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Constant gradient magnetic induction fields play key roles in Magnetic Resonance Imaging and in Neutral Atom Traps. This communication
reports the construction of a family of solutions of the magnetostatic Gauss and Ampere laws in their boundary condition forms, identifying
the Laḿe quadrupole spheroconal harmonic current distributions on spherical surfaces as sources of magnetostatic fields with constant
gradients inside and vanishing asymptotically outside. The advantages of the spheroconal quadrupole sources and fields, which include the
familiar spherical harmonic counterparts as special cases, are illustrated analytically and graphically.

Keywords: Magnetostatic fields with constant gradients; Lamé spheroconal quadrupole sources and fields on; inside and outside spherical
surfaces.

Los campos de inducción magńetica con gradientes constantes juegan papeles claves en Imágenes por Resonancia Magnética y Trampas de
Atomos Neutros. Esta comunicación reporta la construcción de una familia de soluciones de las Leyes de Gauss y Ampere de la magne-
tost́atica en sus formas de condiciones de frontera, identificando distribuciones de corriente armónicas esferoconales cuadrupolares de Lamé
sobre superficies esféricas como fuentes de campos magnetostáticos de gradientes constantes en el interior y que se anulan asintóticamente
en el exterior. Se ilustran analı́ticamente y gŕaficamente las ventajas de las fuentes y campos cuadrupolares esferoconales, los cuales incluyen
a sus contrapartes armónicas esf́ericas como casos especiales.

Descriptores: Campos magnetostáticos con gradientes constantes; fuentes y campos cuadrupolares armónicos de Laḿe sobre; dentro y
afuera de superficies esféricas.

PACS: 41.20.GZ; 21.10.Ky; 33.15.Kr

1. Introduction

Magnetic induction fields with a constant gradient play a key
role in neutral atom traps [1-3] and magnetic resonance imag-
ing [4-5], as discussed in our previous work on this topic [6].
In particular, Ref. 4 reviewed the “Theory of Gradient Coil
Design Methods for Magnetic Resonance Imaging”, recog-
nizing that the search for the optimum coil windings is still
open.

This Communication reports on a family of coil wind-
ings with Laḿe spheroconal quadrupole harmonic distribu-
tions on spherical surfaces and their associated magnetic in-
duction fields with constant gradients inside the spheres. The
identification and construction of such a family is based on
our succesive investigations on the rotations of asymmetric
molecules, the Hydrogen atom, the harmonic oscillator, and
the free particle [7-11], leading to the identification of three
families of ladder operators for the Lamé spheroconal har-
monic polynomials [12], and most recently to the formula-
tion of the “Theory of Angular Momentum” in the bases of
such harmonics [13].

The quadrupole spheroconal harmonics, with` = 2, ex-
ist in five different species or parities under reflection in the
respective cartesian coordinate planes: two of species [1] or

(+,+,+), and three of speciesxy, xz,andyzor (-,-,+), (-,+,-),
(+,-,-), respectively. The last three are also spherical harmon-
ics and were already included in Ref. 6, and consequently no
more comments about them are made here. The other two fa-
miliar spherical harmonics,(2z2−x2−y2)/2 and(x2−y2),
are counterparts and special cases of the spheroconal harmon-
ics of species [1].

The main body of the article is written as follows: Sec-
tion 2 identifies the scalar solutions of the Lamé differential
equations, in which the Laplace equation separates in sphe-
roconal coordinates. Section 3 constructs the vector mag-
netic potential inside, outside and continuous at the sphere.
Section 4 leads to the magnetic induction field as the rota-
tional of the potential inside and outside; its radial compo-
nents are shown to be continuous at the spherical surface,
while its transverse components are discontinuous giving a
measure of the linear current density distribution; the lines of
the latter are also evaluated in a closed form. Section 5 illus-
trates graphically the coil windings on the spherical surface,
and the numerical coefficients for the cartesian components
of the linear magnetic induction fields inside, with the respec-
tive discussions.
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2. Lamé Spheroconal Quadrupole Harmonics
of Positive Parities

The spheroconal harmonics are solutions of the Laplace
equation,∇2Φ = 0, and common eigenfunctions of the
square of the angular momentum operator,L2, and the
asymmetry distribution Hamiltonian for the most asymmet-
ric molecules, H∗ =

(
e1L

2
x + e2L

2
y + e3L

2
z

)/
2. The

three operators∇2, L2, and H∗ commute by pairs, and
their respective equations are separable and integrable in
spheroconal coordinates,x = r dn
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)
sn
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involving Jacobi elliptical integral functions [7,12,13-14].
The quadratic dependence of the operators in the squares of
the cartesian components of the angular momentum operator
also guarantees that their eigenfunctions have well-defined
parities under the reflection transformationsx → −x, y →
−y, z → −z.

