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On the birefringence evaluation of single-mode fibers
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Due to its low absorption, short lengths of single-mode fibers are modeled as homogeneous retarders and their birefringence is measured usir
polarimetric techniques. Usually this characterization is limited to the evaluation of intensity changes of the output polarized signal. These

measurements provide information on the retardation rate, described in terms of the polarization beat length but do not provide information
on the type of retarder (linear, circular or elliptical) and its polarization eigenmodes. Furthermore, most fibers present residual torsion, a

contribution that breaks the periodic evolution of the polarization state associated to the polarization beat length. In this work we present and
compare the techniques used to characterize the fiber birefringence emphasizing the changes introduced by the presence of residual torsi
and show how to overcome this problem.

Keywords: Fiber optics; birefringence; polarization.
PACS: 42.81.-i; 42.81.Gs; 42.25.Ja

1. Introduction the fiber no longer behaves as a homogeneous retarder [7,8].
] i ) ) Its birefringence corresponds to a homogeneous retarder fol-
In single-mode fibers, internal perturbations such as core qpyed by a rotator [9] and the evolution of the state of polar-

cladding asymmetries and internal stress produce charactggation is no longer periodic.

istic differences of the propagation constants of the orthogo-  This work is organized as follows. The measurement of
nal polarization modes. Although these contributions can bene polarization retardation rate, characterized in terms of the
considered to vary randomly for long fiber lengths (km), it is ngarization beat length, and the type of results that can be ob-
clear that a few meters straight fiber presents a uniform strugzineq using the widely applied procedure based on intensity
ture. As absorption is usually negligible, it is commonly as-measyrements and Jones calculus are presented in Sec. 2. To
sumed that the fiber behavior corresponds to that of a homayyiq a priori assumptions on the fiber birefringence we con-
geneous retarder whose polarization properties are often dgjger it is necessary, to identify the type of anisotropy present
scribed only by the phase evolution caused by birefringencey, our sample. Therefore, polarimetric procedures used for
characterized by the polarization beat length Polarization g purpose are shown in Secs. 3 (homogeneous retarders)

beat length can be easily measured using Jones calculus 4@ 4 (twisted homogeneous retarders). Section 5 contains
null linear polariscope and either the cut-back method [1], oy, conclusions.

the wavelength scanning technique [2]. It is important to ac-

knowledge that this type of evaluation is complete only when

the residual birefringence is linear and the azimuth angle o2. Polarization Beat Length Identification
the fast birefringence axis is known or when it is circular.

The characterization of the input and output states of poln this work it is assumed that the fiber presents a negligi-
larization does not supply enough information on the birePle absorption. Under these circumstances, the change in-
fringence parameters of the fiber [3]. To build the birefrin- troduced by the fiber birefringence does not affect the signal
gence matrix it is also necessary to determine the azimuth&ower, there is just a phase retardation between the polariza-
and elliptical angles of the fiber anisotropy. This can be action eigenmodes. When the fiber behaves as a homogeneous
complished mapping the evolution of the polarization stateetarder and the phase changé;is= 2, the input state of
along the fiber. This procedure is frequently avoided becaus@olarization is restored at the fiber output; the lenfjth: L,
it requires the use of a more complex optical arrangement andpolarization beat length) associated to this phase change is
time-consuming data processing. The evolution of light poused to evaluate the retardation rate of change of the fiber
larization along the fiber should be plotted using either thedirefringence.
polarization complex-plane or the Poinéaphere [4,5]. The measurement of the polarization beat length is per-

In addition, it is important to mention that recently it was formed using a null polariscope, a very simple low cost ar-
shown that the fiber might also present residual torsion [6]fangement, in which the changes introduced by a birefringent
an additional uniform contribution that is typically neglected. Sample on the light's polarization state are shown as intensity
Its relevance relies on the fact that in the presence of torsioMariations. Using this instrument it is possible to follow the
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FIGURE 1. Null polariscope. The monochromatic signal comes from a tunable diode laser. A polarization controller and a microscope
objective are used to produce collimated circularly polarized light to illuminate the input polarizer. Microscope objectives are used to couple
light to the single-mode fiber and to collimate it at the fiber output.

