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spherical surfaces as sources of magnetic induction fields with constant gradients
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Constant gradient magnetic induction fields play key roles in Magnetic Resonance Imaging and in Neutral Atom Traps. This communication
reports the construction of a family of solutions of the magnetostatic Gauss and Ampere laws in their boundary condition forms, identifying
the Laneé quadrupole spheroconal harmonic current distributions on spherical surfaces as sources of magnetostatic fields with constant
gradients inside and vanishing asymptotically outside. The advantages of the spheroconal quadrupole sources and fields, which include the
familiar spherical harmonic counterparts as special cases, are illustrated analytically and graphically.

Keywords: Magnetostatic fields with constant gradients; léaspheroconal quadrupole sources and fields on; inside and outside spherical
surfaces.

Los campos de indua@in magietica con gradientes constantes juegan papeles clavesageries por Resonancia Maégica y Trampas de

Atomos Neutros. Esta comunicéai reporta la construamn de una familia de soluciones de las Leyes de Gauss y Ampere de la magne-
tostatica en sus formas de condiciones de frontera, identificando distribuciones de corrigntEasmesferoconales cuadrupolares de&am

sobre superficies egficas como fuentes de campos magnéataxis de gradientes constantes en el interior y que se anulaotiasimtente

en el exterior. Se ilustran aféatamente y gaficamente las ventajas de las fuentes y campos cuadrupolares esferoconales, los cuales incluyen
a sus contrapartes aomicas edfricas como casos especiales.

Descriptores: Campos magnetddicos con gradientes constantes; fuentes y campos cuadrupolaf@scasnde Laré sobre; dentro y
afuera de superficies ésfcas.

PACS: 41.20.GZ; 21.10.Ky; 33.15.Kr

1. Introduction (+,+,+), and three of specieg, xz,andyzor (-,-,+), (-,+,-),
(+,-,-), respectively. The last three are also spherical harmon-

Magnetic induction fields with a constant gradient play a keyics and were already included in Ref. 6, and consequently no

role in neutral atom traps [1-3] and magnetic resonance imagnore comments about them are made here. The other two fa-

ing [4-5], as discussed in our previous work on this topic [6]. miliar spherical harmonicg2z2 — 22 —42) /2 and(z? — y?),

In particular, Ref. 4 reviewed the “Theory of Gradient Coil are counterparts and special cases of the spheroconal harmon-

Design Methods for Magnetic Resonance Imaging”, recogics of species [1].

nizing that the search for the optimum coil windings is still

open.

This Communication reports on a family of coil wind- The main body of the article is written as follows: Sec-
ings with Lane spheroconal quadrupole harmonic distribu-tion 2 identifies the scalar solutions of the Lamiifferential
tions on spherical surfaces and their associated magnetic iequations, in which the Laplace equation separates in sphe-
duction fields with constant gradients inside the spheres. Theyconal coordinates. Section 3 constructs the vector mag-
identification and construction of such a family is based ometic potential inside, outside and continuous at the sphere.
our succesive investigations on the rotations of asymmetriSection 4 leads to the magnetic induction field as the rota-
molecules, the Hydrogen atom, the harmonic oscillator, angional of the potential inside and outside; its radial compo-
the free particle [7-11], leading to the identification of threenents are shown to be continuous at the spherical surface,
families of ladder operators for the L@&spheroconal har- while its transverse components are discontinuous giving a
monic polynomials [12], and most recently to the formula- measure of the linear current density distribution; the lines of
tion of the “Theory of Angular Momentum” in the bases of the latter are also evaluated in a closed form. Section 5 illus-
such harmonics [13]. trates graphically the coil windings on the spherical surface,

The quadrupole spheroconal harmonics, Witk 2, ex-  and the numerical coefficients for the cartesian components
ist in five different species or parities under reflection in theof the linear magnetic induction fields inside, with the respec-
respective cartesian coordinate planes: two of species [1] dive discussions.
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2. Lamé Spheroconal Quadrupole Harmonics

