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In this article, an analysis of the kinetic energy operator introduced by O. von Roos is performed. Such analysis allows for determining the
energy of a particle when its mass is position-dependent within a specific medium. The work, focused on the discussion of this concept
in quantum mechanics courses, reveals how to apply the operator to numerically solve the one-dimensiodaigBclaguation for an

electron rigidly confined within a semiconductor structure having a specific width (considering that the particle is subject to the action of
a position-dependent quadratic potential). The 8dimger equation is solved considering the mass of the electron constant, allowing a
comparison of the obtained energies for this case as well as the ones that correspond to the case involving a position-dependent mass a
taking into consideration several values of the structure width where the particle is confined. Observations during the analysis reveal how the
ambiguity of the parameters that appear in the von Roos operator leads us to conclude that several dynamic systems can be associated tc
given form of the potential energy.

Keywords: Variable concentration; position-dependent effective mass; potential energy; geometry; von Roos operator; parameter ambiguity.
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1. Introduction particular direction of growth which will cause the effective
mass of the electron to be dependent on its position within
When we hear talking about position-dependent mass, wthe crystalline structure [15]. This dependence of the particle
immediately think about heterojunctions or heterostrucimnass with respect to its position makes it necessary to con-
tures [1-7] studied in solid state, semiconductors or in cryssider a special form for the operator of kinetic energy in the
tallography, but this concept applies also in areas such aSchidinger equation, as proposed by O. von Roos.
molecular physics [8-10], geometrical optics [11], and astro-  The purpose of this work is to show the use of the von
physics [12]. A heterojunction is an interface within a crys- Roos operator where a position-dependent effective mass is
talline semiconductor structure, where the chemical compoassociated with the variation of the concentration of a semi-
sition changes [13]. So, a representative example of heter@onductor having been deposited on a substrate; such varia-
junction is something that we would obtain when the semi-ion in the concentration of the semiconductor causes that a
conductor GaAs is deposited on a substrate and suddenly tiparticle inside the material have a determined potential en-
Alg.40Ga 60As is applied. Within the solid state and semi- ergy. In the calculations, a set of base functions is used
conductor fields the concept of effective mass is used, as @ solve the time-independent Sodinger equation and we
result of mass shielding due to the structure of the semiconwork with numerical methods, which along with the topic of
ductor. Let us think of an electron of masg m a vacuum; this letter, it can be of interest for review or discussion during
if this particle is considered within the semiconductor crys-quantum mechanics courses at university level. This article
tal, the mass will change to a specific value that will be ahas the following structure: in Sec. 2, an analysis of the von
function of the chemical composition of the medium consid-Roos operator is made; in Sec. 3, an example of a semi-
ered, thus, the effective mass of the electron will depend oronductor deposit with variable concentration on a substrate
the semiconductor type [14]. On this basis, a semiconductas proposed, revealing how an electron in such medium will
can be deposited on a substrate, varying its concentration in@ossess a position-dependent effective mass due to the vari-
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ation of the concentration; in Sec. 4, the time-independenon the chemical composition of the medium. However, aside
Schibdinger equation is numerically solved for the electronfrom acquiring an effective mass, it also acquires potential
that was confined in the medium proposed in Sec. 3. Also irenergy, which in turn also depends on the semiconductor.
this section, we compare the results to those obtained consi&ubsequently, we must bear in mind that when we solve the
ering a constant effective mass for the electron; and finallyschibdinger equation involving position-dependent mass, the
in Sec. 5, conclusions are shown. potential will be somehow related to the mass. References to
the previous statements can be found in some publications.
For example, B. Bagchet al., [36] worked on a procedure
to solve the Sclirdinger equation with position-dependent
effective mass, considering an effective potential in which
There is not a unique form for a kinetic energy operatorone of its terms includes the reciprocal of both the squared
nd cubed mass. In other examples, J. Thonesex., [25]

with position-dependent mass. Several publications and® s ) ) .
lyzing position-dependent mass systems are already avaifiso manipulated an effective potential related to the effective
ass and S. Cruz and O. Rosas-Ortiz [26] studied a system

