ W2 A
) V(g) = 50" + 50
X225+ 61 (345 )] ,
C=— , (19) 1 5 AQ? A2
64z o (W) it g
after substituting them into the effective potential, and a little
bit of work, we get 2
g et m Bozga s Ly, (20N (20
244 2 2 24 4 A2
Vig)= 2gh 4 20 () B (20)
4! 256 M? 6]

The methodology used in obtaining the analytical solution
It is important to notice that although the coefficients of thefor this case will now be extended to calculate the potential
counter termg3 andC' that we obtained are different to those of interacting scalar fields in the THDM.

obtained in Ref. 1, our final expression for the potential is the

same.
5. Effective Potential for a Two Higgs Doublet

4. Massive Self Interacting Real Scalar Field Model
The Lagrangian for a massive self interacting scalar field theBecause we are interested in the one-loop vacuum corrections
ory is given by of the scalar sector of the THDM (a review on the THMD can

1 , 1 T be found in Ref. 7), we will only work with the contributions

L=500u)" + 5A0u9)" — 50 arising from the scalar potential
_34_132_l(j4 21 — 2! 25T &, _ 2 1 t
1 5 B¢" — 097 (1)  V(®1, D) = MDD + midIDy — mi, (01D, + BID,

so we identify the potential as ) (<I>T<I> )2 ) (<I>*<I> >2
2 A 1 1*1 2 2¥2
Vio)= 5ot ot s %B¢2 " %%4 + 2 (0]@1) (0f@s) + A4 (@]@2) (2f0))

’ d4k o 1 l)\ng n
+Z/ G ;% (k:Q e —|—ie) - (22 + A5 [(@{@2)2 + (@*;@1)1 : (25)

Rev. Mex. Fis62 (2016) 344-350



ANALYTICAL CALCULATION OF RADIATIVE CORRECTIONS OF A THDM POTENTIAL 347

where the Higgs doublets can be written as next we have the coupling of three fields of the same type
(S1) with another one of a different kind§) given by
o7 > < 3 )
b, = , @y = , 26 AS2S
! ( d)(l) ? ¢(2) ( ) VS]SLSlS2 = _)\/ll’QslsQSl (1 —2In <1 + 2:2 1)>
S1
but the physical fields of the charged sector are defined 2 AS5.5;
through the transformation + —555] ( ( 212 > — 3>
S1
( Gi ) _ ( cosf3 singf ) ( ¢7i ) @7) ot (14 AS25 (32)
H —sinf3 cosf o5 )’ 13, o, )
while the imaginary terms are transformed via during the calculation for this case, we set the one of the mass

counter term coefficient® = 0, because if one includes all
H°\ [ cosa sina Rep! 28 the mass counter terms you end up with a divergent loga-
< h° > - ( —sina  cosa > ( Rep) >’ @8)  ithm,
The subsequent four terms of the effective potential
and the real neutral sector is obtained with the transformatiowhich have two equal pairS,, S, are given by

G° cosf sing Img? Vs s.9.5, = —Au2(S? 2y _ 3\2(gt 4
= 1518282 — 1% + S A4S+ S
( A > ( —sinf cosf ) ( Im¢y /- (29) s(51 2) 4 (51 2)
4(St + S3)M32\3 )
Through the previously defined transformations we are able 3(M2\ + 2422 (s — M=N)

to obtain all of the self interaction vertices between each of

the fieldsh?, HC, A°, H*, G° and G* found in Ref. 8. L oxu2821 < f)
) . . p5S7 In 2
But since we choose to work in the unitary gauge, the Gold- 15
stone bosons will be “eaten” by the SU{A)(1) gauge fields. A2
Therefore, we will only be dealing with the physical fields. + 22353 In < 3)
Furthermore, we only consider quartic vertices. Dia- 2
grams containing triple vertices such as those shown in Fig. 2 2 i
give loop corrections to the propagator, but they are not rel- + =S¢ < 2 >
evant to our present work, so we do not consider them. The
effective potential in integral form is given in Appendix C, 9 4 AS3
from which we obtain the effective potential as a function of + =55 <M> . (33)
the physical fields: Ks + =5

