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Edif. México, Tercer Piso, Hermosillo, 83280, Sonora, México.
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In this article, an analysis of the kinetic energy operator introduced by O. von Roos is performed. Such analysis allows for determining the
energy of a particle when its mass is position-dependent within a specific medium. The work, focused on the discussion of this concept
in quantum mechanics courses, reveals how to apply the operator to numerically solve the one-dimensional Schrödinger equation for an
electron rigidly confined within a semiconductor structure having a specific width (considering that the particle is subject to the action of
a position-dependent quadratic potential). The Schrödinger equation is solved considering the mass of the electron constant, allowing a
comparison of the obtained energies for this case as well as the ones that correspond to the case involving a position-dependent mass and
taking into consideration several values of the structure width where the particle is confined. Observations during the analysis reveal how the
ambiguity of the parameters that appear in the von Roos operator leads us to conclude that several dynamic systems can be associated to a
given form of the potential energy.
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1. Introduction

When we hear talking about position-dependent mass, we
immediately think about heterojunctions or heterostruc-
tures [1-7] studied in solid state, semiconductors or in crys-
tallography, but this concept applies also in areas such as
molecular physics [8-10], geometrical optics [11], and astro-
physics [12]. A heterojunction is an interface within a crys-
talline semiconductor structure, where the chemical compo-
sition changes [13]. So, a representative example of hetero-
junction is something that we would obtain when the semi-
conductor GaAs is deposited on a substrate and suddenly the
Al0.40Ga0.60As is applied. Within the solid state and semi-
conductor fields the concept of effective mass is used, as a
result of mass shielding due to the structure of the semicon-
ductor. Let us think of an electron of mass m0 in a vacuum;
if this particle is considered within the semiconductor crys-
tal, the mass will change to a specific value that will be a
function of the chemical composition of the medium consid-
ered, thus, the effective mass of the electron will depend on
the semiconductor type [14]. On this basis, a semiconductor
can be deposited on a substrate, varying its concentration in a

particular direction of growth which will cause the effective
mass of the electron to be dependent on its position within
the crystalline structure [15]. This dependence of the particle
mass with respect to its position makes it necessary to con-
sider a special form for the operator of kinetic energy in the
Schr̈odinger equation, as proposed by O. von Roos.

The purpose of this work is to show the use of the von
Roos operator where a position-dependent effective mass is
associated with the variation of the concentration of a semi-
conductor having been deposited on a substrate; such varia-
tion in the concentration of the semiconductor causes that a
particle inside the material have a determined potential en-
ergy. In the calculations, a set of base functions is used
to solve the time-independent Schrödinger equation and we
work with numerical methods, which along with the topic of
this letter, it can be of interest for review or discussion during
quantum mechanics courses at university level. This article
has the following structure: in Sec. 2, an analysis of the von
Roos operator is made; in Sec. 3, an example of a semi-
conductor deposit with variable concentration on a substrate
is proposed, revealing how an electron in such medium will
possess a position-dependent effective mass due to the vari-
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ation of the concentration; in Sec. 4, the time-independent
Schr̈odinger equation is numerically solved for the electron
that was confined in the medium proposed in Sec. 3. Also in
this section, we compare the results to those obtained consid-
ering a constant effective mass for the electron; and finally,
in Sec. 5, conclusions are shown.

2. The kinetic energy operator and position-
dependent mass

There is not a unique form for a kinetic energy operator
with position-dependent mass. Several publications ana-
lyzing position-dependent mass systems are already avail-
able [16-31] and some of them refer to the work carried out
by O. von Roos, who in 1983 published an article where he
proposed a form for the kinetic energy operator where the
dependence of the mass with respect to the position was con-
sidered [32]. The work of von Roos was based on the study
of electron and holes movement in a semiconductor of non-
uniform chemical composition where von Roos introduced a
kinetic energy Hermitian operator

T = −~
2

4
(mα∇mβ∇mγ + mγ∇mβ∇mα) (1)

whereα, β andγ, are subject to the constraint

α + β + γ = −1. (2)

