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On the birefringence evaluation of single-mode fibers
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Due to its low absorption, short lengths of single-mode fibers are modeled as homogeneous retarders and their birefringence is measured using
polarimetric techniques. Usually this characterization is limited to the evaluation of intensity changes of the output polarized signal. These
measurements provide information on the retardation rate, described in terms of the polarization beat length but do not provide information
on the type of retarder (linear, circular or elliptical) and its polarization eigenmodes. Furthermore, most fibers present residual torsion, a
contribution that breaks the periodic evolution of the polarization state associated to the polarization beat length. In this work we present and
compare the techniques used to characterize the fiber birefringence emphasizing the changes introduced by the presence of residual torsion
and show how to overcome this problem.
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1. Introduction

In single-mode fibers, internal perturbations such as core or
cladding asymmetries and internal stress produce character-
istic differences of the propagation constants of the orthogo-
nal polarization modes. Although these contributions can be
considered to vary randomly for long fiber lengths (km), it is
clear that a few meters straight fiber presents a uniform struc-
ture. As absorption is usually negligible, it is commonly as-
sumed that the fiber behavior corresponds to that of a homo-
geneous retarder whose polarization properties are often de-
scribed only by the phase evolution caused by birefringence,
characterized by the polarization beat lengthLb. Polarization
beat length can be easily measured using Jones calculus, a
null linear polariscope and either the cut-back method [1], or
the wavelength scanning technique [2]. It is important to ac-
knowledge that this type of evaluation is complete only when
the residual birefringence is linear and the azimuth angle of
the fast birefringence axis is known or when it is circular.

The characterization of the input and output states of po-
larization does not supply enough information on the bire-
fringence parameters of the fiber [3]. To build the birefrin-
gence matrix it is also necessary to determine the azimuthal
and elliptical angles of the fiber anisotropy. This can be ac-
complished mapping the evolution of the polarization states
along the fiber. This procedure is frequently avoided because
it requires the use of a more complex optical arrangement and
time-consuming data processing. The evolution of light po-
larization along the fiber should be plotted using either the
polarization complex-plane or the Poincaré sphere [4,5].

In addition, it is important to mention that recently it was
shown that the fiber might also present residual torsion [6],
an additional uniform contribution that is typically neglected.
Its relevance relies on the fact that in the presence of torsion

the fiber no longer behaves as a homogeneous retarder [7,8].
Its birefringence corresponds to a homogeneous retarder fol-
lowed by a rotator [9] and the evolution of the state of polar-
ization is no longer periodic.

This work is organized as follows. The measurement of
the polarization retardation rate, characterized in terms of the
polarization beat length, and the type of results that can be ob-
tained using the widely applied procedure based on intensity
measurements and Jones calculus are presented in Sec. 2. To
avoid a priori assumptions on the fiber birefringence we con-
sider it is necessary, to identify the type of anisotropy present
in our sample. Therefore, polarimetric procedures used for
this purpose are shown in Secs. 3 (homogeneous retarders)
and 4 (twisted homogeneous retarders). Section 5 contains
our conclusions.

2. Polarization Beat Length Identification

In this work it is assumed that the fiber presents a negligi-
ble absorption. Under these circumstances, the change in-
troduced by the fiber birefringence does not affect the signal
power, there is just a phase retardation between the polariza-
tion eigenmodes. When the fiber behaves as a homogeneous
retarder and the phase change isδb = 2π, the input state of
polarization is restored at the fiber output; the lengthL = Lb

(polarization beat length) associated to this phase change is
used to evaluate the retardation rate of change of the fiber
birefringence.

The measurement of the polarization beat length is per-
formed using a null polariscope, a very simple low cost ar-
rangement, in which the changes introduced by a birefringent
sample on the light’s polarization state are shown as intensity
variations. Using this instrument it is possible to follow the
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FIGURE 1. Null polariscope. The monochromatic signal comes from a tunable diode laser. A polarization controller and a microscope
objective are used to produce collimated circularly polarized light to illuminate the input polarizer. Microscope objectives are used to couple
light to the single-mode fiber and to collimate it at the fiber output.

evolution of the polarization state along the sample applying
the cut-back or the wavelength scanning technique, and as we
shall show below, the type of retarder and the azimuthal angle
of birefringence can be identified.

2.1. Null Linear Polariscope

In the null linear polariscope shown in Fig. 1, light from
a monochromatic light source is linearly polarized and
launched into a sample of single-mode fiber using a micro-
scope objective. The light emerging from the far end of the
fiber is collimated using another objective and passes through
the analyzer before reaching the detector.

