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The transfer of chemically reactive species in stagnation point flow of a laminar micropolar viscoelastic fluid immersed in a porous medium
over a stretching/shrinking surface is considered. The reactive species diffused into the fluid from the surface undergo a one stage isotherme
and homogenous reaction. A similarity transformation is employed to transform the developed partial differential equations into a system
of coupled ordinary differential equations. A convergent series solution is developed using homotopy analysis method in the whole spatial
region 0 < n < oo0). The obtained solutions for velocity, microrotation and concentration of species are analysed for various emerging
parameters through graphs and tables.
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1. Introduction Diffusion of chemically reactive species into the fluid
from the surface is another important area of research in re-
) . i . centyears. The applications of such process include polymer
It is well known phenomena that traditional Newtonian fluid production, manufacture of ceramics and glassware, food
is inadequate to describe the characteristics of fluid with S“Sf)rocessing’ etc. Chambre and Young [9] investigated tr’1e dif-
pended particles. The non-Newtonian fluid that incorporatey,qjon of chemical reactive species in a laminar boundary
the motion of suspended particles is the micropolar ﬂu'd'layer flow. The problem discussed in Ref. 9 was extended
Micropolar fluids consist of randomly oriented dumb-bell for a stretching sheet by Andersehal. [10]. Mohamed and
shaped particles that can undergo a rotation. Some examplg$,, nanah [11] investigated the influence of chemical reac-
of such fluids are colloidal fluids, biological fluids, polymeric tion and thermal radiation in a MHD micropolar fluid. They
fluids, liquid crystal and exotic lubricants etc. The rotation Ofalso incorporated the effects of porous medium. The effect
these particles affects the overall dynamics of the flow phegs \ ;b “mass transfer and chemical reaction in a second
nomena. Eringen [1] first derived the governing equations Obrade fluid flowing through a porous medium over a stretch-
micropolar fluids and later extended it to the theory of ther'ing sheet was discussed by Cortell [L2]. In another paper
momicropolar fluids [2]. In flow equations describing mi- co e [13] presented the numerical solution for two classes
cropolar fluid phenomena, the principle of conservation ofy¢ \iscoelastic fluids with chemically reacting species. A
angular momentum is essential along with the standard eqUerature survey reveals that different aspects of flow have
tions for the conservation of mass and momentum. The d&seqn jnyestigated under the diffusion of chemically reactive
tails regarding the theqry of micropolar fluids can be seen 'r&pecies. Dast al. [14] presented the effects of homogeneous
the book by Lukaszewics [3]. The theory of micropolar vis- fi.t order chemical reaction on the flow past an impulsively
coelastic is established for such problems in which the typgia e plate. Muthucumaraswamy [15,16] respectively in-
ical t.heory of viscoelastic is unavailable due to mlcrostruc—vestigated the influence of chemical reaction on the flow past
ture in the substance. Generally, these problems are relateg, o isively started vertical plate with uniform heat and
to grain bodies and mulnmol_ecular materials I|_ke polym_er.maSS flux without and with suction. The problem of wedge
Eringen [4] constructed the linear theory of microplar vis- g, \ith suction and injection and chemical reaction has
coelasticity. McCarthy and Eringen [5] studied the propa-peen considered by Devi and Kandasamy [17]. The further
gation of waves in micropolar viscoelastic medium. Saint-yetaiis of influence of chemically reacting species on differ-
Venant's principle of micropolar viscoelastic substances wag, i\ situations can be seen in the literature [18-25]. Stag-
described by DeC|_cc0_and_Nappa [6]_' Kumar_[?] preser_lteq.lation point flow of viscoelastic fluid has been investigated
the wave propagation in micropolar viscoelastic generalizegh, goarg and walters [26]. They have obtained a perturbation
thermoelastic solid. For application point of view, one cangg|ytion of problem up to first order. The problem of stagna-

study Kumar and Choudhary [8] in which they investigatedy;q hoint flow in a micropolar fluid was studied by Nazr
the dynamic problem in micropolar viscoelastic medium.
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al. [27]. A literature survey reveals that stagnation point flow 11 y
has been investigated for a range of non-Newtonian fluids, u, c
for example see Xet al. [28], Hayatet al. [29], Abbaset

al. [30], Sajidet al. [31], Yacobet al. [32], Hayatet al. [33],
Mostaet al. [34], Nandy [35] and many references there in.
In a study El-Kabir [36] combined the effects of micropo-
lar and viscoelastic fluids and discussed the hydromagnetic
stagnation point flow in a micropolar viscoelastic fluid. In Y
a recent paper Abbast al. [37] discussed the heat trans-

fer analysis in a micropolar viscoelastic fluid past a stretch-
ing/shrinking sheet in the presence of magnetic field.