able [16-31] and some of them refer to the work carried ouf™ ) . .
by O. von Roos, who in 1983 published an article where hvith an effective potential also as a function of the mass.
proposed a form for the kinetic energy operator where the

dependence of the mass with respect to the position was con- . . .\ .
sidered [32]. The work of von Roos was based on the stud?" Part_'de with p05|t|o_n-dependent mass in a
of electron and holes movement in a semiconductor of non-  S€miconductor medium

uniform chemical composition where von Roos introduced a _ )
kinetic energy Hermitian operator Let us assume that on one substrate we deposit gallium-

aluminum arsenide, AlGa; _,As, with a variable concentra-

(1) tion z to grow one-dimensionally in the direction a crys-
talline structure of widthl. The semiconductor is to be de-
posited in such a way that itsconcentration varies between
0 and 0.35 according to [15]

2. The kinetic energy operator and position-
dependent mass

2
T= —%(manﬁVm"y +m'VmPVm®)

whereq, (3 and~, are subject to the constraint

a+fB+y=-1 (2 )
(- %)
Thus, Eqg. (1) means that the kinetic energy operator is x(z) = 0‘35T @)
not uniquely defined when a particle or system has a position- (5

dependent mass and, as it is discussed below, the von Ro.?ﬁis concentration results in having @AkGa, ¢sAs in the

operator allows to deduce the operators which are studied Dnds of the crystal and GaAs in the central part. Now, let
literature. Prior to the publication of this article, T. Gora and .. «ider that there is an electron within the semiconduc-

(Fl gggl)li)muzli[:sgr?]eéllsgc?ni)eaar;?ic%sev{/rf;lé ?ﬁgyigg&oaerlzﬁ;iﬂ r;[pr. Due to the crystalline structure, when the concentration

ergy operator with position-dependent mass. In the WorkIs u.nlf.orrr.], the electron acquires an effecuye mass [14], buta
. S . Vvariation in the concentration implies a variation in the effec-

of Gora and Williams, an operator for the kinetic energy is

used which is recovered from the von Roosit= —1 and

8 = ~ = 0. With this specific form for the operator they

analyzed the gap between the semiconductor energy ban

tive mass. In the case of ABa_,As, S. Adachi [1] shows
how the effective mass depends on the concentration. For a
dcsoncentration of 0, the effective mass of the electron is 0.0665
mp or 0.0665 in atomic units, while for a concentration of

, the effective mass is 0.0960 (in atomic units). On that

| f1h functi brupt heteroiuncti nbasis, for a concentration dependent on the positiohthe
rules of the wave function across an abrupt heterojunctio ..o Eq. (3), the effective mass will be [15]

and in this case, the kinetic energy operator that they used IS

recovered from the von Roos expression = —1/2, 5 =0 N2
andy = —1/2. After these works, in 1984, R. A. Morrow m# (z) = 0.0665 + 0.0295(’2_752) (4)
and K. R. Brownstein [35] published an article about the be- (%)

havior of wave functions of a particle around a heterojunction

where the chemical composition of a semiconductor variegvith 0.0295, which is the difference between 0.0960 and

abruptly. They found that forx # ~ in Eq. (1), the wave 0.0665.

functioni becomes zero in the heterojunction, this resultin- It is known from solid state theory that within the semi-

dicates that it behaves as an impermeable barrier, while fazonductor the electron will have a difference in its potential

a = v, m*y and nt54) are continuous in the heterojunc- energy, which depends also on the nature of the medium. P.

tion. Harrison [37] appoints that in a rectangular potential well,
As was previously mentioned, when an electron is withinformed when AlAs and GaAs are deposited, the height of the

a semiconductor, it acquires an effective mass that dependeell is given by
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(8 and-y, according to the constraint Eq. (2). Now, it is known
AV = AVepa(2)(EXR — ES), (5) thatin the Hamiltonian matrixtZ; ; = H, ;, that is