evolution of the polarization state along the sample applyingp. In this case, using Jones calculus, the electric field at the
the cut-back or the wavelength scanning technique, and as wmlariscope output is

shall show below, the type of retarder and the azimuthal angle

of birefringence can be identified. Eout = P,1 MP Ein 4

2.1. Null Linear Polariscope whereP, andP, denote the input polarizer and the ana-

) . o . lyzer, respectively [10],
In the null linear polariscope shown in Fig. 1, light from

a monochromatic light source is linearly polarized and < cos? @ sin ¢ cos ¢ )
launched into a sample of single-mode fiber using a micro- $ = J
scope objective. The light emerging from the far end of the L _
fiber is collimated using another objective and passes through P,. = < sin” ¢ —sin <p2cos ® ) ®)
the analyzer before reaching the detector. —Ssmpcosp cos™ ¢

To determine the trajectories we would observe for polar-
ization evolution in each type of homogeneous retarder, ma2
trix calculus can be used. When an input linear polarization
signalEj, is launched into the fiber, at its rear end the output2.2. Measurement of the Polarization Beat Length
polarization stateH,,) is given by,

sin  cos ¢ sin? ¢
ndM is the Jones matrix of the fiber sample.

In what follows we calculate the intensity at the polariscope
Eout = MEin (1) output considering that the length of the optical fiber is mod-
ified (cut-back method) or the wavelength of the sampling
signal is scanned (wavelength scanning method). It is impor-
tant to mention that in both cases, to avoid the contribution of
_ ( cos ¢ ) 7 ) dispersion, the light signal used for each measurement must

be a monochromatic signal, and for wavelength scanning, itis
also necessary to verify that within the range of measurement
birefringence dispersion is negligible.

where the linearly polarized input signal with azimuth angle
© can be written as

in terms of the Jones vect&,, or as

COs ¢
Sn = SH(;@ ’ 3) 2.2.1. The fiber behaves as a homogeneous retarder
in terms of the Stokes vect&, (using a simplified ¥3 no-  To describe the fiber anisotropy we use the birefringence ma-
tation), andM is the fiber birefringence matrix. trices associated to anisotropic media whose fast birefrin-

In general, when the straight fiber sample is placed begence axis lies on the axis (azimuth angle. = 0). Jones
tween the input polarizer and the analyzer, its fast birefrin-matrices are shown in Table |, and in Table Il we present sim-
gence axis is not aligned with the polarization axis of the in-plified 33 Mueller matrices [11]. In this work we use a right
put linear polarizer. For simplicity we assume that the bire-hand matrix to describe the elliptical retarder [12].
fringence axis of the fiber is aligned with the laboratory ref- It should be noticed that we decompose the polarization
erence frame, while the polariscope axis is rotated an angleector in terms of polarization eigenmodes. This eigenmode
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phase change between the polarization eigenmodes that can
TaBLE |. Jones matrices of the retarders used to describe the birebe described as
fringence of single-mode fibers [10].

2w L
Linear retarder zero azimuth axis, total retardaién §= DY An, (12)
et 0 . L. . . .
Jin = < - (6) whereAn is the birefringence (linear, circular, or elliptical),
e

A the signal wavelength and the fiber length. It is clear

Circular retarder, total retardaticxd from Eq. 12 that using the cut back method or the wave-

3 cosd sind Ko length scanning technique the evolution of the polarization
7\ _siné coss state along the fiber can be followed. In this section it is as-
Elliptical retarder, zero azimuth axis, total retardatis sumed that the birefringence of the fiber sample is uniform

ellipticity angle,e and is either: linear, circular, or elliptical (Table I). Using
. . . . equations 1, 2, 5 and the proper Jones matrix from Table | in

cos § + i cos 2¢ sin sin 2¢ sin § . .

Je= ) ) ) (8) relation 4, it can be shown that for each type of retarder the
—siné €08 § — icos 2¢ sin § linear output state of polarization is aligned with the analyzer

L . , polarization axis, and its intensity is given by the expressions
of the state of polarization (SOP) of light as it evolves alongdghown in Table |1

the fiber, the light's SOP is described in terms of the normal
modes associated to this oscillation: two orthogonal unitar
vectors (see [5]). Since polarization eigenmodes are norm
modes, when light is launched in one of these polarization
states, its SOP remains unchanged while propagating along
the fiber.

For both sets of matrices itis clear that the matrix of anel- . o |ate equation 16 with the polarization beat-length of
liptical retarder corresponds to the general case, being partigﬁe fiber we use Eq. 12,
ular cases the linear retarder=t 0) and the circular retarder
(e = m/4). The retardation introduced by the fiber birefrin- 5 2mAn
gence does not modify the signal power. It only introduces a I'=sin® ——1L.

When the angle between the sample birefringence axis
nd the polariscope axisis equal to 45, Egs. 13 to 15 are
qual to

I =sin? 6. (16)

(17)

TaBLE Il. Simplified Mueller matrices of the retarders used to describe the fiber birefringence.