Thus, Eq. (1) means that the kinetic energy operator is
not uniquely defined when a particle or system has a position-
dependent mass and, as it is discussed below, the von Roos
operator allows to deduce the operators which are studied in
literature. Prior to the publication of this article, T. Gora and
F. Williams [33] (1969) and Q. G. Zhu and H. Kroemer [34]
(1983) published some articles where they used a kinetic en-
ergy operator with position-dependent mass. In the work
of Gora and Williams, an operator for the kinetic energy is
used which is recovered from the von Roos ifα = −1 and
β = γ = 0. With this specific form for the operator they
analyzed the gap between the semiconductor energy bands.
Zhu and Kroemer studied a semiconductor where a rectangu-
lar well was found, in order to study the interface connection
rules of the wave function across an abrupt heterojunction
and in this case, the kinetic energy operator that they used is
recovered from the von Roos expression ifα = −1/2, β = 0
andγ = −1/2. After these works, in 1984, R. A. Morrow
and K. R. Brownstein [35] published an article about the be-
havior of wave functions of a particle around a heterojunction
where the chemical composition of a semiconductor varies
abruptly. They found that forα 6= γ in Eq. (1), the wave
functionψ becomes zero in the heterojunction, this result in-
dicates that it behaves as an impermeable barrier, while for
α = γ, mαψ and mα+βψ are continuous in the heterojunc-
tion.

As was previously mentioned, when an electron is within
a semiconductor, it acquires an effective mass that depends

on the chemical composition of the medium. However, aside
from acquiring an effective mass, it also acquires potential
energy, which in turn also depends on the semiconductor.
Subsequently, we must bear in mind that when we solve the
Schr̈odinger equation involving position-dependent mass, the
potential will be somehow related to the mass. References to
the previous statements can be found in some publications.
For example, B. Bagchiet al., [36] worked on a procedure
to solve the Schr̈odinger equation with position-dependent
effective mass, considering an effective potential in which
one of its terms includes the reciprocal of both the squared
and cubed mass. In other examples, J. Thomsenet al., [25]
also manipulated an effective potential related to the effective
mass and S. Cruz and O. Rosas-Ortiz [26] studied a system
with an effective potential also as a function of the mass.

3. Particle with position-dependent mass in a
semiconductor medium

Let us assume that on one substrate we deposit gallium-
aluminum arsenide, AlxGa1−xAs, with a variable concentra-
tion x to grow one-dimensionally in thez direction a crys-
talline structure of widthL. The semiconductor is to be de-
posited in such a way that itsx concentration varies between
0 and 0.35 according to [15]

x(z) = 0.35

(
z − L

2

)2

(
L
2

)2 (3)

This concentration results in having Al0.35Ga0.65As in the
ends of the crystal and GaAs in the central part. Now, let
us consider that there is an electron within the semiconduc-
tor. Due to the crystalline structure, when the concentration
is uniform, the electron acquires an effective mass [14], but a
variation in the concentration implies a variation in the effec-
tive mass. In the case of AlxGa1−xAs, S. Adachi [1] shows
how the effective mass depends on the concentration. For a
concentration of 0, the effective mass of the electron is 0.0665
m0 or 0.0665 in atomic units, while for a concentration of
0.35, the effective mass is 0.0960 (in atomic units). On that
basis, for a concentration dependent on the positionz of the
electron, Eq. (3), the effective mass will be [15]

m ∗ (z) = 0.0665 + 0.0295

(
z − L

2

)2

(
L
2

)2 (4)

with 0.0295, which is the difference between 0.0960 and
0.0665.

It is known from solid state theory that within the semi-
conductor the electron will have a difference in its potential
energy, which depends also on the nature of the medium. P.
Harrison [37] appoints that in a rectangular potential well,
formed when AlAs and GaAs are deposited, the height of the
well is given by
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∆V = ∆VCBx(z)(EAlAs
g − EGaAs

g ), (5)

where

∆VCB = 0.67 , (6)

and Eg is the bandgap. For the case of AlxGa1−xAs, the
bandgap is given by

EAlxGa1−xAs
g = (1.426 + 10247x) eV, (7)

and from this, the bandgap of AlAs and GaAs is found when
in the last equationx = 1 or x = 0, respectively.