1
where - Zwi(z)(m“Vmﬁva +mIVmPVm®) ¥, (2)
AVep = 0.67, (6) )
+ 1 (2)V(2)U,(2) = ==, (2)(meVmPVm?
and £, is the bandgap. For the case of,8a _,As, the ViV ()5 (2) 4%( I
bandgap is given b
gapis givenby VI U (2) + o ()V () T(z),  (12)
Ef=Cau-=AS — (1.426 + 10247x) eV, (7)
thus, in the von Roos operatershall be equal te; therefore,
and from this, the bandgap of AlAs and GaAs is found whenEg. (11) can be written as
in the last equatiom = 1 or x = 0, respectively.
For the concentration of the semiconductor that is being _ }m“VmﬂVm"‘\I/i(z) +V(2)¥(2) = B(2)¥(z), (13)
deposited, the potential energy, in atomic units, will depend 2

of the 2 coordinate as [15] and the constraint Eq. (2) as

_ L)?
V(z) = 0.0110(ZL2'2) . (8) 200+ 3 = —1. (14)

2

Observing Egs. (3), (4) and (8), it is clear that there is  Next, an analysis of the Satdinger equation is made,
a relationship between the effective mass of the electron angPnsidering different values for theand3 parameters in the
the potential, that is, the fact of considering a particle withVOn R0OS operator.
position-dependent mass must be reflected in the potential

energy. 4.1. Energy of the ground state and excited states for an
electron with position-dependent effective mass in a
4. Solution of the Schibdinger equation with semiconductor structure of width

position-dependent mass Taking into account different values fox and 5 in the

In this work, the Sctisdinger equation was solved building a YOn Roos operator, the Sdidinger equation was solved

wave function with the linear combination of the wave func- for the electron with position-dependent effective mass in a

tions for an electron in an infinite potential well bfwidth: ~ Al=Ga —.As semiconductor. Such material was deposited
on a substrate with am concentration between 0 and 0.35,

N also, its L dimension varied between 50.00 and 1000400 a
U(z) = anthn(2), (9) (& the atomic unit for length). We chose to start from 50.00
n=1 &y because this magnitude is larger than the lattice constant of
with GaAs, that is 10.68313,aMoreover, integer and real values
for the« and g parameters were used.
2% nrz Initially, a value ofa = 0 was considered in Eq. (14),
¥n(2) = <L> S (T) n=123... (10)  fomwhich3 = —1 was obtained and according to Egs. (13),
(9) and (10)
Using the von Roos operator, Eg. (1), the dependence of mass

with respect to the: position was considered in the kinetic 1 /9\ /2 1 N jmz
energy operator in order to have the Sutinger equation in 3 (L) (V()V> Z aj sin (L)
atomic units mz =1
1 N
— —(mVmMPVYmMY + mYVmPVm®)¥(z 2\ /2 j
4( )V (2) + (L) V(2) Zaj sin (‘722>
+V(2)U(z) = B(2)¥(2), (11) o~
9 1/2 N .
wherem is the effective mass of the electron given by Eq. (4) =F () Z a; sin (W> , (15)
andV(z) the potential, Eq. (8). Using the linear combina- L =1 L

tion, Eq. (9), anH matrix associated to the Hamiltonian was
built, and solved to find the energies of the ground state anffom which the elementl; ; of the Hamiltonian matrix will
the wave functions for different values of the superscripts be
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TaBLE |. Energy for an electron with position-dependent effective mass inside a semiconductdt witlth, consideringx = 0 and
[ = —1in the von Roos operator, Egs. (13,14).

L=50 & L=60 & L=70 & L=80 & L=90 & L=100 &
[Hartree] [Hartree] [Hartree] [Hartree] [Hartree] [Hartree]
Ground state 0.02396 0.01664 0.01222 0.00936 0.00739 0.00599
Excited 1 0.10245 0.07114 0.05227 0.04002 0.03162 0.02561
Excited 2 0.23214 0.16121 0.11844 0.09068 0.07165 0.05804
Excited 3 0.41375 0.28733 0.21110 0.16162 0.12770 0.10344
Excited 4 0.64724 0.44947 0.33022 0.25283 0.19976 0.16181
Excited 5 0.93261 0.64765 0.47582 0.36430 0.28784 0.23315

TABLE Il. Energy for an electron with an average effective mass of 0.07633 inside a semiconductbrwitith, consideringx = 0 and
[ = —1inthe von Roos operator, Egs. (13,14).