Linear retarder with zero azimuth axis; total retardattérj10]

1 0 0
Min=1] 0 cosd sind 9)
0 —sind cosd

Circular retarder (right or left) total retardati@a [10]

cosd +£sind 0
M:=| Fsind cosé (10)
0 0 0
Elliptical retarder with zero azimuth axis, ellipticity angletotal retardatior2s [11]

cos? § + cosdesin?§  sin2esin 26 sin 4e sin? §
M. = — sin 2¢ sin 2§ cos 26 cos 2¢ sin 20 (12)
sin 4e sin? § —cos2esin28  cos?d — cosdesin?

TABLE Ill. Polariscope output intensity for a fiber that behaves as a homogeneous retarder.

Linear retarder I = sin® §sin® 2¢ (13)
Circular retarder (left or right) I =sin%6 (14)
Elliptical retarder (left or right) I = sin? §(sin? 2¢ + cos® 2e sin® 2¢) (15)
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TABLE V. Polariscope output intensity for a fiber with residual torsion.

Linear I = cos? §sin? 6 + sin? § sin? (0 4 2¢) (21)
Circular I =sin?(5 4 0) (22)
Elliptical I = cos® 0sin? § sin” 2¢ + % sin 26 sin 2¢ sin 20 + cos? § sin? @ 4 cos? 2¢ sin” § sin” (0 + 2¢) (23)

2.2.2. The fiber presents a residual torsion

The birefringence matrix of a fiber with homogeneous retar-
dation and residual torsionis [7]:

60 M, =R(8+br)M, (18)

where andb are constants. It has been demonstrated in [6]
that the fiber birefringence exhibits, as a cold twisted fiber,
a geometrical contribution introduced by the rotation of the
birefringence axes and described by the ma®{}) + b7),

and a photoelastic contribution. MatriM . is the matrix of

a homogeneous retarder whose retardation ahgie addi-

tion to the retardation; associated to homogeneous retarda-
tion, presents a linear dependence with the residual torsion,
introduced by photoelasticity

60 0r = 6; +cT; (19)

wherec is a photoelastic constant Eq. 19 can be rewritten in
terms of the fiber lengtlh as

6+(L) = (pi + ep)L = gL; (20)

wherep; = 4¢;/L is the propagation constant associated with
0;, p = 7/L is the twist rate per unit length angdis a con-
stant. This relation is similar to that obtained in Ref. 13, but

FIGURE 2. Null polariscope output for a fiber whose beat-length is aswe C‘T’m noticey Is ,d'ﬁerem from Ulr_'Ch constant.
L. a) linear retarder, b) elliptical retarder with= 23°. In both For linear and elliptical retarders, in Eq. (18) we have two

cases the azimuth of the input linear polarization state is differentrotations about different gyration axes; therefore the fiber be-
for each curve ), it varies from 0 to150°. The output intensity ~ haves as a non-homogeneous retarder [8]. It will behave as a
presents a higher amplitude modulation for azimuth angles of thehomogeneous retarder only if the retarder is circular.

signal’s input polarization state close to the azimuth angle of the  Itis possible to determine the output intensity dependence
fiber’s fast axis ¢ = 0°). on length, for a fiber that behaves as a linear, circular or ellip-
tical retarder with residual torsion, using Egs. (1), (2), (18),
(19), (5) and the proper Jones matrix in Eq. (4). The relations
Bbtained are shown in Table IV.

L/Ly
1.5

When the azimuth angle of the polariscopevist 54°,
the amplitude of the curve (Fig. 2) decreases, but accordin ; ) ) o
to equations 13 to 15, the locations of maxima (or minima) When a linear retarder with residual torsion is inserted
along the fiber length used to evaluate the polarization bedfl @ null linear polariscope, we can see again that the am-
length, do not displace. Therefore, using this simple experpl'tUde modulation of the oqtput intensity is maximum when
imental procedure, one fiber orientation with respect to th¢® = 45°, butas we can see in the examples of Fig. 3, the am-
null polarimeter ), and considering the fiber length required plitudes of maxima and minima of intensity are not constant.

to obtain three maxima (or minima) we can evaluate the poln addition, the shape of the output intensity curve is periodic

larization beat length (vertical line in Fig. 2). only whend, /6 is equal to a rational number (Fig. 3(b)).

