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A harmonically-driven, incompressible, electrically conducting, and viscous magnetohydrodynamic flow through a thin walled duct of rect-
angular cross section interacting with a uniform magnetic field transverse to its motion direction is numerically investigated. Spectral
collocation method is used to solve the Navier-Stokes equation undéndoetionlessapproximation for the magnetic field in the gradient
formulation for the problem. Flow is considered fully developed in the direction perpendicular to the applied external magnetic field, laminar
in regime, and feasible to be core-side-layer approximated. Flow structure and key features are numerically inquired regarding prospective
alternating power generation applications in a liquid metal magnetodydrodynamic generator rectangular channel configuration. It is found
that in the side layer and its vicinity the emerging flow structures/patterns depend mainly on the Hartmann number and oscillatory interaction
parameter ratio. Formulation developed and tested with these calculations admits implementation of a generator configuration by means o
load resistance attachment and walls conductivity optimization.
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1. Introduction analytical solutions as well as numerical ones for Hartmann
numbers ofO(< 10?). In general, when applicable spectral
gollocation methods are found to be practical in terms of solid
convergence towards solutions behavior and overall compu-
Lational efficiency.

Of central interest to this paper is the characterization o
magnetohydrodynamic -MHD- flows occurring in ducts or
channels interacting with moderate to high intensity magneti
fields. Apart from the physical interest of the subject, char-  On oscillatory MHD duct flows precedent works include
acterizing MHD flows is important in nuclear power gener- Mehmoodet al., who analytically investigated an oscilla-
ation (.g, liquid metal based cooling systems), alternativetory MHD porous filled duct flow linking the possible ef-
power generation/conversior.§, liquid metal magnetohy- fects of heat and vibration transfer respect to boundary con-
drodynamic -LMMHD- electric generators/converters), anddition behavior [23]. Mandal developed a detailed analytical
industrial liquid metal or conductive fluids transport and han-treatment of an oscillatory MHD flow through a rectangular
dling (e.g, accelerators, pumps, flow meters). Generally, theeross-sectioned duct. His approach regards isolating walls
analytical/theoretical treatment of MHD duct flow problems parallel to the applied magnetic field (also referred as side
is difficult due to the coupling of fluid mechanics and elec-or lateral walls) and thin arbitrary conducting walls perpen-
trodynamics equation. Because of that, exact analytical soludicular to the field (also referred as Hartmann walls) in [21]
tions are only available for relatively straightforward geome-and thin arbitrary conducting side walls with perfectly con-
tries subject to simple boundary conditions. ducting Hartmann walls in [22]. Additional examples of an-

In response, over time a range of numerical tech-alytical treatment for MHD duct flow problems can be found

niques have been used to solve MHD duct flow prob-"[11,17,18,28].

lems, such as finite difference method (FDM) [30,31], fi-  Here, the SCM based upon the work by Cuestal. for

nite element method (FEM) [3,15,16,24,25,32,35], finitethe steady MHD duct flow case [12,13] is used to develop
volume method (FVM) [27], boundary element methoda numerical study on a family of oscillatory flows poten-
(BEM) [4,5,14,20,29,33,34], and spectral collocation meth-tially useful in alternating power generation. Formulation im-
ods (SCM). SCM have been used in pure and applied mattplemented allows considering both thin conducting side and
ematics [1,2,6-8,10,19,26], but also in MHD duct flow prob- Hartmann walls including insulating and perfectly conduct-
lems for the coupled steady case by Celik [9] and in the ining limit cases; but here we restrict ourselves to both thin side
ductionless approach for the steady case as well by Cuevasd Hartmann walls of equal conductivity under validity con-
et al. [13]. A combination of finite volume element method ditions for thin wall approximation as established in [12,13],
and spectral method is proposed in [27] by Shakedl for  case which isn’'t covered in [21,22]. This paper is distributed
the coupled velocity and magnetic field rectangular crossas follows. Problem is physically formulated in Sec. 2 below.
section unsteady case, focusing on building and evaluatinth Sec. 3, a brief summary on the core-side-layer approxima-
the method viability in terms of correctly combining the two tion and the employed spectral collocation numerical formu-
techniques and establishing its validation respect to availablition is given. In Sec. 4, a comparison between our numer-
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ical solution and an unrestricted analytical solution obtainednagnetic field can be considered negligible compared to
for isolating side walls and perfectly conducting Hartmannthe externally imposed one. That constitutes the
walls (C, = 0, Cy — o0) is presented. In Sec. 5, numerical ductionless approximation, which can be expressed as
results are presented and discussed in terms of dimensio®,, = v,ou{L < 1. R,, is defined as the magnetic
less parameters defining the problem. Concluding remarkReynolds number, a conventional MHD dimensionless pa-
are given in Sec. 6. Finally, Appendix A gives further detailsrameter which represents the ratio between induction and dif-
on the obtention procedure of the analytical solution used iffusion of the magnetic field in a given situation,,, o, are
Sec. 4. the fluid’s magnetic permeability and electrical conductivity
while «(;, L are respectively one characteristic velocity and
2. Physical formulation Ienth for the prqblem. Moreover, if we reinterpret lime
ductionlessapproximation in terms of the much shorter time
Consider a harmonically-driven, incompressible, electricallyscale of magnetic field diffusion compared to that of velocity
conducting, laminar, completely developed, and viscous flovfje|d variation, the quasi-stationary approximation yielding to
through a thin walled duct of rectangular cross section interg _— —V¢ becomes pertinent to the situation under consid-
acting with an uniform magnetic field transverse 1o its MO-gration ¢ = ¢ (y, z, t) is the electrostatic potential). Using
tion direction. Basic schematics in Fig. 1. UnQer theseOhm,s law in the form7 Y (—V</>+ T x §>, Eq. (2)
circumstances, functional dependence in Cartesian coord%l—mS into:
nates for spatial variables liesinz while ¢ references time. '
o = u, (y, 2,t) é, defines the velocity field, whe#g, is the - dp . 0o . A
unit vector inz direction. Conductivity of Hartmann walls J =0 (‘ayy T 9.7 + “BUZ> ®)
(perpendicular to the applied magnetic field) is not neces-
sarily the same as the one of the side walls (parallel to th&Vith it, the electromagnetic body force in Eq. (1) assumes