Finally we have the terms in which we have a single pair of

V(®1, ®2) = Viree scalars of the same kind and the remaining two are of a dif-
+ V0 g0 5o gro -+ Viono 040 + V40 40 40 40 ferent type
AS,.S:
+ Viopopono + Vaogomo o + Viogopopo Vs,518.8;5 = —)\u2s15253 <1 —2In (1 + D) 22 5))
1355
+ Viogo g0 g0 + Viopoao a0 + Vg+ g+ g-H- , )
A 5252 21 1 /\5253 3
+Vh0hOH—H++VH0H0H_H++VA0AOH_H+ —|—Z 593 n + QILL% _
+ Vaopogopo + Vygopog- g+, (30) e
s +2M511n(1+ 2: 3). (34
S1

the first three terms corresponding to neutral Higgs of the

same typ&/ssss WhereS = h0, HO, A0 are given by the last term in the potential involves the coupling of fields
which are all of a different kind, such d@°h°H+H—, this

AN2S4(16Au2 M? — 64ut)  type of coupling does not permit a polygon diagram whose

25
Vssss = —AugS? — E>\254 +

12(AM?2 + 22)? series is constructible.
2 2
+2\u§S% In (1 + ;\52) + 245 In <1 + ;i) 6. Conclusions
Hs Hs
1y 12+ AS2 We calculated the contributions of the THDM effective po-
+ 5/\ S%1In <2A2M2) ) (31) tential that come from one-loop diagrams with quartic cou-
Hs + 75 pling vertices which are dimensionally consistent and renor-

malizable. We hope this analytical scheme will be of use to
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model builders interested in theories that must take in to conmakingz = 2p? = dz = 4p dp = zdx = 8p>dp,
sideration vacuum corrections to two or more scalars.

2A%
Appendix AP zdx
_ _ L= 356w / T+ Ap? A4
A. Solution to the integral of the massless effec- 0
tive potential
We proceed to solve the integral_ by first changing from an_in- Now definingy = = + A\¢? = dy = dx
tegral over 4-momentum to an integral over hyper spherical
coordinates
) 2A% 4 \p> )
0 _ . A - A
k” = pcos, I = 252;2 / y= A9 ) ¢ dy (A.5)
k' = psintcos ), Ao
k* = psin)sin 6 cos ¢, Y 20%+2¢7 1 A2
k* = psinsin O sin ¢, T 95672 B 7
A
4 3 i 2 :
d*k = p° sin” ¢ sin Odpdydfdo, - A2 {21&2 Cé*n (2/\2 + )\¢2>}
whered, v € (0,7) and¢ € (0, 27). 25672 A2
From which we obtain NP2 A2 )\2¢4 9A2
= 14— (A.6)
4 2 ™ 12872 25672 pYoz
1/“1 1+A¢ ! /s%dw
- — = S1I1L Y
2 ) (2m)* 2k2 2(27T)4
0 In the large cutoff limit,A > 1, we have
27
/51n9d9/ d(b/p In (1+> dp. (A1)
2A2 A2
ln 1+r¢2 :*ln W y (A?)
We now solve the integral by
A so the effective potential is
I= 167r4/p ln(l—i—)dp
0
A 4 1 2 1 4
1 /1 1+£2d14 =@ TBr el
= 16m2 202 4 MPAZ NG A Ag
’ T o8 T 256m2 M 2AZ A8
1 |1 @2
- 167r2l o (1+22)
0
A 2 4 2
1 /f%&(_ﬁd) _A _In (1 n ”’52) B. Solution to the integral of the massive effec-
41 P G 2A tive potential
A
1 . 207 \? . . L
+ p ——dp, (A.2)  Inthis case we have that the sum of 1-loop diagrams is given
6472 2p% + A2 p3 A
0 by the following integral:
the first term cancels because when— oo the logarithm
goes to zero, as for the last term 1 dk A2
I=- / Py ln( + 22)
LA, 2/ (2m) (k2 + p? — ie)
Ao pldp 2
n=as [ s A9 _low L[, Ao
327 / 202 + \p =5 (2r )(%)4 pPln(1+ ) dp, (B.1)
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we now make the change of variahle= 2p? = dx = 4pdp
= xdx = 8p3dp. Then dropping thes,