To determine the trajectories we would observe for polar-
ization evolution in each type of homogeneous retarder, ma-
trix calculus can be used. When an input linear polarization
signalEin is launched into the fiber, at its rear end the output
polarization state (Eout) is given by,

Eout = ME in (1)

where the linearly polarized input signal with azimuth angle
ϕ can be written as

Ein =
(

cos ϕ
sin ϕ

)
, (2)

in terms of the Jones vectorEin, or as

Sin =




cos ϕ
sinϕ

0


 , (3)

in terms of the Stokes vectorSin (using a simplified 1×3 no-
tation), andM is the fiber birefringence matrix.

In general, when the straight fiber sample is placed be-
tween the input polarizer and the analyzer, its fast birefrin-
gence axis is not aligned with the polarization axis of the in-
put linear polarizer. For simplicity we assume that the bire-
fringence axis of the fiber is aligned with the laboratory ref-
erence frame, while the polariscope axis is rotated an angle

ϕ. In this case, using Jones calculus, the electric field at the
polariscope output is

Eout = Pϕ⊥MPϕEin (4)

wherePϕ andPϕ⊥ denote the input polarizer and the ana-
lyzer, respectively [10],

Pϕ =
(

cos2 ϕ sin ϕ cos ϕ
sinϕ cos φ sin2 ϕ

)
,

Pϕ⊥ =
(

sin2 ϕ − sin ϕ cosϕ
− sin ϕ cosϕ cos2 ϕ

)
(5)

andM is the Jones matrix of the fiber sample.

2.2. Measurement of the Polarization Beat Length

In what follows we calculate the intensity at the polariscope
output considering that the length of the optical fiber is mod-
ified (cut-back method) or the wavelength of the sampling
signal is scanned (wavelength scanning method). It is impor-
tant to mention that in both cases, to avoid the contribution of
dispersion, the light signal used for each measurement must
be a monochromatic signal, and for wavelength scanning, it is
also necessary to verify that within the range of measurement
birefringence dispersion is negligible.

2.2.1. The fiber behaves as a homogeneous retarder

To describe the fiber anisotropy we use the birefringence ma-
trices associated to anisotropic media whose fast birefrin-
gence axis lies on thex axis (azimuth angleα = 0). Jones
matrices are shown in Table I, and in Table II we present sim-
plified3×3 Mueller matrices [11]. In this work we use a right
hand matrix to describe the elliptical retarder [12].

It should be noticed that we decompose the polarization
vector in terms of polarization eigenmodes. This eigenmode
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TABLE I. Jones matrices of the retarders used to describe the bire-
fringence of single-mode fibers [10].

Linear retarder zero azimuth axis, total retardation2δ

Jlin =

(
eiδ 0

0 e−iδ

)
(6)

Circular retarder, total retardation2δ

Jc =

(
cos δ sin δ

− sin δ cos δ

)
(7)

Elliptical retarder, zero azimuth axis, total retardation2δ ;
ellipticity angle,ε

Jc=

(
cos δ + i cos 2ε sin sin 2ε sin δ

− sin δ cos δ − i cos 2ε sin δ

)
(8)

of the state of polarization (SOP) of light as it evolves along
the fiber, the light’s SOP is described in terms of the normal
modes associated to this oscillation: two orthogonal unitary
vectors (see [5]). Since polarization eigenmodes are normal
modes, when light is launched in one of these polarization
states, its SOP remains unchanged while propagating along
the fiber.

For both sets of matrices it is clear that the matrix of an el-
liptical retarder corresponds to the general case, being partic-
ular cases the linear retarder (ε = 0) and the circular retarder
(ε = π/4). The retardation introduced by the fiber birefrin-
gence does not modify the signal power. It only introduces a

phase change between the polarization eigenmodes that can
be described as

δ =
2πL

λ
∆n , (12)

where∆n is the birefringence (linear, circular, or elliptical),
λ the signal wavelength andL the fiber length. It is clear
from Eq. 12 that using the cut back method or the wave-
length scanning technique the evolution of the polarization
state along the fiber can be followed. In this section it is as-
sumed that the birefringence of the fiber sample is uniform
and is either: linear, circular, or elliptical (Table I). Using
equations 1, 2, 5 and the proper Jones matrix from Table I in
relation 4, it can be shown that for each type of retarder the
linear output state of polarization is aligned with the analyzer
polarization axis, and its intensity is given by the expressions
shown in Table III.

When the angle between the sample birefringence axis
and the polariscope axisϕ is equal to 45◦, Eqs. 13 to 15 are
equal to

I = sin2 δ. (16)

To relate equation 16 with the polarization beat-length of
the fiber we use Eq. 12,

I = sin2 2π∆n

λ
L. (17)

TABLE II. Simplified Mueller matrices of the retarders used to describe the fiber birefringence.