applied magnetic field). the form:
The velocity vector field is known by solving the Navier- N
Stokes equation: f_, —%27 _ 99, +uBo? ) x Boi @)
0 dy 0z
0w

(1)  Replacing Eqg. (4) into Eq. (1), one obtains:

ou 10p (82u 82u> By

%~ pox a2 T 92) T,

-
1

— 4+ (U -V)U = —prJruVQﬂ)Jri
ot p p
Wherep = p(z,t) and its gradien¥p relate to the_fl)mc—
tional dependence of the pressure app[e)d to_t)he f@ds

the applied homogeneous maglne'uc ﬁe"b.d’: J X—,>B 'S Proposing the adimensionalization given By= B/5, = 1,
the electromagnetic body force in the fluid, related;tothe i = W, f = wt, § = y/n, F = #, d — /i, Eq. (5)
induced electric current, which in its turn is given by Ohm's /"o * = =% Y=t 2 =0 e = 9L B
law:

VAR ©)

conduces to:

T =0(E+7xB ) 0a 9p L, (Pa 9Pa -
( ) Nogi=—aatM g taz) - ©

p is the fluid’s volumetric mass density amdits kinematic
viscosity. If flow is assumed to be slow enough, the inducedrhe set of dimensionless parameters defining the problem is
constituted byM = ByL+/°/pv, the Hartmann number, rep-
resenting the ratio of electromagnetic to viscous forces in the
problem, andV,, = ¢B3/,w, the oscillatory interaction pa-
rameter, representing the ratio of electromagnetic to inertial
forces.

In order to solve Eq. (6) we propose variables to be har-
monically dependent on time as follows:

B,

i [( 0 (3.2) T
Eb 5250 (gv 2)
i (z)w ¢Ow (ga Z)
(g Po (Z) N
/< Cross-section (:Tg =R ; G~ . elt (7)
jy Jyo (ya Z)
>/ ~]z ~jz0 (397 2)
Zyw Zy()w (Q, 2)
FIGURE 1. Schematic of the problem. Jaw L\ J20w (9, 2) ]
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From top to bottom: velocity field, fluid region elec- work by Cuevas [12] and Cuevas al. [13] for the steady
tric potential, wall region electric potential, pressure, gra-case, in order to advance the following steps into obtaining
dient pressure, fluid region surface electric current dena solution. First, define pertinent to the case and proper hy-
sity y component, fluid region surface electric current den-drodynamic and electromagnetic boundary conditions within
sity z component, wall region surface electric current den-fluid, wall and outer regions. Second, exploiting the fact that
sity y component, wall region surface electric current den-the electric current is divergence free and two dimensional
sity z component. ® means taking the real part as physi- (2— D)’ —see again Egs. (9)-(12)—, propose for them properly
cally meaningful. G is the pressure gradient amplitude and defined fluid and wall regions electric current stream func-
9/oz = (Y/oB2uy)9P/oz its adimensionalization equation. tions. Third, decouple the resulting equations within fluid re-
Replacing pertinent quantities into Eq. (6), one obtains gion from those within wall and outer regions by forwarding
complex variable equation independent of time for the fluida potential function in terms of both fluid region electric cur-
region: rent stream function and electric potential and then applying

- ) for it the thin wall approximationi.e., regarding/ < 1 and
-2 (3 g 0 UO) G- iN“lag=G (8 themedium around the duct (outer region) as fully isolating.
ay*  0z? “ d is the width of the duct walls, as shown in Fig. 2. These
steps have the overall effect of rendering the system given by
ﬁiqs. (8)-(12) into a single variable within the fluid regdion
i.e, F' = F(y,z). Previous considerations conduce to the
%ollowing set of equations and boundary conditions:

Variables with tildes are dimensionless, and from now on, th
notation will be dropped since dimensionless quantities wil
be assumed by implication. As stated, the solution for th
velocity field will be the real part ofi = ug (y, 2) €.