11 Agp?
I= = [zn(1 d
167r28/xn( +x+u2) v
11 A 1
:7*/111 1+ ¢ d( =2?
1672 8 T+ p? 2
1 1, Ap?
= “22In (1
12872 2" n( T2

1 / L, 1 ¢
2 9 A2 2
1287 27 14+ o (x +2p2)
1, Ag?

= In(1
256m2" ( TS

n Ap? / z2dx

25672 | (x4 2u% + \p?)(z + 2u2)’

(B.2)

Let's now solve the rightmost integral (redefining some

independent quantities asandb):

22dx

Il_/(x+a><x+b)’

settingu = 22 anddv = m to getv we integrate:

/ dx / dy
v = _— = e —
(x 4+ a)(x +b) yly—a—+Db)
-1 (b —a+ y)
In .
—a+b Y
We now use the following known integral

[t () e

where inour cas® = 1, A = —a + b, andu = y; thus
22dx x? b+
Il = = In
(x+a)(x+b) a—b a+z

2
—/ ! In b 92dr = —— In vrb
a—2b a+x a—2b T+a

(B.3)

(B.4)

2
+ / [zln(z 4+ b) — zln(x + a)] dz. (B.6)
—a
For each term on the right we have
1
/xln(az +b)dx = 5(372 —b%)
1
x In(z +b) — Z(x b2 +0v?, (B.7)
Lo o
zln(x + a)dz = 5(1‘ —a”)
X In(z + a) — i(w —a)®+d* (B.8)

putting both together, and doing some algebra,

2 2
3
L= a_bln(x+b)—|— b_aln(x+a)+a:+§(b+a).
Finally, placing a cutoff atk> = A2, or equivalently
x2 = 2A2,

1 d*k A2
= 5/ 2myt (1 o +u2)>

o2 272
2% 1n 1+#
T + 2u? .

A [1

1
25672
Lo 2

Zo6m7 | ag7 L Il + 207)

—(21° + A0*)? In(z + 2p° + A\p%)] + o
2A?

n (B.9)

N W

(Ao® + 4u2)}

0

We neglect the first term since whén— oo it tends to zero.
Then, evaluating, we’re left only with

2
T— 1 {4;# In <1 + AQ) — (21 + A¢?)?
m I

win (14 2A2 N Ap? A2
n .
2u? + A\p? 12872

(B.10)

In the limit of largeA, we get

2u% + \gp?

+ %(2,3 +/\¢2)21n< T ) +>\A2¢2} . (B.11)

C. THDM intergral form effective Potential

There are essentially three types of vertices involved in the
calculation: those with four equal fields, with two pair of
equal fields, and with only one pair of equal fields. We only
consider the case in which only one particle goes around the
loop. Thus, when we analyze a vertex with more than one
particle interacting, we write only the propagators of the par-
ticle that is “repeated”. In the first case, the integral form of
the potential is

d*k AS2
Vssss = Wireet / o (1 + ) , (C.1)
(2m)* 2(k? + pg)

where X represents genericallly the self-coupling constant
and s is the mass of the particlg, and we've omitted the
ie. In the second case,

d*k AS?
VS1515252:‘/iree—~_/W1n <1+2( ! )a (C2)

k2+p3,)
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where there’s an obvious symmetry betwegnand S,. Fi-
nally, for the last case,

4% AS5Ss
VSlslszsszwre@_/Wln <1+2(]€2—|—,LL?9)> . (C3)
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