L=50 & L=60 & L=70 & L=80 & L=90 & L=100 &
[Hartree] [Hartree] [Hartree] [Hartree] [Hartree] [Hartree]
Ground state 0.02586 0.01796 0.01319 0.01010 0.00798 0.00647
Excited 1 0.10344 0.07183 0.05278 0.04041 0.03193 0.02586
Excited 2 0.23274 0.16162 0.11874 0.09091 0.07183 0.05818
Excited 3 0.41375 0.28733 0.21110 0.16162 0.12770 0.10344
Excited 4 0.64649 0.44895 0.32984 0.25253 0.19953 0.16162
Excited 5 0.93094 0.64648 0.47497 0.36365 0.28733 0.23273
1.0 T X T X T X T x T T
L 09 Ground state ]
.. 9 . ] ‘ - g
H . = 172 (X cos [ 72 1 084 kY - — - First excited state i
“ 9\ L L2 L ) m(z) ] N e Second excited state |
0 0.7 - R —-—- Third excited state 1
. T ] N ----- Fourth excited state
@ 067 * o e Fifth excited state y
j 2 . iz £ L % ]
X €os (L) dz + (L>/s1n (L) £ 05 S ]
0 - L
D 0.4+ N, g \‘\ .
L g S e
x V(z)sin T dz, (16) W 03 ~ ~eel . .
| | | I B e
with m(z) andV(z) being the effective mass and potential, 1 g e )
respectively, given by Egs. (4) and (8). Using a numericalin-  ®']  ~=---_____ " T T
tegration with Gaussian quadrature of 1000 points, energies 0.0 —_—_——

shown in atomic units in Table | and Fig. 1 were determined. 50 80 70 80 %0 100
Here, we showed only energies for valued.dfetween 50.00 Lia]
and 100.00 @ although in our estimations we found results
for higher L values (the energies are shown in Hartree, theFIGURE 1. Energy for an electron with position-dependent effec-
atomic unit for energy). tive mass inside a semiconductor with L width, considering 0

The energy values obtained when solving the 8dimger ~ @nd3 = —1in the von Roos operator, Egs. (13,14).
equation can be larger or smaller compared to those that
would have been obtained considering an average effective In Table Ill a comparison between ground state energy, in
mass for the electron; the energy, thereby, can be underestitomic units, for values of. between 100 and 100Q ,acon-
mated or overestimated [38,39]. To verify this result, the avsideringa = 0 and3 = —1 in the von Roos operator and an
erage mass for each valuelbfvidth was estimated using Eq. effective mass of 0.07633 is shown. It can be observed that
(4), finding, for any value of the width, an average effectivefor this interval, the energies obtained considering an aver-
mass of 0.07633 and with this mass the energies correspondge value for the mass are higher to those obtained when a
ing to the states and values of L cited in Table |. Results arg@osition-dependent mass is used. Figure 3 shows holv as
shown in Table Il and Fig. 2. increases, the difference between the energies decreases.
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TaBLE lll. Comparison of the ground state energy for an elec-
tron considering a position-dependent mass and an average effec-  '° ] = = ¥ = & = J§ = T ]
tive mass of 0.07633. 094 S i
| Y Ground state
Ground State Ground State 0.8 - — —First excited state
] : Second excited state
L [a0] Energy [Hartree] Energy [Hartree] 0.7 - - Third excited state ]
m = m(z) m = 0.07633 v 1 \ S =--=- Fourth excited state
S 06 . -- -- Fifth excited state .
100 0.00599 0.00647 - . s, ]
200 0.00150 0.00162 %% 5 i
250 0.00096 0.00103 e N e,k ]
300 0.00067 0.00072 @ 03 S g e ]
350 0.00049 0.00053 6B s Sl R ]
400 0.00037 0.00040 A " "---.._A...,f."""—--.-._...: i
500 0.00024 0.00026 : TS S S B s a0
0.0 T T T T T
600 0.00017 0.00018 50 60 70 80 % 100
700 0.00012 0.00013 Lla]
800 0.00009 0.00010 . .
FIGURE 2. Energy for an electron with an average effective mass of
900 0.00007 0.00008 0.07633 inside a semiconductor withwidth, consideringx = 0
1000 0.00006 0.00006 andgs = —1 in the von Roos operator, Egs. (13,14).