Charge conservation in the problem, expressed as

V. J=0 implies that: a) Fluid region governing equation.
. oo . o 2 2 2
Jyo = ———, Jzo = ——— + ug (9) _o (0%uy 0% o°F .
Yy 89 | 0z M 9,2 + 9.2 )~ 0,2 —iN, ‘up=G (13)
a?yo 9j-0 —0 (10) .
dy 0z Where, giventhad < y < a A0 < z < 1:
. o\ 00w . or\ 0dow
=—(— =—(= 11
Jyow ( P ) ay s Jzow ( p ) 9z ( ) e — O*F N O%F (14)
8,7 0 8] 0 ’ 8y2 822
yO0w 20w 12
y + 0z 0 (12)
As defined in Eq. (7)¢o and ¢, are the electric potential b) Boundary conditions. At = 0:
spatial amplitudes within fluid and wall regions respectively. ) )
i _ _ 0 (0°F 0°F OF
In their part,on/oc = Cr/aandor/o = Cr/a. Cy andCy, are ~— (== +==) =0, = -0 (15)
defined as conductance ratios for Hartmann and side walls. 9z \ 0y*  0z* 0z
It should be noticed that these quantities are dimensionless
from definition. Consequently, the problem is defined by Aty =0
Egs. (8) to (12), but further considerations must be made to
complete its physical formulation. No initial conditions are o (0°F  O*F\ or
i . ) X . — | 55+ =0, — =0 (16)
required since presently we are not interested in the transient Oy \ Oy? 022 Jy
solution, so focus is put on boundary conditions.
Departing from considering symmetry in bothand z Atz =1:
directions withb = 1 (shown in Fig. 2), a complete reformu-
i 2F 2F F
lation to the problem can be developed based on the 0 n 0 —0, P CLa— —0 17)
oy? 022 0z
|
d Aty =a:
R y I,
21 | . 14 OF  OF\ _,
xe - 75y2 + 5.2 ) =
44— z=b=1
Yoy | B=] OF 1\ O°F _,0’F
; — — (C M — =M " — 18
6{ Ay ( H+ ) 922 oy2 (18)

FIGURE 2. Duct dimensionless cross-section.
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3. Core-side-layer approximation/numerical the dimensionless volumetric flow conservation condition in

formulation terms of the averaged velocity amplitudg:
a 1
3.1. Approximation //uodydz =a (26)
0 0

The approximation entails flow solution by means of consid- _
ering relevance restricted to core and side-layer region in afquation (26) comes from
attempt to avoid excessive computational costs. Supposing

a

1
M sufficiently large, flow in Hartmann layers and duct cor- - duds —
ners can be progressively neglected. But Hartmann layers are o - as = todyaz = a,
still regarded as return paths for the current, which implies S 00

effectively accounting for the limit cas€s = Cr — 0. gjnceq is simultaneously the duct cross section dimension-

Further details for the steady case in [12,13]. less area and aspect ratio. Because the spatial average of
Operating as described on governing Eq. (8) one reacheg;

O*F 5 0%ug {ug) = /%’-cﬁ//ds,
o7 M 522 +iN, uy =G (29) J
Usinguo = 9*F/oy? +9°F/o.2, and neglecting terms less than in order to normalize: respect to it one has:
—1\. .
O (M): _u(yzt)  uo(y,2)e”
1N 02F T gy T M @)
S G+ — 20 ugdydz
o <1+N;2)< +8z2) 20) J oty
Which rewrites governing Eq. (19) into: 3.2.  Numerical formulation
2 4 2
371; _ 72875 + z‘N;la—}; =G (1 — z‘N;l) (21) In order to solve Egs. (21)-(25) by means of the spectral
%y 9z 9z collocation method, a functiof’ = F (y, z) satisfying the
Inits turn, neglecting terms less th@n(M*l) onthe bound- boundary conditions_ is proposed as a finite series of even
ary conditions Egs. (15)-(18) conduces to: Chebyshev polynomialdt,, (¥/a), and1s, (z)):
Atz =0: N, N. .
d OPF OF F=>"%" ApnTom (=) Tan (2) (28)
% (UO) = O = 762;3 = 0, & = O (22) 0 =0 (a)
Aty =0: Variables to determine are the complex coefficieAts,,.
P BF oF N, and N, are the number of terms taken alopgand z
— (u) =0 = -5 =0, - =0 (23) coordinates respectively. Use of he Gauss-Lobatto collo-
9 9y0z % cation points set is convenient because it yields the appro-
At z = 1: priate numerical resolution for the boundary layers by con-
2F oF centrating the points near the walls (in this case the side
G+ -5 =0, F+C,— =0 (24)  wall). The unknown coefficients can be considered as a vec-
9z 9z tor 3 (AJ) = Apn, and the algebraic system of simultaneous
Aty = a: equations can be expressed as:
oF 0*F Nr
— - (Cyg+M) = =M"'G 25
Jy (Cr + ) 022 (25) Z apyxasbBar =vpJ (29)
These finally complete the specific formulation of our prob- Ar=t
lem within the core-side-layer approximation. WhereAJ =m (N, +1)+n+1,1 < PJAAJ < Nr,