Linear retarder with zero azimuth axis; total retardation2δ [10]

M lin =




1 0 0

0 cos δ sin δ

0 − sin δ cos δ


 (9)

Circular retarder (right or left) total retardation2δ [10]

Mc =




cos δ ± sin δ 0

∓ sin δ cos δ

0 0 0


 (10)

Elliptical retarder with zero azimuth axis, ellipticity angleε, total retardation2δ [11]

Me =




cos2 δ + cos 4ε sin2 δ sin 2ε sin 2δ sin 4ε sin2 δ

− sin 2ε sin 2δ cos 2δ cos 2ε sin 2δ

sin 4ε sin2 δ − cos 2ε sin 2δ cos2 δ − cos 4ε sin2 δ


 (11)

TABLE III. Polariscope output intensity for a fiber that behaves as a homogeneous retarder.

Linear retarder I = sin2 δ sin2 2ϕ (13)

Circular retarder (left or right) I = sin2 δ (14)

Elliptical retarder (left or right) I = sin2 δ(sin2 2ε + cos2 2ε sin2 2ϕ) (15)
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TABLE IV. Polariscope output intensity for a fiber with residual torsion.

Linear I = cos2 δ sin2 θ + sin2 δ sin2(θ + 2ϕ) (21)

Circular I = sin2(δ + θ) (22)

Elliptical I = cos2 θ sin2 δ sin2 2ε + 1
2

sin 2δ sin 2ε sin 2θ + cos2 δ sin2 θ + cos2 2ε sin2 δ sin2(θ + 2ϕ) (23)

FIGURE 2. Null polariscope output for a fiber whose beat-length is
Lb. a) linear retarder, b) elliptical retarder withε = 23◦. In both
cases the azimuth of the input linear polarization state is different
for each curve (ϕ), it varies from 0 to150◦. The output intensity
presents a higher amplitude modulation for azimuth angles of the
signal’s input polarization state close to the azimuth angle of the
fiber’s fast axis (ϕ = 0◦).

When the azimuth angle of the polariscope isϕ 6= 54◦,
the amplitude of the curve (Fig. 2) decreases, but according
to equations 13 to 15, the locations of maxima (or minima)
along the fiber length used to evaluate the polarization beat
length, do not displace. Therefore, using this simple exper-
imental procedure, one fiber orientation with respect to the
null polarimeter (ϕ), and considering the fiber length required
to obtain three maxima (or minima) we can evaluate the po-
larization beat length (vertical line in Fig. 2).

As we can notice in Fig. 2, the curves obtained for the
output intensity evolution are similar for linear and elliptical
retarders, therefore using only one azimuth angle for the input
linearly polarized signal we do not have enough information
to be able to discern if the homogeneous retarder that can be
used to describe the fiber anisotropy is linear or elliptical.

2.2.2. The fiber presents a residual torsion

The birefringence matrix of a fiber with homogeneous retar-
dation and residual torsionτ is [7]:

Mr = R(β + bτ)M τ (18)

whereβ andb are constants. It has been demonstrated in [6]
that the fiber birefringence exhibits, as a cold twisted fiber,
a geometrical contribution introduced by the rotation of the
birefringence axes and described by the matrixR(β + bτ),
and a photoelastic contribution. MatrixM τ is the matrix of
a homogeneous retarder whose retardation angleδτ in addi-
tion to the retardationδi associated to homogeneous retarda-
tion, presents a linear dependence with the residual torsion,
introduced by photoelasticity

δτ = δi + cτ ; (19)

wherec is a photoelastic constant Eq. 19 can be rewritten in
terms of the fiber lengthL as

δτ (L) = (pi + cp)L = gL; (20)

wherepi = δi/L is the propagation constant associated with
δi, ρ = τ/L is the twist rate per unit length andg is a con-
stant. This relation is similar to that obtained in Ref. 13, but
as we can notice,g is different from Ulrich constant.

For linear and elliptical retarders, in Eq. (18) we have two
rotations about different gyration axes; therefore the fiber be-
haves as a non-homogeneous retarder [8]. It will behave as a
homogeneous retarder only if the retarder is circular.

It is possible to determine the output intensity dependence
on length, for a fiber that behaves as a linear, circular or ellip-
tical retarder with residual torsion, using Eqs. (1), (2), (18),
(19), (5) and the proper Jones matrix in Eq. (4). The relations
obtained are shown in Table IV.

When a linear retarder with residual torsion is inserted
in a null linear polariscope, we can see again that the am-
plitude modulation of the output intensity is maximum when
ϕ = 45◦, but as we can see in the examples of Fig. 3, the am-
plitudes of maxima and minima of intensity are not constant.
In addition, the shape of the output intensity curve is periodic
only whenδτ/θ is equal to a rational number (Fig. 3(b)).
Therefore we can speak of polarization beat length only in
this case.