Therefore we can speak of polarization beat length only in
As we can notice in Fig. 2, the curves obtained for thethis case.

output intensity evolution are similar for linear and elliptical In Fig. 3(a) we have marked the position where the phase

retarders, therefore using only one azimuth angle for the inputetardationy. is equal tc27 with a blue line. It is evident that

linearly polarized signal we do not have enough informationthe input polarization state is not reproduced for that fiber

to be able to discern if the homogeneous retarder that can Bength. For Fig. 3(b) we also used a vertical line to mark the

used to describe the fiber anisotropy is linear or elliptical. ~ position where). = 7; i.e.,, L = L;/2. We can notice that in
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FIGURE 3. Null polariscope output for a linear retarder with resid-
ual torsion. The azimuthy) of the input linear polarization state is
different for each curve (0 - 150. The relative values of the retar-
dation anglé)- and the rotation angkeare different: a), = 4.26;

b) . = 0.
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FIGURE 4. Null polariscope output for a fiber that behaves as el-
liptic retarder ¢ = 23°) with residual torsion. In both cases the
azimuth of the input linear polarization stateis different for each
curve, it varies from 0 td50°. a)d, = 4.20; b) 6, = 6.

FIGURE 5. Null polariscope output for a fiber that behaves as linear
retarder § = 0°) with residual torsiond = angle per unit length).

In both cases the rate of changedefis the same and the azimuth
of the input linear polarization state) varied from 0 to150°. a)

0r = 20;b) 4, = 30.

this case we will also require three minima to obtain a length
increment equal to one polarization beat length.

We present in Fig. 4 two additional examples of the out-
put intensity profiles, obtained in this case for an elliptical
retarder with residual torsion. The elliptical retardation is
e = 23° and the azimuth angle of the polariscopepis In
this figure we present the evolution obtained for different rel-
ative rates of the retardation and rotation anglegg = 4.2
(Fig. 4(a)) andy, /6 = 1 (Fig. 4(b)). We can observe again
that when this ratio is not equal to a rational number the evo-
lution is not periodic.

From Eqg. (18) it is evident that a periodic evolution of
the output intensity along the fiber can be obtained applying
a proper twist to the fiber (the value of the radig/6 is mod-
ified). Therefore, as it has been suggested [14], twisting a
fiber can be used to get a more stable evolution of light polar-
ization.

In regard with the rate of change of the retardation angle
d-, when the polarization evolution of light along the fiber is
periodic we can still talk about a polarization beat length and
measure it considering three consecutive minima.

In order to visualize the relevance of the rotation arggle
associated to the rotation of the birefringence axes produced
by torsion, we varied the ratid. /6 keeping the same rate of
change for... The results are shown in Fig. 5. In Fig. 5(a),
the ratiod, /6 is equal to 1/2 and in Fig. 5.b, to 1/3. We can
see that the prediction for the polarization beat length pro-
duces the same value. Therefore, introducing a cold twist we
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can produce a ratié, /6 that corresponds to a rational num- 3. Polarization Eigenmodes Identification
ber and evaluate the polarization beat length of the linear or (Homogeneous Retarder)
the elliptical retarder that presents a residual torsion14. Fur-
thermore, we can notice from figures 4.b and both graphs ifo be able to build the birefringence matrix, it is necessary
Fig. 5 that the number of maxima indicate the relation be-to determine the values of the azimuth and ellipticity angles
tweend.- andé. that characterize the polarization eigenmodes. In this section
yve consider initially that the fiber behaves as a homogeneous
Iéetarder and incorporate the contribution of residual torsion
in Sec. 4. In both sections, we present two alternatives for
the identification of the homogeneous birefringence present
in the fiber and the determination of their elliptical and az-
imuthal angles. When the polarization states are described
in terms of Jones vectors, data of the polarization evolution
2.3. Birefringence Identification Using a Linear Polar-  along the fiber length are analyzed plotting the resultant tra-
iscope jectories on the polarization complex-plane [4]. If Stokes
vectors are used to describe the output polarization states, the

In this section we use the results of the previous section tgnalysis is performed mapping the polarization evolution on

identify the type of retarder that describes the birefringencd® Poincae sphere [5]. A third alternative with a higher ac-

of the single-mode fiber under evaluation. From Egs. (13-15§Uracy can be used only when the fiber behaves as a homo-
we can notice that for a circular retarder the output intensitygem":‘Ous retarder [15].