In addition to what is conditioned by means of Egs. (19)and Ny = (N, + 1) (N, + 1). Elements of matrixvp s« 4y
to (25), the physical formulation must also take into accountand known vectory p ;) are obtained by replacing Eq. (28)
| into Egs. (21)-(25). Explicitly, into governing Eqg. (21):

L 9Tom (3) 2 (Y
oy Ton ()= M ()

84T2n (Z)

2
£ NIy, — a1 -iNg") (30)

J— Yy
+iN, Tom (a 072
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Into Egs. (22) and (23), boundary conditiongat 0 and  Electromagnetic boundary conditionat= 1 results:
y = 0 are identically satisfied, so no equations are generated.

Into Eq. (24), the hydrodynamic boundary condition at 1 Ny, N,
resuItS' 2 4 =
ﬂ; nZ:: |: 1 +4n C’L T2m <a):| A'mn 0 (32)
Z Z { 4n® = 1) Ty, (y)} Apn = =G (31)
m=0n=0 a Into Eq. (25), the electromagnetic boundary condition at
| y=aresults:
N, N
Y z 4 2 2Tn
Ty (2) = (Cur + MY 3272(2) A =MLG (33)
m=0n=0 a 8z

LI'he system of linear simultaneous equations in the variables
A,.n given by Egs. (30)-(33) can be solved by Gauss-Jordan
elimination.

4. Analytical vs. numerical comparison

Numerical calculations are validated if they can reproduce es-
tablished analytical results, in this case, for velocity profiles.
An instance of validation is provided by comparing numer-
ical results with analytical solutions for the oscillatory flow
case, as shown in Fig. 3. This was performed by obtaining
an analytical solution for isolating side walls and perfectly
conducting Hartmann wallsj;, — 0, Cy — oo) at a mod-
erate Hartmann number, case which was also treated in [22]
FIGURE 3. Collocation vs. analytical oscillatory solutions for a but restricted there to an asymptotic approximation for large
duct flow with moderate Hartmann numbe§ and high interac-  Hartmann numbersM( > 1). The unrestricted analytical
tion parameter¥,,). M = 102, N, = 10%, and¢t = 0 — = Rads solution was obtained by means of the separation of vari-
in increments of/12 Rads. Cr. — 0, C, — oo, a = 1. Profiles  ables technique in the potential formulation for the problem
at planey = 0. (¢-formulation), see Appendix A for details.

| Solution reads:

00 02 [ 06 [ 0
Transversal length (z/L).

00 _y(VEr+veEr)
Vv
200 =3 | g (< (106 (Gn D (@0 077 = 260) (V7 4 1 ech(at))
— eye%Y (((Qn +1)7)? - 261) (e\/iy\/a +1)Sech(ay) | cos(a,z)e™? (34)

u being the magnitude of the velocity field, with the fol-
lowing dimensionless parameters/constants: 1 +iN !, Iof strong applied magnetic fields, paramount in electric gen-
B=nM?*+a%,v=(1-nM?a2 —at § =GM?a,a,, eration applications. The range of the oscillatory interaction
e=+/[?+4v,e1 =F—€,6 =P 46 = Vva/vz,and  parameter was chosen primarily due to our interest in the flow

= Vez/va. at the low frequencies case having in mind liquid metal MHD
generators. Finally, regardirg, values).0, 0.001, 0.01, and
5 Results 0.05 were chosen due to interest in taking into account the

transition from thin conducting to insulating wall case.
Once found that numerical results are close to analytical re- The number of collocation points to use for the obten-
sults, a picture of the flow dynamics and structure is drawﬁ.ion of a numerically stable collocation solution is a subtle
by a parametric study in terms of Hartmann numBgr  topic. Generally speaking, the oscillatory case on this par-
oscillatory interaction parameté¥,,, and wall conductance ticular subject is a self contained matter of inquiry since it
ratio valueCy = C, = C. Emphasis was put on Hartmann Vvaries in terms of both increasing’ and */n... A picture
numbers as high as possible because they are characteristi€f the situation is grasped with Table I, filled with values of
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TABLE |. M/n,,, NY, andN Z for the set of numerical experiments performed.

N, |, M — 102 103 10* 10°

108 1071, 5, 55. 10°, 5, 65. 10%, 5, 75. 102, 5, 240.

10% 1072, 5, 55. 1071, 5, 65. 10°, 5, 75. 10', 5, 240.

10° 1073, 5, 55. 1072, 5, 65. 1071, 5, 75. 10°, 5, 240.

108 1074, 5, 55. 1073, 5, 65. 1072, 5, 75. 1071, 5, 240.