In another case we considerad= 1 to obtain from the constraint Eq. (14) the valde= —3, and according to these
values, the Sclidinger Eq. (13) can be written as

_F (i)m ﬁ;aj sin (”LZ) . (17)

As we did in the previous case, using the linear combination of the wave function for an electron in an infinite rectangular
well (9,10), the elementl; ; of the Hamiltonian matrix can be written as

-3 3) ] s () (52) o (£ () ()
x m[Vm(z)] (z;r) cos <MLZ) sin (‘MLZ> +m?(2) (Z]LZQ> cos (MTLZ> cos (‘MLZ> }dz
(2) / (22 vieysin (22 oo

The solution of the Sclkidinger equation for this case provided us with the energies shown in Table IV and Fig. 4.
Another case in which we estimated the energies was whete2 and 3 = —5, thus, the Sclidinger equation for the
electron with position-dependent mass, Eq. (13), can be written as

% (i)m (mQ(z)Vmsl(Z)VmQ(z)) ﬁ;aj sin (37) + (i)m V(z)%aj sin (T)

—E <i> v iaj sin (‘T) (19)

Jj=1
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FIGURE 3. Ground state energy for an electron considering a FIGURE 4. Energy for an electron with position-dependent effec-
position-dependent mass and an average effective mass of 0.07638ve mass inside a semiconductor with L width, considering: 1
andg = —3 in the von Roos operator, Egs. (13,14).

TaBLE IV. Energy for an electron with position-dependent effective mass inside a semiconductdr witlih, consideringx = 1 and

[ = —3in the von Roos operator, Egs. (13,14).

L=50 & L=60 & L=70 & L=80 & L=90 & L=100 &
[Hartree] [Hartree] [Hartree] [Hartree] [Hartree] [Hartree]
Ground state 0.01709 0.01187 0.00872 0.00668 0.00527 0.00427
Excited 1 0.09929 0.06895 0.05066 0.03878 0.03064 0.02482
Excited 2 0.22890 0.15896 0.11679 0.08942 0.07065 0.05723
Excited 3 0.41053 0.28509 0.20945 0.16036 0.12671 0.10263
Excited 4 0.64402 0.44724 0.32858 0.25157 0.19877 0.16101
Excited 5 0.92940 0.64542 0.47418 0.36305 0.28685 0.23235
1.0 1 T T T L: T L: T 0.20 T T Y T T ¥ T o T | T T
_' . 0.18 - Ground state |
09 ] Y Ground state ] - - - First excited state
0.8 . - - - First excited state i 0164 e Second excited state -
] W e Second excited state | —-—- Third excited state
0.7 4 . —-—- Third excited state - 0.14 4 e .
- 1 R ---=- Fourth excited state = s
@ N . 8 . a 0.12 - .
@ 06 . L Fifth excited state g o -
£ 1 N % £ S e &
£ 05 . £ oto4 T 7
- T Tl B 0.08 .
e | ~. TNy Tl 2 Ee
= 034 \.\ N R Theen, ) W 006 Ttteei. .- -
024 T . 0.04 7 ‘,,"" ]
0_1_' — “— ________ o024 T T~~" i
00- _---___-.-____—_"-_-‘:" 0.00 L | T T L | I —
. T T T T T T T T -4 -2 0 2 4 6 8 10 12
50 60 70 80 90 100
Value of o
L[a]

FIGURE 5. Energy for an electron with position-dependent effec- FIGURE 6. Energy for an electron on the ground state, first ex-

tive mass inside a semiconductor withwidth, consideringy = 2
andg = —5 in the von Roos operator, Egs. (13,14).

cited state, second excited state and third excited state, considering
L =100.00 &.
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TABLE V. Energy for an electron with position-dependent effective mass inside a semiconductdt wittth, consideringx = 2 and
[ = =5 in the von Roos operator, Eqgs. (13,14).