does not depend on the orientation of the fiber; while for lin-
ear and elliptical retardations the output intensity is modifie

by the orientation of the sample with respect to the linear poy has heen demonstrated that when the Jones matrix formal-
lariscope. We can see from Eq. (13) that when the lineafsy, (Eq. 2 and matrices of Table I) is used to describe the
retarder is aligned with the polariscopes. wheny = 0% gg1ytion of the light polarization state along the fiber, the re-
the output intensity for all values df (or A) is null. While, 15 piotted on the polarization complex-plane produce cir-
Eq. (_15) indicates us that varying the relat_lve orientation ofg |y trajectories [4]. We present in Table V the locus of the
the fiber sample with respect to the polariscope we cannQlanter of curvature and the radius of curvature, obtained for

reach this condition for any value of Therefore, using these o trajectory of each type of homogeneous retarder on the
different responses to the relative orientation of the Samp"ﬁolarization complex-plane.

with respect to the polariscope and the azimuth angle of the |, the complex-plane of polarization the polarization
input linear polarization we can identify the type of homoge-giates are represented using the real and imaginary parts of
neous retarder that describes the fiber birefringence. the quotient between thgandz components of the electric
When the fiber presents a residual torsion, the relatiorfield vector. The real part of, / E,, is associated to the hori-
that describes the output intensity variation with length for azontal axis (u) and the imaginary part, to the vertical axis (v).
linear (Eq. 21) or elliptical retardation (Eg. 23) is not homo- This representation is a projection of the Poigcsphere on
geneous. The profile of the output intensity curves presenta plane [10].
a non-uniform oscillatory behavior, periodic only in some  Using simplified Mueller matrices (Table II) and Stokes
cases. As we mentioned above, when the residual birefrinvectors (Eq. 3) it has also been shown that the evolution
gence does not produce a periodic profile, it can be modifiedf the light polarization state along the fiber mapped on the
to reach this condition introducing a cold twist (by trial and Poincaé sphere produces circular trajectories [5]. The resul-
error). Under this condition it is possible to measure the potant circles are perpendicular to a common line of symmetry,
larization beatlength and the relative rate of change of the reand it can be shown that the intersections of this line of sym-
tardation between polarization eigenmodes to the twist angleetry with the Poincd sphere [, 2¢) and the orthogonal
of the total torsion. Analyzing the profile variation of the evo- position, Qo + 7, 2¢ + )] indicate the location of the polar-
lution of the output intensity for different azimuth angles of ization eigenmodes. The Poinéasphere is a unitary double
the input linear polarization it is also possible to distinguishsphere where the azimuthal and elliptical angles are described
between linear and elliptical retarders. using the double of its real value.

We can see from Figs. 4 and 5 that the output intensit
measured for the maxima is higher when the azimuth ang
of the fast birefringence axis of the fiber is aligned with the
polariscope¢ = 0).

.1. Polarization Complex-Plane Representation

TABLE V. Radius and center of curvature of the trajectories on the polarization complex-plane representing the evolution along the fiber of a
linear input SOP.

- sin(2a—2 si ¢
Linear retarder = a2l (w,v) = (#2&1_%)) (24)

_ \/17[cos 2e cos(2a—2¢p)]2

Elliptical retarder Te = (Ue, Ve) = (sin 2a, tan 2¢) (25)

1
2 cos ¢ cos 2 cos(2a—¢p) 2 cos g cos(2a—¢)
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FIGURE 6. Linear retarder. a) The fast birefringence axis forms an
anglea = 30° with the horizontal axis. Each curve corresponds
to a different azimuth angle of the input linearly polarized signal

(0 < ¢ < 180°). b) The fast birefringence axis coincides with
the horizontal axis. Each circle corresponds to a different azimuth
angleyp of the input linearly polarized signa (< ¢ < 45°; 10°
step).

— 5 0

3.2. Graphical Analysis for Eigenmodes Identification

3.2.1. Homogeneous linear retarder

When the fiber behaves as a linear retarder, and the complex-
plane representation is used, the center of curvature lies al-
;/;/agyszog t:seVrveea:;:):zeTek}lrsolr:dtlr?:tre;;t?g;tfr:) er fglépgggig:géfﬂeu% 7. Elliptical retarder. a) Ellipticity angle = 22.5°, az-
' . imuth anglea = 30°. Each curve corresponds to a different az-
the center of Cu_rvaturg ShOW_n In Taple V._From Eq. (24) Wemuth angley of the input linear polarization signal (< ¢ <
can see that using an input signal with azimuth angte 0 180°). b) Ellipticity anglee = 5°, azimuth anglex. Each curve
corresponds to a different azimuth angleof the input linear po-

1
(w,v) = §(tan 2a,0); (26) larization signal ( < ¢ < 45°; 10° step).