101 * NY =5, NZ=15. e By

A NY =5,NZ=25. P 4~ " °
2 NY =5,NZ =50. x ok ger IR 125 Lor®%S 3
08 ° NY =5, NZ=80. g ot oo®e® § OF 0 ® 240 %0 ogo g s wobalo §oB It T 3
0.85 0.9 0.95 1 0.85 0.9 0.95 1

Transversal lenght (z/L). Transversal lenght (z/L).

o [ ! |

10- e VIR ¥
A>< &0°' L Y 5 s“% 5
134 R S o %

= RPY Ui [ Y
OF °*° * °# gogp opo g o $ ofe 3 o® d § Ok cFe @ ogo .,,,,Qoo'\,“L‘,Mh.u;o,“,erowagm 3
0.85 0.9 0.95 1 0.85 1

A 0.9 0.95
Transversal lenght (z/L). Transversal lenght (z/L).

FIGURE 4. Numerical solution respect to collocation/graph parametéts= 0.05, N, = 10%, M = 10*, M/n, = 10. Left: t =
0 (top) A /s (bottom) Rads. Right: ¢t = 27/s (top) A 37/s (bottom) Rads. Profiles at plang = 0.

8 0 T
H “NY=5.NZ=15. “’,w“'»,ai b ogo # ot Fo B ahe & - :
~ 4] NY=5NZ=25 % ® o s
P # ol * =2 ° o X
2 21 NY=5,NZ=50. o° ¥ 2 e AT L
0 W ob oy & 0% § RS P
. ©® oo ok gopoge g 4 i | oo
(%85 0.9 0.95 il 0.85 . 0.9 1
Transversal lenght (z/L). Transversal lenght (z/L).
4 . ; ;
oo OF syo w wbe dis § ofe ¥ o op 1
2 ST . b P, . g
B O obs 5 o HSE ko g g4 e
—D= i ot é"""ooyqu?q‘ne il _Ezi L L *“’:Mi
0.85 0.9 0 1 0.85 0.9 0. 1

.95 95
Transversal lenght (z/L). Transversal lenght (z/L).

FIGURE 5. Numerical solution respect to collocation/graph parametéts= 0.05, N, = 10%, M = 10*, M/n, = 10. Left: t =
4n/s (top) A 57/s (bottom) Rads. Right: t = 67/s (top) A 7/s (bottom) Rads. Profiles at plang = 0.

M/n,, NY, and NZ. The last two register values above carefully place collocation/graph parameters since flow struc-
which the collocation oscillatory solution was found to be ture could be entirely missed by not employing enough collo-
stable up to at least three significant figures within the rangesation points, for example, Fig. 5 (left, bottom) and 5 (right,
checked. top). No other examples are shown here.

In order to illustrate the oscillatory solution behavior re-  In summary, what was observed advices us to carefully
spect to the number of collocation and graph points, Figs. 4stablish collocation parameters when searching for a nu-
and 5 show four different sets of collocation/graph paramemeric solution since flow structure patterns could be entirely
ters forC' = 0.05, N, = 103, M = 10*,t = 0— 7 Rads. As  missed in the side wall layer by not employing enough col-
depicted, while time elapses the solution could vary greatlffocation points. The analysis on the influence of colloca-
before stability with increasing values of set parameters igion parameters over the solution obtained also showed that
attained. From the figures it can be seen that the regiofiow structure patterns in the side wall layer could get a little
of interest is the final0-5% of the duct’s transversal length more complex when compared to the steady case once MHD
where differences between solutions are clearly noticeableffects are established with its characteristic M-shaped pro-
specially at Fig. 5 (right, top). As can be distinguished asfiles, back-flows and overshoots as illustrated and discussed
well, interpolation solutions withVZ = 15 and25 are not  in[12,13]. Main observations are that flow structure in the os-
stable yet, which is more apparent at Fig. 5 (left). In shargillatory collocation situation for the side wall layer depends
contrast, solutions wittvZ = 50 and80 have ceased to os- not only on increasind/ but on increasing!/n,, ratio. As
cillate between adjacent collocation points. This advices td4/~,, increased, the flow bulk gets progressively located
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%)
-]

¥

[
T

Normalized axial velocity (u_).

L= 4
Normalized axial velocity (ux).

085 09 095 1 P55 0.9 0.95 1
Transversal lenght (z/L). Transversal lenght (z/L).

X’

Normalized axial velocity (u).

1

0.9 0.95
Transversal lenght (z/L).

FIGURE 6. Velocity profiles at plang = 0, C' = 0.01. Top left: N, = 10°, M = 10%; M/n,, = 102, Top right: N, = 10*, M = 10%,
M/n, = 10. Bottom: N, = 10%, M = 10%; M/n,, = 10°.