L=50 & L=60 & L=70 & L=80 & L=90 & L=100 &
[Hartree] [Hartree] [Hartree] [Hartree] [Hartree] [Hartree]
Ground state 0.01181 0.00820 0.00603 0.00461 0.00365 0.00295
Excited 1 0.09951 0.06911 0.05077 0.03887 0.03071 0.02488
Excited 2 0.22919 0.15916 0.11693 0.08953 0.07074 0.05730
Excited 3 0.41077 0.28526 0.20958 0.16046 0.12678 0.10269
Excited 4 0.64425 0.44740 0.32870 0.25166 0.19884 0.16106
Excited 5 0.92962 0.64557 0.47429 0.36313 0.28692 0.23240

TABLE VI. Energy for an electron on the ground state, first excited state, second excited state and third excited state, considering
L =100.00 &.

Ground State First Excited
« I6] Energy «a Jé] State Energy
[Hartree] [Hartree]
-3.00 5.00 0.01385 -3.00 5.00 0.03325
-2.00 3.00 0.01077 -2.00 3.00 0.02982
-1.00 1.00 0.00815 -1.00 1.00 0.02727
-0.50 0.00 0.00701 -0.50 0.00 0.02633
0.00 -1.00 0.00599 0.00 -1.00 0.02561
0.50 -2.00 0.00508 0.50 -2.00 0.02511
1.00 -3.00 0.00427 1.00 -3.00 0.02482
2.00 -5.00 0.00295 2.00 -5.00 0.02488
3.00 -7.00 0.00198 3.00 -7.00 0.02574
4.00 -9.00 0.00128 4.00 -9.00 0.02736
5.00 -11.00 0.00081 5.00 -11.00 0.02968
6.00 -13.00 0.00049 6.00 -13.00 0.03263
7.00 -15.00 0.00029 7.00 -15.00 0.03612
8.00 -17.00 0.00017 8.00 -17.00 0.04008
9.00 -19.00 0.00010 9.00 -19.00 0.04442
10.00 -21.00 0.00006 10.00 -21.00 0.04905
Second Excited Third Excited
«a I6] State Energy «@ Jé] State Energy
[Hartree] [Hartree]
-3.00 5.00 0.06558 -3.00 5.00 0.11097
-2.00 3.00 0.06222 -2.00 3.00 0.10761
-1.00 1.00 0.05970 -1.00 1.00 0.10510
-0.50 0.00 0.05876 -0.50 0.00 0.10416
0.00 -1.00 0.05804 0.00 -1.00 0.10344
0.50 -2.00 0.05752 0.50 -2.00 0.10293
1.00 -3.00 0.05723 1.00 -3.00 0.10263
2.00 -5.00 0.05730 2.00 -5.00 0.10269
3.00 -7.00 0.05828 3.00 -7.00 0.10363
4.00 -9.00 0.06019 4.00 -9.00 0.10547
5.00 -11.00 0.06305 5.00 -11.00 0.10824
6.00 -13.00 0.06686 6.00 -13.00 0.11195
7.00 -15.00 0.07161 7.00 -15.00 0.11664
8.00 -17.00 0.07727 8.00 -17.00 0.12234
9.00 -19.00 0.08378 9.00 -19.00 0.12906
10.00 -21.00 0.09107 10.00 -21.00 0.13682
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With the linear combination of wave functions (9,10), the eleniénf of the Hamiltonian matrix can be written as

n-1(2) / s mmeren (2 ) an (52 w22 an (22 on (52
ot ) (1 ) con (52 s (257 o) (50 e (1 o (252 L
(2) / (22 iy (222 . 20

The solution of the Sckidinger equation for this case

provided us with the energies shown in Table V and in Fig. 5!