In Fig. 3(a) we have marked the position where the phase
retardationδτ is equal to2π with a blue line. It is evident that
the input polarization state is not reproduced for that fiber
length. For Fig. 3(b) we also used a vertical line to mark the
position whereδτ = π; i.e., L = Lb/2. We can notice that in
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FIGURE 3. Null polariscope output for a linear retarder with resid-
ual torsion. The azimuth (ϕ) of the input linear polarization state is
different for each curve (0 - 150◦). The relative values of the retar-
dation angleδτ and the rotation angleθ are different: a)δτ = 4.2θ;
b) δτ = θ.

FIGURE 4. Null polariscope output for a fiber that behaves as el-
liptic retarder (ε = 23◦) with residual torsion. In both cases the
azimuth of the input linear polarization stateϕ, is different for each
curve, it varies from 0 to150◦. a)δτ = 4.2θ; b) δτ = θ.

FIGURE 5. Null polariscope output for a fiber that behaves as linear
retarder (ε = 0◦) with residual torsion (θ = angle per unit length).
In both cases the rate of change ofδτ is the same and the azimuth
of the input linear polarization state (ϕ) varied from 0 to150◦. a)
δτ = 2θ; b) δτ = 3θ.

this case we will also require three minima to obtain a length
increment equal to one polarization beat length.

We present in Fig. 4 two additional examples of the out-
put intensity profiles, obtained in this case for an elliptical
retarder with residual torsion. The elliptical retardation is
ε = 23◦ and the azimuth angle of the polariscope isϕ. In
this figure we present the evolution obtained for different rel-
ative rates of the retardation and rotation angles,δτ/θ = 4.2
(Fig. 4(a)) andδτ/θ = 1 (Fig. 4(b)). We can observe again
that when this ratio is not equal to a rational number the evo-
lution is not periodic.

From Eq. (18) it is evident that a periodic evolution of
the output intensity along the fiber can be obtained applying
a proper twist to the fiber (the value of the ratioδτ/θ is mod-
ified). Therefore, as it has been suggested [14], twisting a
fiber can be used to get a more stable evolution of light polar-
ization.

In regard with the rate of change of the retardation angle
δτ , when the polarization evolution of light along the fiber is
periodic we can still talk about a polarization beat length and
measure it considering three consecutive minima.

In order to visualize the relevance of the rotation angleθ
associated to the rotation of the birefringence axes produced
by torsion, we varied the ratioδτ/θ keeping the same rate of
change forδτ . The results are shown in Fig. 5. In Fig. 5(a),
the ratioδτ/θ is equal to 1/2 and in Fig. 5.b, to 1/3. We can
see that the prediction for the polarization beat length pro-
duces the same value. Therefore, introducing a cold twist we
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can produce a ratioδτ/θ that corresponds to a rational num-
ber and evaluate the polarization beat length of the linear or
the elliptical retarder that presents a residual torsion14. Fur-
thermore, we can notice from figures 4.b and both graphs in
Fig. 5 that the number of maxima indicate the relation be-
tweenδτ andθ.

We can see from Figs. 4 and 5 that the output intensity
measured for the maxima is higher when the azimuth angle
of the fast birefringence axis of the fiber is aligned with the
polariscope (ϕ = 0).

2.3. Birefringence Identification Using a Linear Polar-
iscope

In this section we use the results of the previous section to
identify the type of retarder that describes the birefringence
of the single-mode fiber under evaluation. From Eqs. (13-15)
we can notice that for a circular retarder the output intensity
does not depend on the orientation of the fiber; while for lin-
ear and elliptical retardations the output intensity is modified
by the orientation of the sample with respect to the linear po-
lariscope. We can see from Eq. (13) that when the linear
retarder is aligned with the polariscope,i.e. whenϕ = 0◦

the output intensity for all values ofL (or λ) is null. While,
Eq. (15) indicates us that varying the relative orientation of
the fiber sample with respect to the polariscope we cannot
reach this condition for any value ofϕ. Therefore, using these
different responses to the relative orientation of the sample
with respect to the polariscope and the azimuth angle of the
input linear polarization we can identify the type of homoge-
neous retarder that describes the fiber birefringence.