f Positive Pariti

of Positive Parities ho (k) =2 (14 k7)) +24/1 — k3k3,
The spheroconal harmonics are solutions of the Laplace ho (l<:2) —9 (1 + kz) _9./1— k2k2. ©)
equation,V2® = 0, and common eigenfunctions of the ’ ’
square of the angular momentum operat6f, and the The separation constants have indices and eigenvalues
asymmetry distribution Hamiltonian for the most asymmet-gych that:
ric molecules, H* = (e L2+ eyL? +e3Ll?)/2. The
three operatorsv2, L2, and H* commute by pairs, and ny +ng =2 (4)
their respective equations are separable and integrable in
spheroconal coordinates; = rdn (xi1|k%) sn EXQVC%%, and
y=rcn (xi|k?) en (x2lk2), z = rsn (x1|k?) dn (x2|k3),
invoIving(Ja|colt)>i eII(ipti‘cazl)integral fu(nct|ioln)s [7,12,|1?3—14]. ha(k?) + ho(k3) = ho(k7) + ha(k3)
The quadratic dependence of the operators in the squares of -9 (1 + k%) +2 (1 + k%) =2x3 (5)

the cartesian components of the angular momentum operator

also guarantees that their eigenfunctions have well-definegounting the number of elliptical cone nodes in the eigen-
parities under the reflection transformations— —z, y —  functions, and yielding the eigenvaldé/ + 1) of the square
—Y,z — —2. of the angular momentum, respectively.

Here, we concentrate on the quadrupole solutions with ~Furthermore, the dynamic asymmetry distribution param-
¢ = 2 and positive parities (+,+,+). According with Table | in €t€rs in* and the geometric parameters in the sphero-

Ref. 12, the factorizable solutions conal coordinates are connectedify= (e> — e3)/(e1e3),
k3 = (e1—e2)/(e1—e3). The dynamic parameters are also

connected by the conditions that their sum vanishes, and the

D2 iny (71 X15 X2) = <a2r2 + b27"_3) sum of their squares %/2, so that only one of them can be
chosen independently. They can also be written in terms of
X Any (X1) Ans (x2) @D 4 single angular parametér< o < 60° : e; = cos(o),

es = cos(o — 120°), e3 = cos(a + 120°).
involve the common radial dependence of the familiar spher-
ical harmonics, and the Lagrbinomials: 3. Vector Magnetic Potential Inside and Out-
side a Sphere

2
As(xi)=1— ha (k) sn? (Xi‘k?) ) The vector magnetic potential is constructed by applying the
2 operator generating infinitesimal rotations, x V, to the
ho (kf) 9 9 Lamé spheroconal quadrupole harmonics identified in the
Ao (xi) =1 = ———"sn (cl7) (2) previous section, guaranteeing that its divergence is zero. It

is also required to be well-behaved inside and outside of a
sphere of radius = «a, as well as continuous at the bound-
ary. The radial part is common with the familiar Eqs. (4)
and (5) in spherical coordinates [6], and the products of the
| Lamé binomials are the novelty elements:

in terms of the squares of the? (x;|k?) functions, with ec-
centricity parameters such that + k3 = 1, and

A (reg, X1, x2) =T X V [Bo Ay (X1) Ay (X2)] = Bog [F;;jl dAZIIX(le)Anz (x2) + F;;sz WAnl (Xl):|
- 3 {h’@ B b0ly, (o) - 71 e b2ly ) ©
- B [Zﬁf dAdeA () - R B Oy ) )

Notice that there is no component in the radial direction, the orthogonality and right-handedness of the set of unit vectors
7, X1, X2 IS taken into account, and the scale factorgirandy. are the same [7]:
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By = hyy = 7’\/1 — k2sn? (x1 | k%) — k3sn? (x2 | k3). (8)

The continuity condition at the boundary= « is also satisfied.

4. Magnetic Induction Field Inside and Outside a Sphere

The magnetic induction field is evaluated via the rotational of the vector magnetic potential inside and outside the sphere:

3 T I A SR 0V e
X 0 thAX1 hXQAX2
g 7 B()?"3:| |:d2An (Xl) d2An (XQ) :|
B' = : A, (X2) + ——5"An, (X
{hX1 By, { a dX% » (x2) X% )

d BOT3 X1 dA, (Xl) X2 dA, (X2)
L Ghn IXD) X2 0 @hns (X2)
er?" |: a :| |:hX2 dx; : (X2) * th ! (Xl) dxa