: . : nclusion
Analyzing the energy from ground state and excited statg) Conclusions

for different values of the parametersand3, it can be seen  according to consulted references, the concept of position-
that for a specific value for those parameters the energy hagpendent mass is studied in various fields of physics, but it
a minimum value for any value of. Table VI shows the seems its use is more extensive in semiconductor theory due
ground state energies and the first three excited states, respgg§yhat is known as effective mass. Working with a position-
tively, for different values of the parameters ahd-= }00.00 dependent mass in the Sékinger equation, a special form
a. Figure 6 shows how the energy for arvalue varies. for the operator of kinetic energy in the Hamiltonian must be
Figure 6 reveals how for the ground state, @rvalue  used. This form can be deduced from the operator proposed
for which the energy has a minimum value is not identi-by O. von Roos which is characterized by three parameters:
fied, (see Table VI). On the other hand, in the case of exe, 5, v, which can have integer or real values, subject to a
cited states it can be observed that the energy has a minimueenstraint rule.
value for specific values af and parameters, thus, for the The existence of a position-dependent mass must be
first excited state the energy will have a minimum value oflinked to a potential. In our study we have worked with
0.02474 Hartree forr = 1.43098 and3 = —3.86196, while  the von Roos operator based on the study of an electron
the energy of the second excited state has a minimum valugith position-dependent effective mass inside a semiconduc-
of 0.05715 Hartree forv = 1.42054 and3 = —3.84108, tor. Considering that the semiconductor has been deposited
and the third excited state has a minimum value of 0.1025%vith a variable concentration on a substrate, a functional re-
Hartree fora = 1.43190 and3 = —3.86380. Also consider- lationship between the effective mass of the electron and its
ing a value ofL = 500.00 ay, energy calculations were made potential energy with the concentration is established. The
as a function ofv andg, finding a similar behavior, so that for functional relationship defines the geometry under which the
the first excited state a minimum energy of 0.00099 Hartressemiconductor was deposited, and on that basis, the analyti-
for « = 1.43098 and 3 = —3.86196 was found; for the cal solution of the Sclidinger equation may prove compli-
second excited state a minimum energy of 0.00229 Hartreeated.
is found, wheno = 1.42054 and 3 = —3.84108; and for Considering  that  gallium-aluminum  arsenide,
the third excited state a minimum energy equal to 0.0041®\ ,Ga _,As was deposited, the Sdidinger equation was
Hartree is found forr = 1.43190 and3 = —3.86380. Fig-  numerically solved in order to obtain the energies of an elec-
ure 6 also reveals how, for a given value of size L of thetron within an structure of sizé, the solution was found
Al,.Ga, _,As structure, the electron energy depends on thérom a linear combination of wave function of a particle
value of thea: and 3 parameters in the von Roos operator;inside a infinite potential well. Calculating the average ef-
this behavior is known in the literature [40-42] as an orderingfective mass and estimating the energies of the same states
ambiguity. In this regard, S.H. Mazharimousavi [40] noteshas allowed for a comparison of both results. The energies
that the general consensus is that there is not a specific valadtained with an average mass can be higher or lower than
for « and3, and he proposes an operator for the kinetic enthose obtained for a position-dependent mass, although this
ergy where there is a superposition of the3 and~ param-  was not seen in our calculations, as was seen in the study of
eters that appear in the von Roos operator. Moreover, V.Gzonfinement of an electron in a semiconductor disk [43].
Rubyet al[41] note that the consideration of different values ~ Our calculations showed that for a given valuelgfthe
for «, B and~ causes that from the von Roos kinetic energyenergy of the excited states has a minimum value for a de-
operator rises some terms that lead to an effective potentialermined value of the parameters in the von Roos operator.
However, it is possible to find some values for a best fit withThis was observed for two different valuesiof Thus, given
results obtained in the laboratory [42]. that there is no convergence in their values, there exists an
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ambiguity, so, generating several terms when the operator ®n the basis of the foregoing, the existence of a diversity of
applied on the state function, terms emerge which are beindynamic systems can be considered.
added to the potential energy leading to an effective potential.
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