When the fiber presents a residual torsion, the relation
that describes the output intensity variation with length for a
linear (Eq. 21) or elliptical retardation (Eq. 23) is not homo-
geneous. The profile of the output intensity curves presents
a non-uniform oscillatory behavior, periodic only in some
cases. As we mentioned above, when the residual birefrin-
gence does not produce a periodic profile, it can be modified
to reach this condition introducing a cold twist (by trial and
error). Under this condition it is possible to measure the po-
larization beatlength and the relative rate of change of the re-
tardation between polarization eigenmodes to the twist angle
of the total torsion. Analyzing the profile variation of the evo-
lution of the output intensity for different azimuth angles of
the input linear polarization it is also possible to distinguish
between linear and elliptical retarders.

3. Polarization Eigenmodes Identification
(Homogeneous Retarder)

To be able to build the birefringence matrix, it is necessary
to determine the values of the azimuth and ellipticity angles
that characterize the polarization eigenmodes. In this section
we consider initially that the fiber behaves as a homogeneous
retarder and incorporate the contribution of residual torsion
in Sec. 4. In both sections, we present two alternatives for
the identification of the homogeneous birefringence present
in the fiber and the determination of their elliptical and az-
imuthal angles. When the polarization states are described
in terms of Jones vectors, data of the polarization evolution
along the fiber length are analyzed plotting the resultant tra-
jectories on the polarization complex-plane [4]. If Stokes
vectors are used to describe the output polarization states, the
analysis is performed mapping the polarization evolution on
the Poincaŕe sphere [5]. A third alternative with a higher ac-
curacy can be used only when the fiber behaves as a homo-
geneous retarder [15].

3.1. Polarization Complex-Plane Representation

It has been demonstrated that when the Jones matrix formal-
ism (Eq. 2 and matrices of Table I) is used to describe the
evolution of the light polarization state along the fiber, the re-
sults, plotted on the polarization complex-plane produce cir-
cular trajectories [4]. We present in Table V the locus of the
center of curvature and the radius of curvature, obtained for
the trajectory of each type of homogeneous retarder on the
polarization complex-plane.

In the complex-plane of polarization the polarization
states are represented using the real and imaginary parts of
the quotient between they andx components of the electric
field vector. The real part ofEy/Ex is associated to the hori-
zontal axis (u) and the imaginary part, to the vertical axis (v).
This representation is a projection of the Poincaré sphere on
a plane [10].

Using simplified Mueller matrices (Table II) and Stokes
vectors (Eq. 3) it has also been shown that the evolution
of the light polarization state along the fiber mapped on the
Poincaŕe sphere produces circular trajectories [5]. The resul-
tant circles are perpendicular to a common line of symmetry,
and it can be shown that the intersections of this line of sym-
metry with the Poincaŕe sphere [(2α, 2ε) and the orthogonal
position, (2α + π, 2ε + π)] indicate the location of the polar-
ization eigenmodes. The Poincaré sphere is a unitary double
sphere where the azimuthal and elliptical angles are described
using the double of its real value.

TABLE V. Radius and center of curvature of the trajectories on the polarization complex-plane representing the evolution along the fiber of a
linear input SOP.

Linear retarder rl = sin(2α−2ϕ)
2 cos ϕ cos(2α−ϕ)

(ul, vl) =
(

sin 2α
2 cos ϕ cos(2α−ϕ)

)
(24)

Elliptical retarder re =

√
1−[cos 2ε cos(2α−2ϕ)]2

2 cos ϕ cos 2ε cos(2α−ϕ)
(ue, ve) = 1

2 cos ϕ cos(2α−ϕ)
(sin 2α, tan 2ε) (25)
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FIGURE 6. Linear retarder. a) The fast birefringence axis forms an
angleα = 30◦ with the horizontal axis. Each curve corresponds
to a different azimuth angleϕ of the input linearly polarized signal
(0 < ϕ < 180◦). b) The fast birefringence axis coincides with
the horizontal axis. Each circle corresponds to a different azimuth
angleϕ of the input linearly polarized signal (0 < ϕ < 45◦; 10◦

step).

3.2. Graphical Analysis for Eigenmodes Identification

3.2.1. Homogeneous linear retarder

When the fiber behaves as a linear retarder, and the complex-
plane representation is used, the center of curvature lies al-
ways on the real axis. This indicates that the ellipticity angle
is ε = 0, as we can see from the relation for the position of
the center of curvature shown in Table V. From Eq. (24) we
can see that using an input signal with azimuth angleϕ = 0

(ul, vl) =
1
2
(tan 2α, 0); (26)

therefore, Eq. (26) can be used to determine the azimuth an-
gleα of the linear retarder.

When the Poincaré sphere is used, we know that the
fiber behaves as a linear retarder when the intersection of the
symmetry axis of the circular trajectories with the Poincaré
sphere is located on the equator. In this case the ellipticity
angleε is null, and the azimuth angle of the linear retarder
is equal to the semi angle between the symmetry axis of the
circular trajectories and S1 axis.