therefore, Eq. (26) can be used to determine the azimuth an-
gle « of the linear retarder. Examples of the curves we can obtain for the evolution
When the Poinca@ sphere is used, we know that the of a linear input SOP along a fiber that behaves as a linear
fiber behaves as a linear retarder when the intersection of thetarder are presented in Fig. 6. Figure 6(a) contains the tra-
symmetry axis of the circular trajectories with the Poicar jectories plotted on the polarization complex-plane when the
sphere is located on the equator. In this case the ellipticityiber fast birefringence axis forms an angle= 30° with the
anglee is null, and the azimuth angle of the linear retarderhorizontal axis. In Fig. 6(b) the trajectories mapped on the
is equal to the semi angle between the symmetry axis of thBoincaé sphere correspond to a linear retarder with azimuth
circular trajectories and;Saxis. anglea equal to zero. In both cases whén- 2mmx (m is an
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integer), the next circular trajectory reproduces the previousghe fiber anisotropy is zero (Fig. 7(a)). When the fast bire-

one. fringence axis of the fiber anisotropy forms an angle with the
horizontal axis of the measurement system# 0), we can
3.2.2. Homogeneous circular retarder see in Fig. 7(a) that the centers of the circular trajectories are

located on a straight line forming an angleith the real axis
The identification of a circular retarder is easy in both casesthorizontal axis), whose value according to Eq. 27 depends
When the polarization complex-plane is used, the trajectorypoth on the ellipticity and the azimuth angle of the fiber el-
of a linearly polarized input signal evolves along the real axidiptical birefringence¢ = arctan(tan 2¢/ sin 2a).
(horizontal axis) in the positive or negative direction, depend-  When the Poincér sphere mapping is used, the intersec-
ing upon the sign of the retardation (right- or left-handed cir-tion of the axis of symmetry of the circular trajectories with
cular retarder). On the Poin@sphere, the trajectory of a the Poincaé sphere indicates the values of the azimuth angle
linearly polarized input signal evolves along the equator, als@, (horizontal semi angle along the equator, measured from
in the positive or negative direction for right- or left-handed axis S ) and the ellipticity angle (vertical semi angle mea-
circular retarders, respectively. sured from the equator).

3.2.3.  Homogeneous elliptical retarder

In this case, for a linearly polarized input signal the circular \'% : : a)
trajectories depicted on the polarization complex-plane are 6k . -
not centered on the horizontal axis, as we can see from the I : :
expression for., v.) in Table V. We can also notice from ‘ \
this relation that when the azimuth angle of the input linearly 4r : : :
polarized signal is nullg = 0°), 3 ; ) »
1 tan 2e 2 |
ey Ve) = = | tan 2ce, ——— | . 27 (
(Ue, V) 2(an atan?a) (27) ... Lw\&’\!(_\
_ | | o\ (L
Using Eq. 27 we can determine the values of the azimuth \ \\‘Xj Iy ) \ ]
anglea, and the ellipticity angle of the fiber’s anisotropy. -1p- 1 /
Examples of the circular trajectories predicted for ellip- 15 AU N A W -/
tical retarders are shown in Fig. 7. For the complex-plane !
representation, the centers of the circular trajectories lie on 3 bl
the imaginary axis (vertical axis) when the azimuth angle of -10 -5 0 su
v ‘
Sj3 20 b)
15
10
e 5,
- /’-'/E
S 1 b -5 ; S
29,
'" M 0 1 2 3 u
20, FIGURE 9. Trajectories of the polarization evolution of light along

a linearly birefringent fiber with residual torsion, represented on

the polarization complex-plane. &) = 4.26 (open curves). b)
FIGURE 8. In the Poincat sphere, the evolution of the state of po- 4§, = 0; in this case we obtain closed trajectories. In both figures
larization of light describes a circular trajectory perpendicular to an the linearly polarized signals have different azimuth angles (20, 40,
axis of symmetry that intersects the sphere at the fiber polarizatior80 and 120 degrees). Using the same order, trajectories are shown
modes. with: blue, green, red and light blue lines.
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3.3. Eigenmodes Identification Using a Monochromatic  sition and determine, using a polarization analyzer, the max-

Signal and the Poincag Sphere imum and minimum values of the Stokes parametgfd®

this azimuthal position. We denote the maximum and min-
For the evaluation of the fiber birefringence this procedurgmym values of the ellipticity angle for this trajectory as:
uses a single monochromatic signal [15], therefore its preciz — arcsin S50 anden, = arcsin S;min. Hence,
sion is not affected by birefringence dispersion. It is basedne ellipticity angle of the fiber anisotropy is:
on the geometric properties exhibited by retarders when the
polarization evolution of light is mapped on the Poirgcar 2¢ = (Emax — Emin)- (29)
sphere.
When the fiber behaves as a homogeneous retarder, for o . L .