The objective of the present paper is to study the stagna-
tion point flow of micropolar viscoelastic fluid past a stretch- =*
ing/shrinking sheet immersed in a porous medium with  _

. . . . . . c=cC, u,
chemically reactive species. In this problem for viscoelastic W W
fluid, we considered the Walters’ B model. The problem is
formulated usingzth-prder homogengous chemical rea_ction FIGURE 1. Physical model and coordinate system.
of constant raté,,. With the help of suitable transformations
the governing partial differential equations are converted to

ordinary differential equations and then solved analytically"€reu andv are the velocity components in the and y-
using homotopy analysis method. axis directions, respectively, is the fluid kinematic viscos-

ity, k1 is the vortex viscosityp is the fluid density N is the
) micro-rotation or angular velocity is the permeability of
2. Formulation of the problem the porous mediumi* is the Weissenberg number,is the
pin gradient viscosity angis the microinertia per unit mass,
hereas: is the concentration of the fluid) is the diffusion
coefficient andk,, is the n th-order chemical reaction rate
Constant.

I
O

Consider a steady, incompressible and two-dimension
stagnation-point flow of a micropolar viscoelastic fluid em-
bedded in a porous medium due to a stretching/shrinking su
face aty = 0 the flow covers the regiop > 0. The sheet is
stretched/shrunk in the-direction so that the:-component Itis clear from Eq. (2) that the order of partial differential
of velocity is u,,(z) = bx whereb > 0 andb < 0 are equation is higher than the Navier-Stokes equations. There-
for stretching and shrinking cases, respectively. It is alsdore, one needs an additional boundary condition. Garg and
assumed that the velocity of the external flow is given byRajagopal [39] proposed the idea of augmenting the bound-
Uso(z) = ax, wherea > 0 is the strength of the stagna- ary condition at the free stream.

tion flow. By assuming:, andc.,. As the concentrations
at the wall and far away from the sheet, respectively, mas
transfer analysis is also carried out. Following Eringen [4],
El-Kabeir [36] and Muhaimiret al. [38], the basic governing
boundary layer equations of micropolar viscoelastic fluid and
concentration field in the absence of body forces are:

Implementing the same here, we have the following
Boundary conditions for the present flow:

u=uy, (x)=bx, v=0,

ou
ou ov szmoi’ at y:Oa 5
—+5 =0, €] 9y ©
or Oy 5
u
ou v 9 k1 8%u u:uoc(x):ax7 ou —0,N=0,
U—+v—=az+(v+— | =— Y
ox Oy p ) Oy?
C— Cx @S Yy — 00, (6)

where @ and ‘0’ both are constant having dimension
Bu  Oudu  Ou Hu (time)~! andmg (0 < my < 1) is a constant. Whereas,
Z - 227 2 - .

Vo T ar o oy ondy | @ m = 0 represents that the concentrated particle flow where

the microelements near the wall surface are not able to rotate

ON ON v 0N K ( 6u) (i.e. N = 0). This situation is called strong concentration of

+

Yor “Ty = E o2 pj Ay (3) migroelements [40]. Howevemo = 1/2 implies the van-
) ishing of anti-symmetric part of the stress tensor and known
uﬁ + de _ DQ — knc", (4)  as weak concentration of microelements [41]. Here in this

v 2 . .
oz 0Oy dy problem we just take into account the casergf= 0.
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We use the following non-dimensionalize variables to

simplify the flow problem

n= \/gy u=azf'(n),

N = ¢ = cwd(n). (7)

With the help of Eq. (7), the continuity Eq. (1) is identi-
cally satisfied and Egs. (2-4) take the form

—Vavf(n),

a
;azg(n)a

(L+k) "+ Kg' + ff"+1= 2+ M1~ f)
—ko2f'f" = "= [") =0 8
<1+I2() 9" = K29+ f")=flg+g'f=0, (9
¢" + Scfd' = Seye™, (10)

subject to the boundary conditions
F=0 f=l=c g=-mf’(0).