ﬁz{ ’ {%“Hﬁmﬂmhwug+mxm>

d*An, (X2)]

thhX2 2 dX% dX%
d [ Boa'] [ X1 dAn, (x1) X2 dAn, (x2)
— |- =N, 22N, () —2 X2
+d1" |: 72 :| |:hX2 Xm 2 <X2) + th 1 (Xl) dXQ
The common angular operators including the scale fac-
tors in the radial terms of the magnetic induction fields, insidé
and outside the sphere
' N e . dA, (Xl)
e _ pt — 1
2 2 " ( b ) r=a 5B0a|:X2 hxzdxl " (XQ)
1 0 0
=z 427 dA,, 4T -
R T e ) |0+ o) ~ s (o) | =R )
ho, dx2 c

are identified as the negative of the square of the angular rn(5)_roviding the Iinear.density currer,1t distribution on the spher-
mentum operator. Their eigenvalues ar2 x 3 when oper- ical surche according to Am.per-es !_avv_.) )
ating onAy, (x1) An, (x2). On the other hand, taking into The lines of the cu.rrent distributiod, [ = X1.hX1dX1.{r
account the radial factor associated with each scale factor, a&/x-9x2, are determined by the proportionality condition
well as the radial derivatives of the radial functions in the he d he d

. — . . x1 @X1 X2 X2
transverse components, we recognize tBais proportional — 0o = 1 A o) (12)
to r inside and inversely proportional td outside, describ- KAM (x1) do Py Any (X2) o
ing its constant gradient and asymptotically vanishing behav-
iors in the respective regions.

This differential equation is exactly integrable leading to

the closed form for the current distribution lines on the sphere
Correspondingly, the radial components at the sphericabf radiusa:

boundary,
Any (X1) Any (X2) = Any (X10) Ay (x20)  (13)
P (Be - Bl> -0 (10)  passing by the poin(a, x10, X20)-
r=a This section is completed by identifying the magnetic in-

duction field inside the sphere in its cartesian coordinate rep-
are continuous, consistently with Gauss’ Law. While theresentation. The task is started by replacing the unit vectors
transverse components are discontinuous: 7, X1, X2 In their cartesian components:
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—

4 — S
B (rea,x1,x2) =V x A" = —3Boa{l [M" (xalk7) sn (xalk3) An, (x1) An, (x2)

2 dA,,
+ (;2) (lﬂfsn (X1|kf) cn (Xl\kf) sn (Xg\kg) di(Xl)An2 (x2)
"X X1

dA,, (
+dn (xa|k?) en (x2|k3) dn (xa|k3) dX(2X2)An1 (x1) >]

+ 7| 2en (x1lk3) en (x2lk3) An, (x1) Ay (x2)

+ <h2) (s (s 12) i (3t 1) e (el 1) 2200 )

A, (x2)

— (cn (Xl\kf) sn (Xg\kg) dn (Xg\kg)) y
X2

Anl (Xl)

+ k|2sn (X1|k:%) dn (X2|k‘§> Ay (X1) Ay (X2)

- (;) (en (xa k) dm (xa[k2) din (xalK2)) dAdXEXI)A (x2)

e ) m o) e ) v, ) | @

The arguments and parametggsandk? are replaced by
i = 1,2 in the elliptical functions, simplifying the typogra- the other three-h2 (ki)sn?(x1|k7)—h2,(k3)sn?(xz|k3)+
phy. The common angular denominator belongs to the squargh? (k3)h2_(k3)sn?(x1|k%)sn?(x2|k3) cancel their coun-
of the scale factor. The Lagrbinomials are those of Egs. (2), terparts from the angular terms. In fact, for the latter com-
with derivatives: plementary factors involving the derivatives of the Lam
binomials also share the respective factors of the compo-

dA (xi) _ i, (K2) sn (xi |K?) nents of the unit radial vector along the cartesian directions,
dy; Y Xi [P and in the remaining complementary factors, there are con-

; L 2 2 2 2 _

< en (x: [k2) dn (x: [#2) (15) stant terms with the coefficientsh? (k%) andh?, (k3), re

spectively, as well as terms im* fx1 k%), sn* (x2 |k3),

sn* (Xl |k%) sn? (X2 |k§), and sn? (Xl ‘k%) snt Exg k%),
Notice that we have chosen to separate the common fag@ach of the factors for the three cartesian directions

tors of the magnetic induction field intensity and radial coor-turn out to be divisible by2r?, with quotients that

dinate with the negative sign, and of the successive cartesiaire respectively-h2_ (k3),0,—h2 (k?), for the surviv-

unit vectors. Notice also the common structure of the coring terms, and terms isn? (x1 |k7), sn? (x2 |k3), and

responding complementary factors differing in their specificsn? (Xl ]k%) sn2 (X2 ]k%) cancelling the radial contribu-

spheroconal coordinate and spheroconal harmonic factors tions mentioned above. In conclusion, the cartesian compo-