Here, we concentrate on the quadrupole solutions with
` = 2 and positive parities (+,+,+). According with Table I in
Ref. 12, the factorizable solutions

Φ2,n1n2 (r, χ1, χ2) =
(
a2r

2 + b2r
−3

)

× Λn1 (χ1) Λn2 (χ2) (1)

involve the common radial dependence of the familiar spher-
ical harmonics, and the Laḿe binomials:
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functions, with ec-

centricity parameters such thatk2
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The separation constants have indices and eigenvalues
such that:

n1 + n2 = 2 (4)

and

h2(k2
1) + h0(k2
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= 2
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counting the number of elliptical cone nodes in the eigen-
functions, and yielding the eigenvalue` (` + 1) of the square
of the angular momentum, respectively.

Furthermore, the dynamic asymmetry distribution param-
eters inH∗ and the geometric parameters in the sphero-
conal coordinates are connected byk2

1 = (e2 − e3)/(e1–e3),
k2
2 = (e1–e2)/(e1–e3). The dynamic parameters are also

connected by the conditions that their sum vanishes, and the
sum of their squares is3/2, so that only one of them can be
chosen independently. They can also be written in terms of
a single angular parameter0 < σ < 60◦ : e1 = cos(σ),
e2 = cos(σ − 120◦), e3 = cos(σ + 120◦).

3. Vector Magnetic Potential Inside and Out-
side a Sphere

The vector magnetic potential is constructed by applying the
operator generating infinitesimal rotations,−→r × ∇, to the
Lamé spheroconal quadrupole harmonics identified in the
previous section, guaranteeing that its divergence is zero. It
is also required to be well-behaved inside and outside of a
sphere of radiusr = a, as well as continuous at the bound-
ary. The radial part is common with the familiar Eqs. (4)
and (5) in spherical coordinates [6], and the products of the
Lamé binomials are the novelty elements:

~Ai (r<a, χ1, χ2) = ~r ×∇
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(7)

Notice that there is no component in the radial direction, the orthogonality and right-handedness of the set of unit vectors
r̂, χ̂1, χ̂2 is taken into account, and the scale factors inχ1 andχ2 are the same [7]:
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hχ1 = hχ2 = r
√
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The continuity condition at the boundaryr = a is also satisfied.

4. Magnetic Induction Field Inside and Outside a Sphere

The magnetic induction field is evaluated via the rotational of the vector magnetic potential inside and outside the sphere:
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The common angular operators including the scale fac-
tors in the radial terms of the magnetic induction fields, inside
and outside the sphere,

1
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are identified as the negative of the square of the angular mo-
mentum operator. Their eigenvalues are−2 × 3 when oper-
ating onΛn1 (χ1)Λn2 (χ2). On the other hand, taking into
account the radial factor associated with each scale factor, as
well as the radial derivatives of the radial functions in the
transverse components, we recognize that

−→
B is proportional

to r inside and inversely proportional tor4 outside, describ-
ing its constant gradient and asymptotically vanishing behav-
iors in the respective regions.

Correspondingly, the radial components at the spherical
boundary,

r̂ ·
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)∣∣∣
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are continuous, consistently with Gauss’ Law. While the
transverse components are discontinuous:
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providing the linear density current distribution on the spher-
ical surface according to Ampere’s Law.

The lines of the current distribution,d
−→
l = χ̂1hχ1dχ1 +

χ̂2hχ2dχ2, are determined by the proportionality condition

− hχ1dχ1

1
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This differential equation is exactly integrable leading to
the closed form for the current distribution lines on the sphere
of radiusa:

Λn1 (χ1) Λn2 (χ2) = Λn1 (χ10) Λn2 (χ20) (13)

passing by the point(a, χ10, χ20).
This section is completed by identifying the magnetic in-

duction field inside the sphere in its cartesian coordinate rep-
resentation. The task is started by replacing the unit vectors
r̂, χ̂1, χ̂2 in their cartesian components:
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The arguments and parametersχi andk2
i are replaced by

i = 1, 2 in the elliptical functions, simplifying the typogra-
phy. The common angular denominator belongs to the square
of the scale factor. The Laḿe binomials are those of Eqs. (2),
with derivatives:
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Notice that we have chosen to separate the common fac-
tors of the magnetic induction field intensity and radial coor-
dinate with the negative sign, and of the successive cartesian
unit vectors. Notice also the common structure of the cor-
responding complementary factors differing in their specific
spheroconal coordinate and spheroconal harmonic factors in
each of the successive terms, to wit: the first terms with the
common factors of 2 and the two Lamé binomials in the re-
spective coordinates, associated with the original radial con-
tributions; the angular terms with the common factorr2/h2