=1 at n=0, (11)
ff=1, f"=0, g=0, at n—oo. (12

where a prime is a differentiation with respect ig
k = ki/pv is the micropolar parametek; ak*Jvp is
the viscoelastic parameter,= v/ka is the porosity parame-
ter, Sc = v/D is the Schmidt numbety = k,,c?~!/a is the

chemical reaction rate parameter (it must be a real numbef

while v < 0 denotes generative chemical reaction and 0
indicates destructive chemical reaction and we take 0

for non-reactive species, see [12,42]. It is further noted that
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The wall couple stress is defined as
().

in which G = Gia/v is the microrotation parameter and
G, = ~/k; is the microrotation constant.

The Sherwood number is defined as

ON
dy

My
xr — B
palx3’

M,Re, = KGg'(0), (14)

T . 80)
Shy = ————, Ju=-D(4 ;
D(Cw - Coo) ] <ay y=0
Shy
= — 15

whereRe, = az?/v is a local Reynolds number.

3. Homotopy analysis solution

Homotopy analysis method is used to get the series solu-
tions of the non-linear boundary value problems consisting
of Egs. (8)-(10) with boundary conditions (11) and (12). The
set of base functions for fluid velocitf(n) angular velocity

(n) and concentration field(r)) can be defined as

for n # 1, the chemical reaction rate parameter represents

the nth order chemical reaction and fer= 1 it reduces to
the first-order chemical reaction) aad> 0 for a stretching
sheetg < 0 for a shrinking sheet and= 0 for a static sheet.
Itis evident from Eq. (13) that the highest derivative term
has a coefficient, f which is zero at) = 0 and wherky — 0
i.e. for aviscous micropolar fluid. Therefore, due to singular-
ity at the starting point of the domain the numerical solution
is not straight forward.
The wall shear stress is defined as

Cr = i
ou L[ O%u
o= |k (5) (a3,
+v? +2g”g;‘) + kN K
= paz/av[(1+ K)£(0) — ko(3£'(0)1"(0)
— £(0)£"(0)) + K9g(0)],
= pazy/av [(1+ K)f"(0) = ko(3'(0)f"(0))]
CrvRe, = (14 K)f"(0) — ko(3£'(0)f7(0)) . (13)

{nk exp(—npn)|lk > 0,5 > 0} (16)
in the form
n=ago+ > Y ak nfexp(-nBy),  (17)
n=0 k=0
o+ Z Z bt exp(=nfn),  (18)
n=0 k=0
=D exp(—npn), (19)

n=0 k=0

hereaf, .., bl , andc}, , are the coefficients and > O is a
scale paraméter. By the rule of solution expressions(9j,
g(n) and ¢(n) as well as through the support of boundary
conditions (11) and (17) we are able to selégtn), do(n)
and o (n) as the initial guess approximations ), g(n)

ande(n)

e—1

fom) =n+——(1+e ), (20)
9(n) =0, (21)
do(n) =e 7, (22)
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and the aucxiliary linear operators (L—q) Ly [f (n;q0) — fo(n)] = qhy Ny [f (3 q)] (29)
0? 0 ~ ~
Ly(f) = anf 5 f; 23)  (1-a)Lg[g(m:a) — 9(n)] = ahigNg [9(n; q)] (30)
Lo(f) = 33f e 0y (=L [6(ma) = do(m] =aheNs [6 ()] (B1)
2 s ov_o Ofe) o~ o 9f(0;q)
Lo(f) = ﬂ il @) [00=0 "7 = 800 =meTgT
that satisfy the following propert|es $(0,q) =1, 3f(§°§ ) -1 (32)
Ly [Cy + Coexp(~Bn) + csexp(Bn)] =0, (26) v
0f(0iq) _  9floosa)
Lg [Cyexp(—Pn) + c5 exp(Bn)] = 0, (27) o a2
Ly [Cs exp(—=0n) + c7 exp(Bn)] = 0, (28)  g(oo,q) =0, ¢(o0,q) =0, (33)

whereC;(i = 1,2,3,45,6,7) are arbitrary constants, which
can be determined using boundary conditions (11) and (12).
The zeroth-order deformation problems are constructesvhereg € [0, 1] is an embedding parameter ahg, iy and
as follows: hy denote the non-zero auxiliary parameters, the non-linear
| operatorsVy, NgandN, are

3F 27 2 2
Nl =0+ ) 20D | 2000 g, (PI0D (00

8f(n,q) 8F(na) F(n,q) 64f(n )

. ] a3

+A(1_5f(’7vq)>_k0 o (34)
on _ (82f(n:q))

on?