FIGURE 7. Elliptical retarder. a) Ellipticity angleε = 22.5◦, az-
imuth angleα = 30◦. Each curve corresponds to a different az-
imuth angleϕ of the input linear polarization signal (0 < ϕ <
180◦). b) Ellipticity angleε = 5◦, azimuth angleα. Each curve
corresponds to a different azimuth angleϕ of the input linear po-
larization signal (0 < ϕ < 45◦; 10◦ step).

Examples of the curves we can obtain for the evolution
of a linear input SOP along a fiber that behaves as a linear
retarder are presented in Fig. 6. Figure 6(a) contains the tra-
jectories plotted on the polarization complex-plane when the
fiber fast birefringence axis forms an angleα = 30◦ with the
horizontal axis. In Fig. 6(b) the trajectories mapped on the
Poincaŕe sphere correspond to a linear retarder with azimuth
angleα equal to zero. In both cases whenδ > 2mπ (m is an
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integer), the next circular trajectory reproduces the previous
one.

3.2.2. Homogeneous circular retarder

The identification of a circular retarder is easy in both cases.
When the polarization complex-plane is used, the trajectory
of a linearly polarized input signal evolves along the real axis
(horizontal axis) in the positive or negative direction, depend-
ing upon the sign of the retardation (right- or left-handed cir-
cular retarder). On the Poincaré sphere, the trajectory of a
linearly polarized input signal evolves along the equator, also
in the positive or negative direction for right- or left-handed
circular retarders, respectively.

3.2.3. Homogeneous elliptical retarder

In this case, for a linearly polarized input signal the circular
trajectories depicted on the polarization complex-plane are
not centered on the horizontal axis, as we can see from the
expression for (ue, ve) in Table V. We can also notice from
this relation that when the azimuth angle of the input linearly
polarized signal is null (ϕ = 0◦),

(ue, ve) =
1
2

(
tan 2α,

tan 2ε

tan 2α

)
. (27)

Using Eq. 27 we can determine the values of the azimuth
angleα, and the ellipticity angleε of the fiber’s anisotropy.

Examples of the circular trajectories predicted for ellip-
tical retarders are shown in Fig. 7. For the complex-plane
representation, the centers of the circular trajectories lie on
the imaginary axis (vertical axis) when the azimuth angle of

FIGURE 8. In the Poincaŕe sphere, the evolution of the state of po-
larization of light describes a circular trajectory perpendicular to an
axis of symmetry that intersects the sphere at the fiber polarization
modes.

the fiber anisotropyα is zero (Fig. 7(a)). When the fast bire-
fringence axis of the fiber anisotropy forms an angle with the
horizontal axis of the measurement system (α 6= 0), we can
see in Fig. 7(a) that the centers of the circular trajectories are
located on a straight line forming an angleξ with the real axis
(horizontal axis), whose value according to Eq. 27 depends
both on the ellipticity and the azimuth angle of the fiber el-
liptical birefringence,ξ = arctan(tan 2ε/ sin 2α).

When the Poincaré sphere mapping is used, the intersec-
tion of the axis of symmetry of the circular trajectories with
the Poincaŕe sphere indicates the values of the azimuth angle
α (horizontal semi angle along the equator, measured from
axis S1) and the ellipticity angleε (vertical semi angle mea-
sured from the equator).

FIGURE 9. Trajectories of the polarization evolution of light along
a linearly birefringent fiber with residual torsion, represented on
the polarization complex-plane. a)δτ = 4.2θ (open curves). b)
δτ = θ; in this case we obtain closed trajectories. In both figures
the linearly polarized signals have different azimuth angles (20, 40,
80 and 120 degrees). Using the same order, trajectories are shown
with: blue, green, red and light blue lines.
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3.3. Eigenmodes Identification Using a Monochromatic
Signal and the Poincaŕe Sphere

For the evaluation of the fiber birefringence this procedure
uses a single monochromatic signal [15], therefore its preci-
sion is not affected by birefringence dispersion. It is based
on the geometric properties exhibited by retarders when the
polarization evolution of light is mapped on the Poincaré
sphere.