For the concentration of the semiconductor that is being
deposited, the potential energy, in atomic units, will depend
of thez coordinate as [15]

V (z) = 0.0110

(
z − L

2

)2

(
L
2

)2 . (8)

Observing Eqs. (3), (4) and (8), it is clear that there is
a relationship between the effective mass of the electron and
the potential, that is, the fact of considering a particle with
position-dependent mass must be reflected in the potential
energy.

4. Solution of the Schr̈odinger equation with
position-dependent mass

In this work, the Schr̈odinger equation was solved building a
wave function with the linear combination of the wave func-
tions for an electron in an infinite potential well ofL width:

Ψ(z) =
N∑

n=1

anψn(z), (9)

with

ψn(z) =
(

2
L

)1/2

sin
(nπz

L

)
n = 1, 2, 3, . . . (10)

Using the von Roos operator, Eq. (1), the dependence of mass
with respect to thez position was considered in the kinetic
energy operator in order to have the Schrödinger equation in
atomic units

− 1
4
(mα∇mβ∇mγ + mγ∇mβ∇mα)Ψ(z)

+ V (z)Ψ(z) = E(z)Ψ(z), (11)

wherem is the effective mass of the electron given by Eq. (4)
andV (z) the potential, Eq. (8). Using the linear combina-
tion, Eq. (9), anH matrix associated to the Hamiltonian was
built, and solved to find the energies of the ground state and
the wave functions for different values of the superscriptsα,

β andγ, according to the constraint Eq. (2). Now, it is known
that in the Hamiltonian matrix,Hi,j = Hj,i, that is

− 1
4
ψi(z)(mα∇mβ∇mγ + mγ∇mβ∇mα)Ψj(z)

+ ψi(z)V (z)Ψj(z) = −1
4
ψj(z)(mα∇mβ∇mγ

+ mγ∇mβ∇mα)Ψi(z) + ψj(z)V (z)Ψi(z), (12)

thus, in the von Roos operatorα shall be equal toγ; therefore,
Eq. (11) can be written as

− 1
2
mα∇mβ∇mαΨi(z) + V (z)Ψ(z) = E(z)Ψ(z), (13)

and the constraint Eq. (2) as

2α + β = −1. (14)

Next, an analysis of the Schrödinger equation is made,
considering different values for theα andβ parameters in the
von Roos operator.

4.1. Energy of the ground state and excited states for an
electron with position-dependent effective mass in a
semiconductor structure of width L

Taking into account different values forα and β in the
von Roos operator, the Schrödinger equation was solved
for the electron with position-dependent effective mass in a
AlxGa1−xAs semiconductor. Such material was deposited
on a substrate with anx concentration between 0 and 0.35,
also, its L dimension varied between 50.00 and 1000.00 a0

(a0 the atomic unit for length). We chose to start from 50.00
a0 because this magnitude is larger than the lattice constant of
GaAs, that is 10.68313 a0. Moreover, integer and real values
for theα andβ parameters were used.

Initially, a value ofα = 0 was considered in Eq. (14),
from whichβ = −1 was obtained and according to Eqs. (13),
(9) and (10)

1
2

(
2
L

)1/2 (
∇ 1

m(z)
∇

) N∑

j=1

aj sin
(

jπz

L

)

+
(

2
L

)1/2

V (z)
N∑

j=1

aj sin
(

jπz

L

)

= E

(
2
L

)1/2 N∑

j=1

aj sin
(

jπz

L

)
, (15)

from which the elementHi,j of the Hamiltonian matrix will
be
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TABLE I. Energy for an electron with position-dependent effective mass inside a semiconductor withL width, consideringα = 0 and
β = −1 in the von Roos operator, Eqs. (13,14).