27N 27 ™~ pe . i
Ngl[d(n,q)] = <1 + IQ{) %Z’q) - K (29+ aﬂ772,q)) + f(n,9) <ag(a:7, q)> —9(n,9) afg;, 2, (35)

an an
n 82A ’ " a“ ) " n
Nglo(n,q)] = M + Sef(n,q) Pma) Sey(é(n, q))" - (36)
on on
The above zeroth- order Egs. (29)-(31) possess following
solutions forg = 0 andq = 1 here L " F(n;q)
f’m(n) - ' m k)
~ ~ m!  0Oq
fm;0) = fo(n), fn:1) = f(n) (37) =0
9(n;0) = go(m),  9(m; 1) = o(1) (38) g.(n) = ;W ,
~ ~ m: qm
o(1;0) = do(n), d(n;1) = b(n) (39) =0
_ 1.9m¢(n;9)
By using Taylor’s series with regard towe get Pm(n) = m! g™ ) (43)
q=0
_ ° . For the convergence of the series solutions, the values of
Fo.q) = fom)+ > fm(m)a™, (40)  ny, n, andhy are selected in such a way thatgat= 1 the
m—1 given series are convergent and finally the series solutions
are of the form:
a(n.q) = go(n) + Z G (Ma™ (41) »
M+ > fm), (44)
o m—1
é(n,9) = do(m) + Y dm(n)q™, (42) -
el M+ 9., (45)
m—1

Rev. Mex. Fis62(2016) 351-361



DIFFUSION OF CHEMICALLY REACTIVE SPECIES IN STAGNATION POINT FLOW OF A MICROPOLAR...

é(n) = do(n) + > dm(n)

m=1

(46)

For m th-order deformation equations, we simply differen-

tiate the zeroth-order deformations Eqs. (29)-(3&)times
with respect to embedding parameter then take 0 and
finally dividing by m! then we have

Lilfmn (1) = X fm—1(n)] = by RE, (), (47)
[ (77) Xmgm 1(77)] = thg (77), (48)
Lo[dm(n) — Xm&m—1(n)] = hsR%, (1), (49)
fm(0) = £1,(0) = @,,(0) = ¢, (0) = (50)
fin(00) = f, (o0 )=gm(00)=¢m(00)=07 (51)

where
Rl(n) =1+ K) [ (n) + Kgr, 1 (n)
+14+ A1 fr_i(n)
fm 1— kf - —1— kfk
+ (52)
_k0(2f71n717k k fm 1— kf fm 1—k k)
w00 = (1+ 5 ) sl - K28, 400
m—1
+ final +Z fm-1-k O = gm-1-rfr],  (53)
k=
RS, (n) = ¢, 1 (n)
m—1
— Sevdp () + > [fmo1-k D), (54)
k=0
w={ 0 sy (5

Let /¥, g5, and¢;, be the special functions of Egs. (47)-

355

1"

S7(0),200), #'(0)

=12

QO
N~

/"(0),g'(0),#'(0)

FIGURE 2. a) Theh -curves of f(0), ¢'(0) and ¢’(0) at 20th-
order of approximation foko = 0.5, K = 0.5, A = 0.5, 8 = 3,
Sc = 1 andvy = 1 in the case of shrinking sheet. b) The
curves of f”(0), g'(0) and¢’(0) at 20th-order of approximation
forko =05, K =05, A=0.253=3,Sc=1andy =1in
the case of stretching sheet.

Using software Mathematica or any other, one might
solve Egs. (47)-(49) one after the other in the order
m=1,2,3,4...