When the fiber behaves as a homogeneous retarder, for
any linearly polarized input signal, the light state of polar-
ization traces a circular path on the Poincaré sphere having
as center of symmetry an axis whose intersection with the
Poincaŕe sphere has angular coordinates (2α, 2ε). Therefore,
anglesα andε, the azimuthal and elliptical angles of the fiber
birefringence, can be determined using the circular evolution
of the input linear polarization along the retarder [16]. In
what follows, using Fig. 8 we describe the experimental pro-
cedure applied to the characterization of an elliptical retarder
(general case of a homogeneous retarder). When the output
polarization becomes linear (αl−out), its azimuthal position
along the equator is symmetrical with that of the input linear
polarization (αl−in), with respect to the azimuthal position of
the closest polarization eigenmode (2α). Therefore,

2α = (αl−out− αl−in). (28)

Once we have determined the value of the azimuth angle
of the fiber birefringence (α), we can calculate the values of
the Stokes parameters S1 and S2 that correspond to this po-

sition and determine, using a polarization analyzer, the max-
imum and minimum values of the Stokes parameter S3 for
this azimuthal position. We denote the maximum and min-
imum values of the ellipticity angle for this trajectory as:
εmax = arcsin S3 max and εmin = arcsin S3 min. Hence,
the ellipticity angle of the fiber anisotropy is:

2ε = (εmax − εmin). (29)

4. Polarization Eigenmodes Identification in
the Presence of Residual Torsion

4.1. Complex-Plane Representation of Homogeneous
Retarder with Residual Torsion

Assuming the general case of an elliptical retarder, using the
Jones representation, the components of the output electric
field are:

Ex = cos δτ cos(θ − ϕ)− sin δτ sin 2ε2ε(θ − ϕ)

+ i sin δτ cos 2ε cos(θ + ϕ) , (30)

Ey = cos θ(cos δ sin ϕ− sin δ sin 2ε cosϕ)

− sin θ(cos δ cos ϕ + sin δ sin 2ε sin ϕ)

− i cos 2ε sin δ sin(θ + ϕ) (31)

whereθ = β + bτ . And the components along the real and
imaginary axes of the polarization complex plane are:

u =
− cos 2(θ − ϕ) sin 2δ sin 2ε− cos2 δ sin(θ − ϕ) + sin2 δ[sin2 2ε sin 2(θ − ϕ)− cos2 2ε sin 2(θ + ϕ)]

2 cos2 δ cos2(θ − ϕ) + 2 cos2 2ε cos2(θ + ϕ) sin2 δ + sin 2ε[2 sinδ sin 2ε sin2(θ − ϕ)− sin 2δ sin 2(θ − ϕ)]
, (32)

v =
cos 2ε sin δ[cos 2ϕ sin δ sin 2ε− 2 cos δ cos ϕ sinϕ]

cos2 2ε cos2(θ + ϕ) sin2 δ + [cos δ cos(θ − ϕ)− sin δ sin 2ε sin(θ − ϕ)]2
. (33)

4.1.1. Linear retarder with residual torsion

The case of a linear retarder corresponds to an ellipticity
ε = 0. In this case, from Eqs. 32 and 33 we obtain

u =
− cos2 δ sin 2(θ − ϕ)− sin2 δ sin 2(θ + ϕ)
2[cos2(θ + ϕ) sin2 δ + cos2 δ cos2(θ − ϕ)]

, (34)

v =
− sin 2δ sin 2ϕ

2[cos2(θ + ϕ) sin2 δ + cos2 δ cos2(θ − ϕ)]
. (35)

Examples of the results we obtain for a linearly birefrin-
gent fiber with residual torsion are shown in Fig. 9. We can
see that the trajectories are not circular and their shapes also
show a strong dependence on the azimuth angle of the input
polarization state. Consecutive loops have a different shape
and they overlap only whenδτ/θ is equal to a rational num-
ber [17]. In Fig. 9(a)δτ = 4.2θ, while in Fig. 9(b) the
closed curves we observe are formed when the rotation angle
is equal to the retardation angle of the elliptical retarder with
residual torsion (δτ = θ).

4.1.2. Circular retarder with residual torsion

In this case the fiber behaves as a homogeneous retarder,
therefore the results follow the behavior reported for a cir-
cular retarder without residual torsion (Sec. 3.2.2).

4.1.3. Elliptical retarder with residual torsion

Examples of the type of plots we obtain for an elliptically
birefringent fiber with residual torsion are shown in Fig. 10.
The values we used for the retardation rates are the same
as those used for the examples in Fig. 9. We can see that
in this case the trajectories are no longer circular and their
shapes show a strong dependence on the azimuth angle of
the input polarization state. In general, when the retardation
δτ is larger than2mπ (wherem is an integer), consecutive
loops have a different shape, they overlap only whenδτ/θ
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FIGURE 10. Trajectories of the polarization evolution of light along an elliptically birefringent fiber with residual torsion, represented on
the polarization complex-plane. a)δτ = 4.2θ; these are open curves b)δτ = θ; in this case we obtain closed trajectories. In both figures
the linearly polarized signals have different azimuth angles (20, 40, 80 and 120 degrees). Using the same order, trajectories are shown with:
blue, green, red and light blue lines.