each of the successive terms, to wit: the first terms with thgition of the magnetic induction field inside is:

common factors of 2 and the two L&ninomials in the re-

spective coordinates, associated with the original radial con- B (z,y,2) = _3& [@ (2 — Py (k:f)) T

tributions; the angular terms with the common factéfh?, a

and involving the derivatives with respecti@ andy, of the

respective Lar@ binomial, respectively. Of the four terms in + 52y + k (2 — hn, (K2)) Z] (16)

the product of the two Lafbinomials, only the first one with

the value of one survives multiplying the common factor of 2, The reader may ascertain that its divergence vanishes,

taking into account Egs. (4-5).
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FIGURE 1. Graphical illustrations of the quadrupole spheroconal harmonic windings on a spherical surface, Eq. (13), for the successive
values of the asymmetry distribution parametet 0,5, ...,30_,304, ..., 55,60 degrees, and the nodal elliptical cone numbers= 2,

nQ:O.

5. Graphical and Numerical Results and Dis- tion fields, as the asymmetry distribution parameters and the
cussion nodal configurations change, as well as explanations and dis-
cussions about their relationships are given along the way.
In this section, the quadrupole spheroconal distributions of The plotting of the lines on the spherical surfaces in Fig. 1
linear current densities on a spherical surface are illustrateid based on Egs. (13) and (1-5), using the asymmetry distri-
in Fig. 1, and the coefficients for the associated interior magbution parameters and their relationships described at the
netic induction fields in cartesian coordinates are reporteénd of Sec. 2. The geometrical meaning of Eq. (13) cor-
in Table I, for different asymmetry distribution parametersresponds to the line on the sphere passing through the point
and the two possible configurations of nodal elliptical conesy; = x10, X2 = X20 With a common value of the corre-
ny = 2, andny = 0, respectively. Descriptions of the sponding scalar spheroconal harmonic, from which the vector
variations of the current distributions and magnetic induc-magnetic potential was constructed in Sec. 2. When using

Rev. Mex. Fis62 (2016) 362—368
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TaBLE |. Coefficients of cartesian components of internal magnetic induction field from Eq. (16), for sucessive values of the asymmetry
distribution parameters[0,60], k%, k3, and the nodal elliptic cone numbets = 2, n, = 0, and,n; = 0, no = 2, for the upper and lower
signs, respectively.

o K2 k2 (—zk% T/ kfk%) 3 2] (—2k§ +/1- /cfkg) 2k
0 0 1.0000 +1 2 241
5 0.0962 0.9038 —0.1923 T 0.9556 2 —1.8077 + 0.9556
10 0.1848 0.8152 —0.3696 F 0.9616 2 ~1.6304 + 0.9216
15 0.2679 0.7321 ~0.5359 F 0.8966 2 ~1.4641 + 0.8966
20 0.3473 0.6527 —0.6946 T 0.8794 2 —1.3054 + 0.8794
25 0.4242 0.5758 —0.8485 F 0.8693 2 ~1.1515 + 0.8693
29 0.4849 0.5151 —0.9698 T 0.8662 2 —1.0302 + 0.8662
30 0.5000 0.5000 ~1 7 0.8660 2 —1+ 0.8660
31 0.5151 0.4849 —1.0302 F 0.8662 2 ~0.9698 + 0.8662
35 0.5758 0.4242 —1.1515 T 0.8693 2 —0.8485 + 0.8693
40 0.6527 0.3473 —1.3054 T 0.8794 2 —0.6946 + 0.8794
45 0.7321 0.2679 —1.4641 F 0.8966 2 ~0.5359 + 0.8966
50 0.8152 0.1848 —1.6304 T 0.9216 2 —0.3696 + 0.9616
55 0.9038 0.0962 —1.8077 F 0.9556 2 ~0.1923 + 0.9556
60 1.0000 0 271 2 +1