(49) then the general solutions of Egs. (47)-(49) are defined] Convergence of HAM solution

as
Jm(n)=f, (1) +C1+Ca exp(—Bn)+Cz exp(Bn), (56)
9,,(n) = 9,(n) + Caexp(—pFn) + Csexp(Bn),  (57)
¢m(n) = ¢, (n) + Co exp(—Pn) + Crexp(Bn),  (58)

in which the values of constan€$ (i = 1,2, 3,4,5,6,7) are
achieved through boundary conditions (50) to (51) as

10f*
o= 5"
C1=-Cy— f,(0), C3=0 (59)
Cs = —0,(0), Ci=0, (60)
Cr=—¢,(0), Cs=0. (61)

By applying homotopy analysis method, the analytical solu-
tions in the form of series must converge to the exact solu-
tion of original problem which is under consideration and it
is already explained by Liao [43]. Many researchers [44-52]
applied this method to solve highly non-linear problems. To
ensure the convergence region and rate of approximation for
the homotopy analysis method, the non-zero auxiliary param-
etershy, hg andhy are chosen accurately by plotting the so-
calledh-curves. In Figs. 2a and 2b, thecurves of f”(0),
g'(0) and ¢'(0) at 20th-order of approximation are shown.
It is noted from these figures thatcurves have parallel line
segments that correspond to the regieh8 < hg < —0.3,
—0.6 < hy < —0.1 for kg, and forig the region is—1 <

hg < —0.1 and—-0.7 < hg < 0 respectively, for shrinking
sheet and stretching sheet. Whereas, /fgr the region is
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TABLE |. Values off”(0), g'(0) and¢’ (0) for different order of ap- E=iL§
proximation wherkg = 0.5, K =02, A=08,6=3,S.=15 W g&»”" K=25
v=3,hf =hg=hy =—05ande =-025. L e —eee- K=50
Order of 1"(0) G'(0) ¢'(0)
approximation n=1 n=2
1 2.26202 -0.11796 -2.16084 -1.82570
5 2.02696 -0.13646 -2.13054 -1.76435
10 2.02682 -0.13647 -2.13053 -1.76450
15 2.02682 -0.13647 -2.13053 -1.76450 )
20 2.02682 -0.13647 -2.13053 -1.76450 0.0 0.5 1.0 1.5 2.0 2.5 3.0
30 2.02682 -0.13647 -2.13053 -1.76450 n
40 2.02682 -0.13647 -2.13053 -1.76450 FIGURE 4. Velocity profiles for various values of the porosity pa-
rameter)\ and the micropolar parametéf with viscoelastic pa-
10 rameterk, = 0.5 andg = 3 in case of shrinking sheet.
ko =0
--------- ko =0.05 0.00
0.5 -===kp=0.15 B
= -0.02
>~ 00
™~ =
~ —0.04
-0.5 %))
-0.06
-1.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0
n -0.08
. ' . . 0.0 0.5 1.0 15 2.0 2.5 3.0
FIGURE 3. Velocity profiles for various values of the porosity pa- n
rameter)\ and the viscoelastic parametes with micropolar pa-
rameterK’ = 0 and$ = 3 in case of shrinking sheet. FIGURE 5. Microrotation profiles for various values of the poros-

. ity parameter\ and the micropolar parametéf with viscoelastic
-1.2 < hy < —0.3, -1 < hy < —0.2, respectively, for parameteko = 0.5 and3 = 3 in case of shrinking sheet.
shrinking sheet and stretching sheet. For the convergence
of HAM solution the values of thé greatly depend on the have computed and showed the numerical values of the skin-
values of pertinent parameters. Table I is made to show thgiction coefficient, wall couple stress and the Sherwood
convergence of HAM solution for different order of approxi- number for several physical parameters both graphically and
mations. From this table, one can see that after the 10th-ord@f tabular form. The comparison of the present results with
approximation, the given series solutions are convergent fothe existing results is given in limited cases, and we found

velocity, microrotation velocity and concentration field. them to be in excellent agreement.
Figure 3 shows the variation in the fluid velocity compo-
5. Results and discussion nent f'(n) for several values of a viscoelastic parametgr