χ,
and involving the derivatives with respect toχ1 andχ2 of the
respective Laḿe binomial, respectively. Of the four terms in
the product of the two Laḿe binomials, only the first one with
the value of one survives multiplying the common factor of 2;
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cancelling the radial contribu-

tions mentioned above. In conclusion, the cartesian compo-
sition of the magnetic induction field inside is:
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The reader may ascertain that its divergence vanishes,
taking into account Eqs. (4-5).
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FIGURE 1. Graphical illustrations of the quadrupole spheroconal harmonic windings on a spherical surface, Eq. (13), for the successive
values of the asymmetry distribution parameterσ = 0, 5, . . . , 30−, 30+, . . . , 55, 60 degrees, and the nodal elliptical cone numbersn1 = 2,
n2 = 0.

5. Graphical and Numerical Results and Dis-
cussion

In this section, the quadrupole spheroconal distributions of
linear current densities on a spherical surface are illustrated
in Fig. 1, and the coefficients for the associated interior mag-
netic induction fields in cartesian coordinates are reported
in Table I, for different asymmetry distribution parameters
and the two possible configurations of nodal elliptical cones,
n1 = 2, and n2 = 0, respectively. Descriptions of the
variations of the current distributions and magnetic induc-

tion fields, as the asymmetry distribution parameters and the
nodal configurations change, as well as explanations and dis-
cussions about their relationships are given along the way.

The plotting of the lines on the spherical surfaces in Fig. 1
is based on Eqs. (13) and (1-5), using the asymmetry distri-
bution parameters and their relationships described at the
end of Sec. 2. The geometrical meaning of Eq. (13) cor-
responds to the line on the sphere passing through the point
χ1 = χ10, χ2 = χ20 with a common value of the corre-
sponding scalar spheroconal harmonic, from which the vector
magnetic potential was constructed in Sec. 2. When using

Rev. Mex. Fis.62 (2016) 362–368
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TABLE I. Coefficients of cartesian components of internal magnetic induction field from Eq. (16), for sucessive values of the asymmetry
distribution parametersσ[0,60],k2

1 , k2
2 , and the nodal elliptic cone numbersn1 = 2, n2 = 0, and,n1 = 0, n2 = 2, for the upper and lower

signs, respectively.

σ [◦] k2
1 k2

2

(
−2k2

1 ∓
√

1− k2
1k2

2

)
xî 2yĵ

(
−2k2

2 ±
√

1− k2
1k2

2

)
zk̂

0 0 1.0000 ∓1 2 −2± 1

5 0.0962 0.9038 −0.1923∓ 0.9556 2 −1.8077± 0.9556

10 0.1848 0.8152 −0.3696∓ 0.9616 2 −1.6304± 0.9216

15 0.2679 0.7321 −0.5359∓ 0.8966 2 −1.4641± 0.8966

20 0.3473 0.6527 −0.6946∓ 0.8794 2 −1.3054± 0.8794

25 0.4242 0.5758 −0.8485∓ 0.8693 2 −1.1515± 0.8693

29 0.4849 0.5151 −0.9698∓ 0.8662 2 −1.0302± 0.8662

30 0.5000 0.5000 −1∓ 0.8660 2 −1± 0.8660

31 0.5151 0.4849 −1.0302∓ 0.8662 2 −0.9698± 0.8662

35 0.5758 0.4242 −1.1515∓ 0.8693 2 −0.8485± 0.8693

40 0.6527 0.3473 −1.3054∓ 0.8794 2 −0.6946± 0.8794

45 0.7321 0.2679 −1.4641∓ 0.8966 2 −0.5359± 0.8966

50 0.8152 0.1848 −1.6304∓ 0.9216 2 −0.3696± 0.9616

55 0.9038 0.0962 −1.8077∓ 0.9556 2 −0.1923± 0.9556

60 1.0000 0 −2∓ 1 2 ±1

the spheroconal coordinates, introduced at the beginning of
Sec. 1, it is important to distinguish the intervals ofσ, [0, 30)
and(30, 60] with k2

1 < k2
2 andk2

1 > k2
2, for which the am-

plitudes of the respective variables cover the domains[0, 2π],
and[0, π], and[0, π], and[0, 2π], respectively. In the specific
case of the nodal ellitptic cone configuration withn1 = 2,
andn2 = 0 , in Fig. 1, the first and the final entries forσ = 0
and 60 correspond to the situations with rotational symme-
try around the x-axis and z-axis, respectively, for which the
corresponding spheroconal harmonics reduce to the familiar
spherical harmonic counterpartsY22 (θx, ϕx) with windings
having components along botĥθx andϕ̂x and meridian circle
separatrices, andY20 (θz, ϕz) with parallel circle windings
and the equatorial circle as their separatrix, respectively. The
reader may identify the correspondence of the corresponding
windings with those in the figure of Ref. 6 at the top row of
the middle column, and the two lower rows allowing for the
change in orientations of their axes.