FIGURE 11. Trajectories of the polarization evolution of light along an elliptically birefringent fiber with residual torsion, represented on the
Poincaŕe sphere. a)δτ = 4.2θ (open curves). b)δτ = θ; these are closed curves (for retardations larger than2π the next loop coincides with
the previous one). In both figures the linearly polarized signals have different azimuth angles (0, 20, 40, 60 and 80 degrees). Trajectories are
shown with: blue, green, red, light blue and purple lines, respectively.

is equal to a rational number [17] (we should remember that
this representation is a projection of the Poincaré sphere on
a plane). In Fig. 10(a) the rotation angleθ is smaller than
the retardation angleδτ (δτ = 4.2θ), while in Fig. 10(b) the

closed curves we observe are formed when the rotation angle
is equal to the retardation angle of the elliptical retarder with
residual torsion (δτ = θ).
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FIGURE 12. Trajectories of the polarization evolution of light along a fiber with residual torsion and: a) linear retardation b) elliptical
retardation. Each curve corresponds to a different azimuth angleϕ of the input linear polarization.

4.2. Poincaŕe Sphere Representation of an Elliptical Re-
tarder with Residual Torsion

Using simplified Mueller calculus we can determine, for an
elliptical retarder with residual torsion, the components of the
1× 3 output Stokes vector using Eqs. (3) and (18) in Eq. (1),

S1out = cos ϕ[cos θ(cos2 δ + cos 4ε sin2 δ)

− sin 2δ sin 2ε sin θ] + sin ϕ(cos θ sin 2δ sin 2ε

+ cos 2δ sin θ) (36)

S2out = cos ϕ[− cos θ sin 2δ sin 2ε− sin θ(cos2 δ

+ cos 4ε sin2 δ)] + sin ϕ(cos 2δ cos θ

− sin 2δ sin 2ε sin θ) (37)

S3out = cos ϕ sin2 δ sin 4ε− cos 2ε sin 2δ sin ϕ (38)

Examples of the trajectories we obtain for the evolution
of an input linearly polarized signal propagating along an el-
liptically birefringent fiber with residual torsion are shown
in Fig. 11. Again, the trajectories are not circular. In this
case the curves are spherical trochoids whose amplitude de-
pends on the azimuth angle of the input polarization state.
In Fig. 11(a) we observe the trajectories depicted for five
different azimuth angles of the input linear polarization (0,
20, 40, 60 and 80◦) when the retardationδτ is larger than
θ(δτ = 4.2θ. Consecutive loops have a different orbiting
rate. They overlap only whenδτ/θ is a rational number [17].
In Fig. 11(b) the rotation angleθ is equal to the retardation
angle of the elliptical retarder with residual torsionδτ .

As we can see in Fig. 11, the symmetry of the curves re-
lated with the evolution of the polarization state does not al-
low the location of the polarization eigenmodes, nor the mea-
surement of the ellipticity angle. Nevertheless, from Eq. (38)
we can see thatS3out = sin2 δ sin 4ε whenϕ = 0, being the
maxima equal tosin 4ε and the minima equal to zero. The
ellipticity angle can be evaluated from these maxima using

ε = arcsin(S3 max/4). (39)

In Fig. 12 we present the behavior of Stokes parameter
S3 for fibers with residual torsion and linear (Fig. 12(a)) or
elliptical (Fig. 12(b)) retardation. These curves were calcu-
lated for different values of the azimuth angle of the input
linear polarizationϕ(0, 30, 60, 90, 120 and 150◦). When the
retardation is linear, we can observe a symmetrical oscilla-
tion around the horizontal line for whichS3 is null. In this
caseε = 0 and the curve associated to Eq. (39) overlaps with
the horizontal line (S3 = 0). For an elliptical retardation, the
amplitude of the curve corresponding toϕ = 0 is the lowest,
and the minima are equal to zero.

5. Conclusions

Each one of the methods presented in this work can be used to
determine some of the parameters that characterize the bire-
fringence of single-mode optical fibers. But, to obtain a com-
plete evaluation we must use a graphical method to measure
the azimuth angle of the fast birefringence axis and the ellip-
ticity angle of the fiber anisotropy, as well as a null polarime-
ter to measure the polarization beatlength.

In the presence of a residual torsion, analyzing the varia-
tion of Stokes parameter S3 it is possible to evaluate the el-
lipticity angle (allowing the identification of the type of re-
tarder); while using a null polarimeter it is necessary to add a
cold twist, varying the applied torsion until a periodic behav-
ior of the polarization evolution is obtained. Under this con-
dition, it is possible to measure the polarization beatlength
and the ratio of the retardation angle to the total torsion an-
gle.
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