and porosity parameterin the case of K = 0) with g and
The non-linear boundary value problem consisting ofe fixed. From this Fig. 4, it is evident that the fluid velocity
Egs. (8)-(10) with boundary conditions (11) and (12) is f’(n) increases with an increase in botrandk,. Figure 4
solved analytically by means of homotopy analysis methodjives the change in the fluid velocity componeiit) for
in the whole domain(( < n < o) to compute the fluid ve- various values of the porosity parameteand the micropo-
locity f’(n), microrotation or angular velocity(g) and the lar parametef (in the case of viscoelastic fluikh = 0.5)
concentration fields(n). The fluid velocity component, an- by keepings ande fixed. It is found in figure that the fluid
gular velocity and the concentration profiles are plotted tovelocity increases with an increase in porosity paramater
observe the effects of the various involving parameters, foby keeping the values df constant, but on the other side as
example the micropolar paramet&r, porosity parametek,  we increase the values of micropolar paraméditethe fluid
viscoelastic parametéf, Schmidt numbefc and chemical velocity f/(n) decreases. However with the increasing values
reaction rate parameterin Figs. (3)-(12). Furthermore, we of micropolar parametek” the momentum boundary layer
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12 fluid particles. Figure 6 gives the variation of the skin-friction
coefficientCr+/Re, versus the viscoelastic parametgrfor
10 k=0 several values of porosity paramebdesind micropolar param-
. ks eter K with 3 ande fixed. Fromo this figure, it is evident that
é 8 k=05 e = the magnitude of the skin-friction coefficient increases with
T an increase in porosity parameterwhereas it decreases by
“ . J 7 increasing the value_s of micropolar paramefér Figure 7
O g T . shows the change in the wall couple strddsRe, versus
-------------- viscoelastic parametér, for different values of micropolar
2 parameter’X’ and porosity parametey by keepings ande
fixed. The magnitude of the wall couple stress or angular-
%_00 0.02 0.04 0.06 0.03 0.10 velocity gradient at the wall is increased with an increase in
ko K, \ andko.

The change in the concentration fieldr) for different
values of homogeneous chemical reaction ratgiscoelas-
tic parametetk, and micropolar parametdt in the case of
destructive chemical reaction = 2 is presented in Fig. 8
thickness increases. Figure 5 elucidates the effects of thkeepings ande fixed. From this figure we can see that the
porosity parametek and the micropolar parametéf on the ~ concentration field(n) is increased with an increaserirand
angular velocity @) in case of viscoelastic fluidif = 0.5) K, whereas it decreases by increasing the values of viscoelas-
with other parameter§ ande are fixed. From this figure we tic parametef,. Figure 9 shows the influence of the concen-
can see that the angular or microrotation velocity)ggoes  tration field ¢(n) for several values of porosity parameter

FIGURE 6. Variation of skin friction coefficient with the viscoelas-
tic parametek,, for various values of micropolar parameférand
the porosity parametex with 3 = 3 in case o = —1.

to decrease by increasing the values of micropolar paramet@nd in the case of destructive chemical reaction= 2)
K whereas it increases with an increase in porosity paramPy keepingK, ko, S, 8 ande fixed. It is observed from
eter ). Itis also noted from this figure that the angu|ar ve- this figure that the concentration field is increased with an in-

locity over shoot near the sheet due to a microrotation of th€rease in bot and\. Figure 10 gives the variation of the

TABLE |I. Comparison of present results of wall shear strés§/Re, with the existing results in the case of Newtonian flufd & ko and

A = 0) for various values of (stretching/shrinking sheet).

€ Bhattacharyya Wang [54] Ishadt al. [55] Rosaliet al. [56] Present results
etal [53]
-0.24 1.40224051 1.40224 1.40224
-0.50 1.49566948 1.49567 1.49567
-0.615 1.50724089 1.50724
-0.75 1.48929834 1.48930 1.48930
-1.00 1.32881689 1.32882 1.32926
-1.15 1.08223164 1.08223 1.08426
-1.20 0.93247243 0.94237
-1.2465 0.58429146 0.55430 0.73998
0 1.232588 1.232588 1.232588 1.23259
0.1 1.14656 1.146561 1.146561 1.14656
0.2 1.05113 1.051130 1.051130 1.05113
0.3 0.946816 0.946816
0.4 0.834072 0.834072
0.5 0.71330 0.713295 0.713295 0.713295
1 0.0 0.0 0.0 0.0
2 -1.88731 -1.887307 -1.887307 -1.88731
3 -4.276541 -4.276541 -4.27654
4 -7.086378 -7.086378 -7.08638
5 -10.26475 -10.264749 -10.264749 -10.2647
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0.35