any linearly polarized input signal, the light state of polar-4- Polarization Eigenmodes Identification in
ization traces a circular path on the Poiricaphere having the Presence of Residual Torsion
as center of symmetry an axis whose intersection with the
Poincaé sphere has angular coordinates,@¢). Therefore, 4.1. Complex-Plane Representation of Homogeneous
anglesx ande, the azimuthal and elliptical angles of the fiber Retarder with Residual Torsion

birefringence, can be determined using the circular evolutiorASsuming the general case of an elliptical retarder, using the

of the input linear polarization along the retarder [16]. In ) .
what follows, using Fig. 8 we describe the experimental pro—‘J.Ones rgpresentatlon, the components of the output electric
cedure applied to the characterization of an elliptical retardeIJeld are.
(general case of a homogeneous retarder). When the output
polarization becomes lineaty( o), its azimuthal position
along the equator is symmetrical with that of the input linear + isind, cos 2e cos(0 + ) , (30)
polarization ¢;_i,), with respect to the azimuthal position of

the closest polarization eigenmodej. Therefore,
200 = (V—out — M—in)- (28) — sin 6(cos ¢ cos ¢ + sin d sin 2¢ sin @)

E, = cosd,cos(f — ) — sin 0, sin 2e2¢(0 — ¢)

E, = cos 6(cos d sin ¢ — sin d sin 2¢ cos @)

Once we have determined the value of the azimuth angle —icos2esindsin(f + ¢) (31)
of the fiber birefringenced(), we can calculate the values of

the Stokes parameters 8nd S that correspond to this po- Where# = 3 + br. And the components along the real and
|  imaginary axes of the polarization complex plane are:

—c082(0 — ) sin 28 sin 2 — cos? §sin(f — ) + sin” §[sin? 2e sin 2( — @) — cos? 2esin 2(6 + )]

u = , 32
2 cos2 § cos2(f — ) + 2 cos? 2 cos2(f + @) sin? § + sin 2¢[2 sin® sin 2e sin?(0 — @) — sin 28 sin 2(6 — )] (32)
B cos 2¢ sin 6[cos 2¢ sin § sin 2e — 2 cos § cos @ sin @] (33)
cos? 2¢ cos?(0 + ) sin? § + [cos & cos( — @) — sin § sin 2esin(f — )2
4.1.1. Linear retarder with residual torsion I
The case of a linear retarder corresponds to an ellipticity, . : . .
= — 0. In this case, from Eqgs. 32 and 33 we obtain 4.1.2. Circular retarder with residual torsion
~ —cos?0sin2(0 — ) — sin? §sin 2(6 4 ¢) 3 In this case the fiber behaves as a homogeneous retarder,
“= 2[cos2(0 + @) sin® 6§ + cos? § cos2(6 — )] (34 therefore the results follow the behavior reported for a cir-
. . cular retarder without residual torsion (Sec. 3.2.2).
—sin 24 sin 2¢ (35)
V= — .
2[cos?(0 + ) sin® § 4 cos? § cos? (0 — )] 4.1.3. Elliptical retarder with residual torsion

Examples of the results we obtain for a linearly birefrin-
gent fiber with residual torsion are shown in Fig. 9. We canExamples of the type of plots we obtain for an elliptically
see that the trajectories are not circular and their shapes albirefringent fiber with residual torsion are shown in Fig. 10.
show a strong dependence on the azimuth angle of the inplithe values we used for the retardation rates are the same
polarization state. Consecutive loops have a different shapas those used for the examples in Fig. 9. We can see that
and they overlap only whefy /6 is equal to a rational num- in this case the trajectories are no longer circular and their
ber [17]. In Fig. 9(a)d, = 4.20, while in Fig. 9(b) the shapes show a strong dependence on the azimuth angle of
closed curves we observe are formed when the rotation angibe input polarization state. In general, when the retardation
is equal to the retardation angle of the elliptical retarder withd- is larger thar2mm (wherem is an integer), consecutive
residual torsiond, = 6). loops have a different shape, they overlap only whgrd
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FIGURE 10. Trajectories of the polarization evolution of light along an elliptically birefringent fiber with residual torsion, represented on
the polarization complex-plane. &) = 4.26; these are open curves &) = 0; in this case we obtain closed trajectories. In both figures
the linearly polarized signals have different azimuth angles (20, 40, 80 and 120 degrees). Using the same order, trajectories are shown with:

blue, green, red and light blue lines.

b)