- T—y=00]" ‘ 10f T—y=00[" ‘ ‘ ]
A, =05 A =05
% 3 ¥ - | == 5r ,y — o
o y=0.7 2 y=0.7
or —y=09 — ’/”/N oF —y=09 - =Y
0.75 0.8 0.85 0.9 0.95 1 075 0.8 0.85 0.9 0.95 1
Transversal lenght (z/L). Transversal lenght (z/L).
10 ‘ 10 ‘
’;x 5 | ';z 5- /\
0.75 0.8 0.85 0.9 0.95 1 075 038 0.85 0.9 0.95 1
Transversal lenght (z/L). Transversal lenght (z/L).
FIGURA 7. Oscillatory collocation solution velocity profiles at different planes/time-step evolutidn= 0.05, N, = 10°, M = 10%

M/n, = 10". Left: t = 0 (top) A 7/s (bottom) Rads. Right:t = 27/s (top) A 37/s (bottom) Rads.

for the most part into the ladt-10% of the duct transverse with M = 104, in order to show how flow structure develops
length, while simultaneously flow structure showed increasfor this relatively high Hartmann number. Other numerically
ing complexity in terms of the emergence of clearly differ- calculated cases are not shown due to space constraints. Pro-
entiated flow patterns. Figure 6 attempts to illustrate theséles are shown over a semi-period divided in increments of
remarks by showing velocity profiles for the side wall layer 7/8 Rads, but the one corresponding to= 7 Rads is not
over a semi-period (= 0 — w Rads) divided in increments of shown due to its symmetry with the profilefat= 0 Rads.
=/8 Rads for three cases of increasidgy/nv. within the para- At ¢t = 0 Rads, the velocity profile time-step evolution be-
metric ranges solved. In Fig. 6 (top left) with/~, = 1072,  gins but not at its maximum normalized value for the time set
profiles have an smooth M-shaped contour but they prosolved, which is reached at Fig. 7 (left, bottom). Right at a
gressively transition into a little more complicated shape inquarter of the semi-period & ~/4 Rads) the profile begins
Figs. 6 (top right) and (bottom), with//n, = 10 and 102 to reverse its direction, while flow structure remains pretty
respectively. Notice also how from Fig. 6 (top left) to 6 (bot- much the same, resembling an smoothly serrated M-shape,
tom) flow structure keeps getting closer and closer to 1. with the apparition of a little bit of back-flow as noticeable at
Other aspects in need of illustration are the behavior ofig. 7 (right, bottom). That initial back-flow keeps increasing
the oscillatory collocation solution respect to the plane ofalong the new flow direction, while simultaneously the initial
visualization longitudinal to the externally applied magneticovershoot in the same figure keeps diminishing, as shown in
field and the time-step evolution of velocity profiles. FiguresFig. 8 (right, top) and (right, bottom). This continues to hap-
7 and 8 show the behavior of the velocity profiles with respecpen until flow structure develops into what is shown in Fig. 8
to the plane of visualization while simultaneously present(right, bottom); two valleys and two peaks in the negative di-
a grasp on the profiles time-step evolution for one exampleection, one of each more pronounced than the other towers
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FIGURA 8. Oscillatory collocation solution velocity profiles at different planes/time-step evolutior= 0.05, N, = 10°, M = 10%
M/n, = 10", Left: t = 47/s (top) A 57/s (bottom) Rads. Right:t = 67/s (top) A 77/s (bottom) Rads.
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FIGURA 9. Oscillatory collocation solution respect to the wall conductance parameter/time-step evolution. Profiles at-planev,, =
10%, M = 10°, M/n,, = 10°. Left: t = 0 (top) A =/s (bottom) Rads. Right:t = 27/s (top) A 37/s (bottom) Rads.
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FIGURA 10. Oscillatory collocation solution respect to the wall conductance parameter/time-step evolution. Profiles at plafe
N, =10, M = 10°, M/n,, = 10%. Left: t = 47/s (top) A 57/s (bottom) Rads. Right: t = 67/s (top) A 77/s (bottom) Rads.

towards the duct boundary. From this point on, flow contin-cally calculated cases are shown because of space constraints.
ues to evolve to eventually form again what was describedrrom Fig. 9 (left, top) to 10 (left, bottom), profiles with
as an smoothly serrated M-shape of Fig. 7 (left, top) but inC' # 0 exhibit a basic structure shape through almost the en-
the opposite direction. Then the cycle resets the sequence fite semi-period, which in this particular case of parameters
the symmetric second semi-period not shown here. All alongan be described as an smoothed M-shape with an small peak
Figs. 7 and 8 also show the behavior of the oscillatory coltowards the boundary = 1; peak which gets smaller with
location solution velocity profiles at different visualization diminishing values of”. That basic shape does not change
planes ( < y < a), presenting the correct differentiation dramatically for each value af' but for the appearance of
between them regarding their individual relative proximity to a progressive back-flow (Fig. 9 (right, bottom) to Fig. 10
boundaryy = « and its non slip condition. As shown, pro- (left, top)), that for the particular case 6f = 0.001 can be
files at different planes present the same basic shape but maoely appreciated by the end of the semi-period (Fig. 10 right,
and more attenuated as they get closer to the boundary.  bottom), and the formation of a second valley or back-flow
Figures 9 and 10 present both the behavior of the oscilwhen the initial peak towards the boundary reverses its direc-
latory collocation solution respect to the wall conductancetion, which can be appreciated in incipience in Fig. 10 (right,
parameter) and its time-step evolution. No other numeri- top). Notice how all along for profiles with' = 0 the case
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FIGURA 11. Oscillatory collocation solution respect to the Hartmann numb&r.= 10°, ¢ = 0 Rads. Profiles at plang = 0. Top left:
C = 0.05. Top right:C = 0.01. Bottom left: C' = 0.001. Bottom right:C' = 0.
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FIGURA 12. Electric current surface densitf() respect to the Hartmann numbé¥,, = 10°, ¢t = = Rads. Top left: C = 0.001, M = 102.
Top right: C = 0.001, M = 10°. Bottom left: C' = 0.05, M = 102. Bottom right:C' = 0.05, M = 10°.