0.30

0.25

S 020

“50 0.15

0.10

0.05 T

FIGURE 7. Variation of |g'(0)|, which is proportional to the wall
couple stress, with the viscoelastic paraméteifor various values
of the micropolar parametdk and the porosity paramet@rwith
[ = 3incase ot = —1.
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FIGURE 8. Concentration profiles for various values of the microp-

olar parametel and the viscoelastic parametey with porosity
parameten = 1 Schmidt numbeSc = 2, chemical reaction rate
parametery = 2 and$ = 3 in case of shrinking sheet.
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FIGURE 9. Concentration profiles for various values of porosity
parameter\ with micropolar parameteK’ = 3, viscoelastic pa-
rameterky, = 2, Schmidt numbeSc = 2, chemical reaction rate
parametery = 2 and( = 3 in case of shrinking sheet.
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FIGURE 10. Concentration profiles for various values of the chemi-
cal reaction rate parametgiand the viscoelastic parameterwith
porosity parametek = 1, micropolar parametét = 0.5, Schmidt
numberSc = 2, 3 = 3 andn = 2 in case of shrinking sheet.
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FIGURE 11. Concentration profiles for various values of the

Schmidt numbe6c and the viscoelastic parametgrwith porosity
parameter\ = 1, micropolar parametek’ = 0.5, chemical reac-
tion rate parametey = 2, 8 = 3 andn = 2 in case of shrinking
sheet.
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FIGURE 12. Variation of|¢'(0)|, for various values of the Schmidt
numberSc and porosity parameter with the viscoelastic param-
eterko = 0.5, the micropolar parametdd = 0.5 and8 = 3 in
case okt = —1.
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TaBLE Ill. Comparison of present results of Sherwood number with the existing results in the case of Newtonian fluid for stretching sheet.

vy Sc Takharet al[18] Andersoret al. [10] Present results
n=1 n=2 n=23 n=1 n=2 n=3 n=1 n =2 n=3

0.01 0.1 0.10306 0.10000 0.09857 0.0998 0.0959 0.0944 0.1026 0.0995 0.0983
0.1 0.1 0.15042 0.13077 0.12143 0.149 0.129 0.118 0.149 0.129 0.120
1.0 0.1 0.34940 0.28738 0.25085 0.348 0.286 0.249 0.34824 0.2860 0.249
10.0 0.1 1.01816 0.83237 0.72107 1.017 0.831 0.720 1.0168 0.83122 0.72011

0.01 1.0 0.59216 0.58844 0.58682 0.592 0.588 0.587 0.59135 0.58753 0.58602
0.1 1.0 0.67044 0.63724 0.62314 0.669 0.636 0.622 0.66898 0.63546 0.62136
1.0 1.0 1.17761 1.00100 0.90765 1.177 1.000 0.907 1.17650 1.000 0.90675
10.0 1.0 3.23257 2.64963 2.30414 3.232 2.649 2.303 3.23123 2.6485 2.3031

TABLE IV. Numerical values of wall shear streSs+/Re, and wall couple stress @) at3 = 3 andK = 0.2 for various values of porosity
parameter viscoelastic parameter and stretching/shrinking cosstant

A £ ko =0 ko = 0.05 ko = 0.2
Crv/Re; -g'(0) Crv/Re; —g'(0) Crv/Re: -g'(0)

0 1.63080 0.147704 1.69574 0.150151 1.96405 0.159666
0.2 1.78923 0.151601 1.85512 0.153961 2.12766 0.163149
0.4 1.93452 0.154952 2.00165 0.157247 2.27940 0.166188
0.6 2.06950 0.157894 2.13804 0.160139 2.42157 0.168884
0.8 2.19614 0.160515 2.26617 0.162721 2.55580 0.171304
1.0 2.31581 0.162880 2.38739 0.165052 2.68331 0.173500
2.0 2.83927 0.172108 2.91873 0.174169 3.24649 0.182153
3.0 3.28014 0.178721 3.36718 0.180712 3.72553 0.188401
5.0 4.01938 0.188007 4.12023 0.189906 4.53446 0.197195
10.0 5.44504 0.201486 5.57455 0.203239 6.10514 0.209909
0.5 05 2.00316 0.156468 2.07098 0.158737 2.35157 0.167574