FIGURE 11. Trajectories of the polarization evolution of light along an elliptically birefringent fiber with residual torsion, represented on the
Poincaé sphere. a), = 4.26 (open curves). b). = 0; these are closed curves (for retardations larger #atie next loop coincides with

the previous one). In both figures the linearly polarized signals have different azimuth angles (0, 20, 40, 60 and 80 degrees). Trajectories are
shown with: blue, green, red, light blue and purple lines, respectively.

is equal to a rational number [17] (we should remember thatlosed curves we observe are formed when the rotation angle

this representation is a projection of the Poicaphere on

a plane). In Fig. 10(a) the rotation anglds smaller than residual torsiond,. = 6).
the retardation anglé. (6, = 4.26), while in Fig. 10(b) the

Rev. Mex. Fis62(2016) 381-392
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FIGURE 12. Trajectories of the polarization evolution of light along a fiber with residual torsion and: a) linear retardation b) elliptical
retardation. Each curve corresponds to a different azimuth gngfehe input linear polarization.

4.2. Poincaé Sphere Representation of an Elliptical Re- In Fig. 12 we present the behavior of Stokes parameter
tarder with Residual Torsion S5 for fibers with residual torsion and linear (Fig. 12(a)) or
elliptical (Fig. 12(b)) retardation. These curves were calcu-
Using simplified Mueller calculus we can determine, for anjated for different values of the azimuth angle of the input
elliptical retarder with residual torsion, the components of thainear polarizationy(0, 30, 60, 90, 120 and 18 When the
1 x 3 output Stokes vector using Egs. (3) and (18) in Eq. (1)retardation is linear, we can observe a symmetrical oscilla-
tion around the horizontal line for whichs is null. In this
Siout = cos p[cos f(cos® § 4 cos 4 sin? 6) cases = 0 and the curve associated to Eq. (39) overlaps with
the horizontal line §5 = 0). For an elliptical retardation, the
amplitude of the curve correspondingto= 0 is the lowest,
+ cos 24 sin ) (36)  and the minima are equal to zero.

— sin 26 sin 2¢ sin 0] + sin p(cos O sin 24 sin 2

Saout = €0s @[— cos 0 sin 2§ sin 2 — sin 9(6052 0

2 . 5. Conclusions
+ cos 4e sin” §)] + sin p(cos 26 cos 6

. . . Each one of the methods presented in this work can be used to
— sin 20 sin 2¢ sin 6) (37) . : .
determine some of the parameters that characterize the bire-
Ssout = €os @ sin § sin de — cos 2¢ sin 26 sin ¢ (38)  fringence of single-mode optical fibers. But, to obtain a com-
plete evaluation we must use a graphical method to measure
Examples of the trajectories we obtain for the evolutionthe azimuth angle of the fast birefringence axis and the ellip-
of an input linearly polarized signal propagating along an el{icity angle of the fiber anisotropy, as well as a null polarime-
liptically birefringent fiber with residual torsion are shown ter to measure the polarization beatlength.
in Fig. 11. Again, the trajectories are not circular. In this  In the presence of a residual torsion, analyzing the varia-
case the curves are spherical trochoids whose amplitude dgen of Stokes parameter; & is possible to evaluate the el-
pends on the azimuth angle of the input polarization statelipticity angle (allowing the identification of the type of re-
In Fig. 11(a) we observe the trajectories depicted for fivetarder); while using a null polarimeter it is necessary to add a
different azimuth angles of the input linear polarization (0,cold twist, varying the applied torsion until a periodic behav-
20, 40, 60 and 89 when the retardation, is larger than ior of the polarization evolution is obtained. Under this con-
6(6, = 4.20. Consecutive loops have a different orbiting dition, it is possible to measure the polarization beatlength
rate. They overlap only wheh. /6 is a rational number [17]. and the ratio of the retardation angle to the total torsion an-
In Fig. 11(b) the rotation anglé is equal to the retardation gle.
angle of the elliptical retarder with residual torsi®n
As we can see in Fig. 11, the symmetry of the curves re-,
lated with the evolution of the polarization state does not aI-ACknOWledgments
low the location of the polarization eigenmodes, nor the meayye would like to thank Miguel Faéin Sinchez for his help
surement of the ellipticity angle. Nevertheless, from Eq. (38)yith data collection and to Conacyt for the economical sup-
we can see thafizo = sin’ § sin 4 wheny = 0, being the  port. This work was sponsored by project SEP-CONACYT,
maxima equal tain 4¢ and the minima equal to zero. The SEp-CONACYT-CB-2010-155121.
ellipticity angle can be evaluated from these maxima using

e = arcsin(Ssmax/4)- (39)
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