the case is different since they present no back-flow and thearticularly how for increasing/ the peak velocity value
small peak towards the boundaryzat 1 is much more less also increases sharply, while on its part the side layer thick-
pronounced. This kind of flow structure can be described asess decreases simultaneously as expected.AFee 103
slug-like. andC # 0in Fig. 11 (except right, bottom), the peak veloc-
Another characteristic to consider is the flow behavior redty value is around 0% of its value with}M = 10° due to the
spect to varying Hartmann number valug), This is illus-  Side layer velocity being (1 '/2); while correspondingly the
trated in Fig. 11. Although here is only showr= 0 Rads,  Side layer thickness bein@(M ~*/2). As for C = 0, since
for each of the time-steps numerically solved figures matchn that case the induced electric currents close totally within
the features described in [12,13] for the steady case. Noticé€ fluid and through the Hartmann layers, that circumstance
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seriously dampens the velocity overshoots and the side layeevisiting a classic analytic asymptotic solution restricted to
velocity results now 0 (1), as shown in Fig. 11 (right, bot- large Hartmann numbers in [22]. Several features of the os-
tom). cillatory flow were explored in a parametric range of inter-

It's also interesting for the scope of this paper to_b}rieﬂyest for MHD alternating power generation. The system de-
inquire on the induced electric current surface density ( Scribed represents a liquid metal magnetohydrodynamic gen-
distribution over the duct, which in the present configurationerator functioning in an unoptimized open circuit configura-
would be equivalent to an open circuit liquid-metal generadion. Influence over the velocity profiles of parameters such
tor with a single wall conductance parameter, by no meangs wall conductance rati@, Hartmann numberi{), and
an efficient setup for electric generation. A more suitableoscillatory interaction parameteN(,) was studied. It was
generator-like setup would be one consideriig = 0, found that in the side layer and its vicinity emerging flow
C;, — oo, with the attachment of a load resistance betweerstructures/patterns depend mainly on the Hartmann number
the side walls. Mentioned inquiry was performed in Fig. 12and oscillatory interaction parameter ratid/(v..). Increas-
for wall conductance parameter§’) values of0.001 and  ing values of/n,, are associated to more complex (in terms
0.05. It is noticeable how a§' ~ 0 and M increases, more Of generally more serrated in shape) flow structures/patterns
of the electric current lines close within the increasingly thin-towards the boundary in the velocity profiles. These calcula-
ner side and Hartmann layers in the fluid region, the latter wéions set the first step towards the numerical investigation on
must remember are not solved and therefore not shown in tH&e performance of a cartesian-symmetric liquid metal MHD
present approximation. Extreme cases for this situation ifgenerator through the calculation of its isotropic efficiency.
the parameters shown are apparent in Fig. 12 (top left) and suitable generator-like setup would consider; = 0,
Fig. 12 (bottom right). For a give@' # 0 value, the trendto  Cr — oo as first approximation and the attachment of a load
notice is pretty much the same in terms that with increasingesistance to the side walls, things which are within the fea-
M the side and Hartmann layers for electric current return gesibility of the formulation developed here.
thinner while the closing of the electric current lines within
the conducting walls is augmented for both side and Hart- .
mann walls (Figs. 12 (bottom, left) and 12 (bottom, right)). Appendix

As illustrated, relevant parameters to take into account . .
regarding flow features and behavior with a given conduc/- Analytical details
tance parameter valu€ are M, N,, and its ratio {//n.). . .
Numerical solutions for the oscillatory case were validated=auation to be solved is:
by comparison with an analytical oscillatory solution. Be-
havior and features of the numerical collocation oscillatory

— — —
solution re_spect to several parameters were inqgired as fol- 9 +(u-V)U = —EVp LUV + J (A.1)
lows: varying number of collocation point&vV(Z being the ot P
relevant parameter due to the core-side layer approximation L

Considering

employed) and time-step profile evolution, see Figs. 4 and 5;
varyingM/n,, ratio, see Fig. 6; different planes of visualiza- ) - = 5 =
tion and t/ime-step profile evolution, see Figs. 7 and 8; dif. @ = (Y, 2,t)és, ¢ =¢(y,2t), B=DBy+ b ~Bp
ferent wall conductance parameter valu€$ é&nd time-step . L = . .
velocity profile evolution, see Figs. 9 and 10; varying Hart- (inductionless approximation)i3, = %Jy and using the
mann number value{), see Fig. 11; and electric current Ohm's law in the formj = o(=V¢ + W x B), Eq. (A.1)
surface density respect to Hartmann number, see Fig. 12. turnsinto:

6. Conclusion ot~ p PV o2 T 022
A harmonically-driven, incompressible, electrically conduct- By 0¢ B2
ing, laminar, completely developed, and viscous flow through + 0’7& - 07“ (A-2)

a thin walled duct of rectangular cross section interacting

yvith a un_iform magnetiq field_tranv_erse to its motior_l (ax- Now, combiningV - 7 = 0 with Ohm’s law, one gets:
ial) direction was numerically investigated under the induc-

tionless approach. Flow was core-side-layer approximated 0% 0% Ju
and thin conducting boundary conditions at top/side (Hart- oy2 | 922 92
mann/lateral) walls were proposed in order to include the in-

sulating case. In this approximation the Hartmann layers are Equations (A.2) and (A.3) constitute the system to solve
considered merely as return paths for the electrical currents: the gradient formulation. Next we define the dimension-
and aren’t numerically solved. Concordance between oscilless variables3 = B/, = 1, i = v/u;, t = wt, § = /L,

latory analytical and numerical calculations was established = =/r, d = d/1, %/az = Ge'!, (G being the pressure gra-

=0 (A.3)
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dient amplitude). Dropping tildes and considering only di- Z "

mensionless quantities from now on, they change into: o ( y)Cos (an2) (A.10)

0u _ Op o [0%u  O*u 0¢
1 it 2 (Y7 et e
R T [a 2t 6‘22} to, v AD Z% )Sin (amz) (A.11)
02 0? 0
CovIe o0 (s o
oy T 022 0z Indeed they do, once considering that:

Equations (A.4) and (A.5) would now constitute a restate-

ment of the system to solve. Proposimg= uq(y, z)e', and >
® = ¢o(y, 2)e’, they conduce to a particularization of the G(2) = GZ anCos (anz) (A.12)
problem for its spatial part as: n=0
-2 O*ug  D*ug With a,, = (2n + 1)7/2, a, = 4=D"/@n+1)x, andn =
a2 922 0,1,23,..
96 Replacing Egs. (A.10) and (A.11) into (A.8) and (A.9),
— (LN ) up =G = 2 (A.6)  one obtains:
D¢y | ¢y Oug o dPun(y) 2 2
- — = A7 M — (M n
02 T o2 o 0 (A7) a7 (M~%a; +n) un(y)
With spatial boundary conditions for isolating and perfectly + andn(y) — Ga, =0 (A.13)
conducting side and Hartmann walls (respectively) given by: )
d n
Uo(y = *a; Z) = ¢O(y = *a; Z) =0 (A.8) jy( ) (bn( ) + anun(y) =0 (A.14)
d¢o
uo(y; 2 = £1) = g(% z=%1)=0 (A-9) " Withy = 1 +iN;. This last ordinary differential equations

Equations (A.6) and (A.7) subject to boundary conditionsSystem is subject to the following boundary conditions:
given by Egs. (A.8) and (A.9) can be solved by means of
applying a suitable separation of variables. This begins by up(+a) = ¢n(+a) =0 (A.15)
making ourselves sure that solutionsé@(y, z) andg (y, z)
in the following form satisfy the boundary conditions, given Solutions for the the system of Egs. (A.13) and (A.14)
firstly by Eq. (A.9): subject to boundary conditions given by equations (A.15)
| take the form:

_y(Eatver)
U (y) = m (eS1 (4ee%2Y ((2n + 1)m)2+e1 (20 + 1)7)? — 2) (€YY 4 1) Sech(als))
—eeY (((2n + 1)7)2 — 261) (V2VF + 1) Sech(a(y)) (A.16)
dnly) = 2%6 (2¢ — exSech(ay)Cosh(Cry)+er Sech(als)Cosh(Cay)) (A.17)

With 3 = nM? + o2, v = (1 — n)M?*a2 — af,
§ = GM?ap0n, € = /2 +47, 61 = B —€, 63 = B+¢, |
G = vE/vz, and(; = ve2/vz. Final solutions are recon-
structed by replacing solutions far, (y) and¢,, (y) provided
by Egs. (A.16) and (A.17) into Egs. (A.10) and (A.11) in or- The first author expresses his gratitude to @mnsejo Na-
der to find outug(y, z) andgo(y, 2). Once that's completed, cional de Ciencia y Tecnoldg(CONACYT) for its financial
one can put together = ug(y,z)e*, ¢ = ¢o(y,2)e’* as  support in the form of a scholarship throughout the duration
written in Eq. (34). Ultimately the velocity is normalized as of his Ph. D. program being conductedGentro de Investi-
proposed in Eq. (27) before visualization. gacion en Ciencia Aplicada y Tecnoli@gAvanzadalnstituto
Politécnico Naciona(CICATA-IPN), Santiago de Quétaro,
Quetktaro, Mexico.
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