the spheroconal coordinates, introduced at the beginning of The entries in Table I correspond to the asymmetry dis-
Sec. 1, itis important to distinguish the intervals0f0, 30) tribution parametersy, k2, and k3, and the coefficients in
and(30,60] with k¥ < k3 andk? > k3, for which the am-  the cartesian representation of the interior magnetic induc-
plitudes of the respective variables cover the domfiifgr],  tion field, for both nodal elliptical cone configurations, are
and|0, 7], and[0, 7], and|0, 27], respectively. In the specific obtained for Egs. (13) and (3) with the explicit forms in the
case of the nodal ellitptic cone configuration with = 2, heading of the respective configurations. Notice that in each
andny = 0, in Fig. 1, the first and the final entries for= 0  row in the Table, the values &f andk3 add up to one, as
and 60 correspond to the situations with rotational symmeindicated in the paragraph of Eq. (2); also, the addition of the
try around the x-axis and z-axis, respectively, for which thethree coefficients is zero, reflecting the solenoidal nature of
corresponding spheroconal harmonics reduce to the familighe magnetic induction field.
spherical harmonic counterpafts; (6., ¢, ) with windings We describe first the systematic changes in the successive
having components along ba#h and¢,, and meridian circle  rows: the parametetsandk? share increasing values in their
separatrices, antly (6., ¢,) with parallel circle windings respective domains, accompanied by the consequently de-
and the equatorial circle as their separatrix, respectively. Thereasing values df3. All the coefficients in the x-component
reader may identify the correspondence of the correspondingke decreasing values in the fourth column; and the coeffi-
windings with those in the figure of Ref. 6 at the top row of cients in the z-component take increasing values in the sixth
the middle column, and the two lower rows allowing for the column, due to their respectivé andk3, compositions. No-
change in orientations of their axes. tice, additionally, that the upper/lower entries for the pairs of
Next, we invite the reader to follow from the left to right o and 60e, in the fourth and sixth columns are the same with
the changes in the successive windings and their separatricdge exchange between the x and z components. This is a con-
for o =5, 10,..., 30, noticing the effects of the increasing sequence of the symmetries of the spheroconal coordinates,
distribution asymmetry. The value of=30 corresponds to the spheroconal harmonics and their eigenvalues, under the
the most asymmetric distribution, for which the domains andexchanges of their variablgs andy- as discussed in [7,13].
roles of they; andy- variables are exchanged. Nevertheless  On the other hand, the reader may ask about the windings
the changes in the windings are continuous as illustrated bfor then; = 0, andns = 2 configuration. Of course, they
the windings in the middle of the figure above for= 29, could also be calculated and plotted as already done for Fig.
30, and below 30and 31. The reader may now go on to fol- 1, but we prefer to invoke the symmetries recognized in the
low the reduction of the blue winding area as the asymmetryprevious paragraph to formulate the answer. The shapes of
distribution parameter increases up to 53%nd beyond. the windings are the same as in Fig. 1, with the exchange
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of the numerical values of the parametéts and k3, the lIytically by Eq. (14) and illustrated in Fig. 1. Additionally,
exchanges between and z, and y self-converting, as sug- the cartesian coordinate representation of the target magnetic
gested by the double entries in Table I. In other words, thénduction fields, with a constant gradient, is expressed analyt-
counterpart of Fig. 1, for the other nodal configuration andically by Eq. (16) and examples of the numerical coefficients
the same values afand in the same order, starts from the are contained in Table I. The illustrations and examples, re-
windings of Y3 (6., ¢.) with the z-axis of rotational sym- stricted to the specifically chosen numercial values, can be
metry, continues with those of its neighbors, passes througbasily extended for other choices.
the most asymmetric distributions winding coinciding with  The remaining step of this research is to find the repre-
that in Fig. 1, follows with those of the other neighors, ap-sentative loops of each winding providing the best approxi-
proaching the final winding of th&s, (6., ¢.) with the z-  mations to the respective constant gradient magnetic induc-
axis of rotational symmetry. Shortly, the figure contains thetions fields, and deviations from them, as counterparts of the
same entries, with the shapes appearing in the reversed ordeaxwell loops.
and ther andz directions exchanged.

To conclude, this article presents the construction of
the inner and outer vector magnetic potentials, Egs. (6-7)Acknowledgments
from the application of the generator of rotations operator to
the respective scalar spheroconal harmonic functions. ThE. Ley-Koo gratefully acknowledges partial support for this
rotational operator acting on the magnetic vector potentialesearch from Consejo Nacional de Ciencia y Tecrialog
leads to the respective magnetic induction fields, Eq. (9),SN|-1796. Also, the authors, have the pleasure to dedicate
with continuous radial components at the spherical boundthis article to Professor Eduarddiai pioneer in the practical
ary, Eq. (10), and with a discontinuity in their tangential Use of spheroconal harmonics for the analysis of asymmet-
components giving a measure of the linear current densitjic molecules, on the ocassion of his designation as Emeritus
distribution, Eq. (13). The field lines of the latter and their Professor of Universidad Adhoma Metropolitana.
guadrupole spheroconal multipole nature are described ana-
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