Next, we invite the reader to follow from the left to right
the changes in the successive windings and their separatrices
for σ =5, 10,. . . , 30-, noticing the effects of the increasing
distribution asymmetry. The value ofσ=30 corresponds to
the most asymmetric distribution, for which the domains and
roles of theχ1 andχ2 variables are exchanged. Nevertheless
the changes in the windings are continuous as illustrated by
the windings in the middle of the figure above forσ = 29,
30-, and below 30+ and 31. The reader may now go on to fol-
low the reduction of the blue winding area as the asymmetry
distribution parameterσ increases up to 55o and beyond.

The entries in Table I correspond to the asymmetry dis-
tribution parameters,σ, k2

1, andk2
2, and the coefficients in

the cartesian representation of the interior magnetic induc-
tion field, for both nodal elliptical cone configurations, are
obtained for Eqs. (13) and (3) with the explicit forms in the
heading of the respective configurations. Notice that in each
row in the Table, the values ofk2

1 andk2
2 add up to one, as

indicated in the paragraph of Eq. (2); also, the addition of the
three coefficients is zero, reflecting the solenoidal nature of
the magnetic induction field.

We describe first the systematic changes in the successive
rows: the parametersσ andk2

1 share increasing values in their
respective domains, accompanied by the consequently de-
creasing values ofk2

2. All the coefficients in the x-component
take decreasing values in the fourth column; and the coeffi-
cients in the z-component take increasing values in the sixth
column, due to their respectivek2

1 andk2
2, compositions. No-

tice, additionally, that the upper/lower entries for the pairs of
σ and 60-σ, in the fourth and sixth columns are the same with
the exchange between the x and z components. This is a con-
sequence of the symmetries of the spheroconal coordinates,
the spheroconal harmonics and their eigenvalues, under the
exchanges of their variablesχ1 andχ2 as discussed in [7,13].

On the other hand, the reader may ask about the windings
for then1 = 0, andn2 = 2 configuration. Of course, they
could also be calculated and plotted as already done for Fig.
1, but we prefer to invoke the symmetries recognized in the
previous paragraph to formulate the answer. The shapes of
the windings are the same as in Fig. 1, with the exchange
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of the numerical values of the parametersk2
1 and k2

2, the
exchanges betweenx andz, and y self-converting, as sug-
gested by the double entries in Table I. In other words, the
counterpart of Fig. 1, for the other nodal configuration and
the same values ofσand in the same order, starts from the
windings ofY20 (θx, ϕx) with the x-axis of rotational sym-
metry, continues with those of its neighbors, passes through
the most asymmetric distributions winding coinciding with
that in Fig. 1, follows with those of the other neighors, ap-
proaching the final winding of theY22 (θz, ϕz) with the z-
axis of rotational symmetry. Shortly, the figure contains the
same entries, with the shapes appearing in the reversed order
and thex andz directions exchanged.

To conclude, this article presents the construction of
the inner and outer vector magnetic potentials, Eqs. (6-7),
from the application of the generator of rotations operator to
the respective scalar spheroconal harmonic functions. The
rotational operator acting on the magnetic vector potential
leads to the respective magnetic induction fields, Eq. (9),
with continuous radial components at the spherical bound-
ary, Eq. (10), and with a discontinuity in their tangential
components giving a measure of the linear current density
distribution, Eq. (13). The field lines of the latter and their
quadrupole spheroconal multipole nature are described ana-

lytically by Eq. (14) and illustrated in Fig. 1. Additionally,
the cartesian coordinate representation of the target magnetic
induction fields, with a constant gradient, is expressed analyt-
ically by Eq. (16) and examples of the numerical coefficients
are contained in Table I. The illustrations and examples, re-
stricted to the specifically chosen numercial values, can be
easily extended for other choices.

The remaining step of this research is to find the repre-
sentative loops of each winding providing the best approxi-
mations to the respective constant gradient magnetic induc-
tions fields, and deviations from them, as counterparts of the
Maxwell loops.
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