-0.75 2.12000 0.180777 2.18940 0.183132 2.47034 0.192169
-1 2.14165 0.203796 2.21416 0.206245 2.49578 0.215398
0 1.55127 0.105704 1.61233 0.107628 1.87007 0.115249
0.5 0.869310 0.0533198 0.910299 0.0545177 1.08586 0.059331

0.75 0.456166 0.0267512 0.479693 0.58136 0.58136 0.030093
1 0 0 0 0 0 0
3 -4.92572 -0.217784 -5.42086 -0.228269 -8.02589 -0.274196

concentration fieldp(n) for various values of the genera- tration field ¢(n) decreases while it increases by increasing

tive/destructive chemical reaction parametemnd viscoelas- the values of viscoelastic paramekgr Figure 12 depicts the

tic parameterky with \, K, ko, Sc, n, 8 ande are fixed. variation of the Sherwood number or the rate of mass transfer

It can be seen from this figure that asncreases from-1  at the wall|¢’(0)| versus the Schmidt numb#k for various

to 1, we can find the decrease in the concentration field,  values of the porosity parametgrand the chemical reaction

whereas the concentration field increases with an increagsrametery by keepingK, kg, n, 5 ande fixed. From this

in viscoelastic parametét,. Figure 11 describes the be- figure it is evident that the magnitude of the Sherwood num-

haviour of the concentration fielg(n) for several values of ber is increased with an increase in betAnd\.

the Schmidt numbefc and viscoelastic parametgy in the

case of destructive chemical reaction parametet=(2 by Table 1l is made to show the numerical values of the skin-

keeping), K, n, 3 ande fixed. From this figure we can see friction coefficientC's\/Re, in the case of Newtonian fluid

that with the increasing values 6% dimensionless concen- (K = 0, ky = 0) for different values ot when the fluid
flowing medium is not porousA( = 0). From this table

Rev. Mex. Fis62 (2016) 351-361



360 Z. ABBAS, M. SHEIKH AND M. SAJID

we can see that the magnitude of the skin-friction coefficiento a set of ordinary differential equations, and hence a ana-
Cr+/Re, decreases for-0.24 < ¢ < 0 and its value in- lytical solution is obtained using homotopy analysis method.
creases fof) < ¢ < 5. This table also gives the comparison The fluid velocity, angular velocity and concentration profiles
of the present results for viscous fluik (= ky = 0) and as well as local skin-friction coefficient, local wall couple

A = 0 with the existing results of Bhattacharygaal. [53], stress and local Sherwood number are shown graphically and
Wang [54], Ishalet al. [55] and Rosalet al. [56] and found  analyzed for various physical parameters of interest. From
to be in good agreement. Table Il shows the comparison ofhis study, we have made the following observations:
numerical values of the Sherwood numiSér, (Re, )~/ for . ) ) ) )
several values of, Sc andn in the case of Newtonian fluid » The fluid velocity and angular velocity profiles are in-
(K = ko = 0) and\ = 0. From this table we found that the creased by increasing, and A\ whereas both are de-
present results to be in excellent agreement with the results ~ créased with an increase K.

reported by Takhaet al. [18] and Andersoret al. [10]. Ta-
ble 1V gives the numerical values of skin-friction coefficient
Cr+/Re, and wall couple stress @) for different values of
A, € and ko with 8 and K are fixed. It can be seen from e It can also be concluded that the presence of Schmidt

e The skin-friction coefficient and wall couple stress in-
crease by increasingy, ko, and\.

this table that the skin-friction coefficient and the wall couple number and chemical reaction parameter is to decrease
stress are increased with an increase in boind kg (this the concentration field whereas the presence of poros-
can also see from Fig. 7 and 8). It is further noted that both ity parameter and rate of homogenous chemical reac-
the skin-friction coefficient and the wall couple stress are de- tion constant increases the concentration field.

creased and then increased for the values@b < e < 3. ) )
e Itis also observed that the presence of chemical reac-

tion, Schmidt number and porosity medium is to in-

6. ConC|Udmg remarks crease the Sherwood number.

The two-dimensional stagnation point flow of an electrically

conducing micropolar viscoelastic fluid in a porous mediumAcknowledgments

over a stretching/shrinking sheet in the presence of chemical

reaction is investigated in this paper. The similarity transfor-We are thankful to the anonymous reviewer for his/her useful
mations are used to convert the partial differential equation§omments to improve the version of the paper.
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