L=50 a0 L=60 a0 L=70 a0 L=80 a0 L=90 a0 L=100 a0

[Hartree] [Hartree] [Hartree] [Hartree] [Hartree] [Hartree]

Ground state 0.02396 0.01664 0.01222 0.00936 0.00739 0.00599

Excited 1 0.10245 0.07114 0.05227 0.04002 0.03162 0.02561

Excited 2 0.23214 0.16121 0.11844 0.09068 0.07165 0.05804

Excited 3 0.41375 0.28733 0.21110 0.16162 0.12770 0.10344

Excited 4 0.64724 0.44947 0.33022 0.25283 0.19976 0.16181

Excited 5 0.93261 0.64765 0.47582 0.36430 0.28784 0.23315

TABLE II. Energy for an electron with an average effective mass of 0.07633 inside a semiconductor withL width, consideringα = 0 and
β = −1 in the von Roos operator, Eqs. (13,14).

L=50 a0 L=60 a0 L=70 a0 L=80 a0 L=90 a0 L=100 a0

[Hartree] [Hartree] [Hartree] [Hartree] [Hartree] [Hartree]

Ground state 0.02586 0.01796 0.01319 0.01010 0.00798 0.00647

Excited 1 0.10344 0.07183 0.05278 0.04041 0.03193 0.02586

Excited 2 0.23274 0.16162 0.11874 0.09091 0.07183 0.05818

Excited 3 0.41375 0.28733 0.21110 0.16162 0.12770 0.10344

Excited 4 0.64649 0.44895 0.32984 0.25253 0.19953 0.16162

Excited 5 0.93094 0.64648 0.47497 0.36365 0.28733 0.23273

Hi,j =
1
2

(
2
L

)(
ijπ2

L2

) L∫

0

cos
(

iπz

L

)
1

m(z)

× cos
(

jπz

L

)
dz +

(
2
L

) L∫

0

sin
(

iπz

L

)

× V (z) sin
(

jπz

L

)
dz, (16)

with m(z) andV (z) being the effective mass and potential,
respectively, given by Eqs. (4) and (8). Using a numerical in-
tegration with Gaussian quadrature of 1000 points, energies
shown in atomic units in Table I and Fig. 1 were determined.
Here, we showed only energies for values ofL between 50.00
and 100.00 a0, although in our estimations we found results
for higherL values (the energies are shown in Hartree, the
atomic unit for energy).

The energy values obtained when solving the Schrödinger
equation can be larger or smaller compared to those that
would have been obtained considering an average effective
mass for the electron; the energy, thereby, can be underesti-
mated or overestimated [38,39]. To verify this result, the av-
erage mass for each value ofL width was estimated using Eq.
(4), finding, for any value of the width, an average effective
mass of 0.07633 and with this mass the energies correspond-
ing to the states and values of L cited in Table I. Results are
shown in Table II and Fig. 2.

FIGURE 1. Energy for an electron with position-dependent effec-
tive mass inside a semiconductor with L width, consideringα = 0
andβ = −1 in the von Roos operator, Eqs. (13,14).

In Table III a comparison between ground state energy, in
atomic units, for values ofL between 100 and 1000 a0, con-
sideringα = 0 andβ = −1 in the von Roos operator and an
effective mass of 0.07633 is shown. It can be observed that
for this interval, the energies obtained considering an aver-
age value for the mass are higher to those obtained when a
position-dependent mass is used. Figure 3 shows how asL
increases, the difference between the energies decreases.
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TABLE III. Comparison of the ground state energy for an elec-
tron considering a position-dependent mass and an average effec-
tive mass of 0.07633.

Ground State Ground State

L [a0] Energy [Hartree] Energy [Hartree]

m = m(z) m = 0.07633

100 0.00599 0.00647

200 0.00150 0.00162

250 0.00096 0.00103

300 0.00067 0.00072

350 0.00049 0.00053

400 0.00037 0.00040

500 0.00024 0.00026

600 0.00017 0.00018

700 0.00012 0.00013

800 0.00009 0.00010

900 0.00007 0.00008

1000 0.00006 0.00006

FIGURE 2. Energy for an electron with an average effective mass of
0.07633 inside a semiconductor withL width, consideringα = 0
andβ = −1 in the von Roos operator, Eqs. (13,14).

In another case we consideredα = 1 to obtain from the constraint Eq. (14) the valueβ = −3, and according to these
values, the Schrödinger Eq. (13) can be written as

−1
2

(
2
L

)1/2 (
m(z)∇ 1

m3(z)
∇m(z)

) N∑

j=1

aj sin
(

jπz

L

)
+

(
2
L

)1/2

V (z)
N∑

j=1

aj sin
(

jπz

L

)

= E

(
2
L

)1/2 N∑

j=1

aj sin
(

jπz

L

)
. (17)

As we did in the previous case, using the linear combination of the wave function for an electron in an infinite rectangular
well (9,10), the elementHi,j of the Hamiltonian matrix can be written as

Hi,j =
1
2

(
2
L

) L∫

0

1
m3(z)

{
[∇m(z)]2 sin

(
iπz

L

)
sin

(
jπz

L

)
+ m[∇m(z)]

(
jπ

L

)
sin

(
iπz

L

)
cos

(
jπz

L

)

×m[∇m(z)]
(

iπ

L

)
cos

(
iπz

L

)
sin

(
jπz

L

)
+ m2(z)

(
ijπ2

L2

)
cos

(
iπz

L

)
cos

(
jπz

L

) }
dz

+
(

2
L

) L∫

0

sin
(

iπz

L

)
V (z) sin

(
jπz

L

)
dz (18)

The solution of the Schrödinger equation for this case provided us with the energies shown in Table IV and Fig. 4.
Another case in which we estimated the energies was whereα = 2 andβ = −5, thus, the Schr̈odinger equation for the

electron with position-dependent mass, Eq. (13), can be written as

1
2

(
2
L

)1/2 (
m2(z)∇ 1

m5(z)
∇m2(z)

) N∑

j=1

aj sin
(

jπz

L

)
+

(
2
L

)1/2

V (z)
N∑

j=1

aj sin
(

jπz

L

)

= E

(
2
L

)1/2 N∑

j=1

aj sin
(

jπz

L

)
(19)
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FIGURE 3. Ground state energy for an electron considering a
position-dependent mass and an average effective mass of 0.07633.

FIGURE 4. Energy for an electron with position-dependent effec-
tive mass inside a semiconductor with L width, consideringα = 1
andβ = −3 in the von Roos operator, Eqs. (13,14).

TABLE IV. Energy for an electron with position-dependent effective mass inside a semiconductor withL width, consideringα = 1 and
β = −3 in the von Roos operator, Eqs. (13,14).

L=50 a0 L=60 a0 L=70 a0 L=80 a0 L=90 a0 L=100 a0

[Hartree] [Hartree] [Hartree] [Hartree] [Hartree] [Hartree]

Ground state 0.01709 0.01187 0.00872 0.00668 0.00527 0.00427

Excited 1 0.09929 0.06895 0.05066 0.03878 0.03064 0.02482

Excited 2 0.22890 0.15896 0.11679 0.08942 0.07065 0.05723

Excited 3 0.41053 0.28509 0.20945 0.16036 0.12671 0.10263

Excited 4 0.64402 0.44724 0.32858 0.25157 0.19877 0.16101

Excited 5 0.92940 0.64542 0.47418 0.36305 0.28685 0.23235

FIGURE 5. Energy for an electron with position-dependent effec-
tive mass inside a semiconductor withL width, consideringα = 2
andβ = −5 in the von Roos operator, Eqs. (13,14).

FIGURE 6. Energy for an electron on the ground state, first ex-
cited state, second excited state and third excited state, considering
L = 100.00 a0.
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TABLE V. Energy for an electron with position-dependent effective mass inside a semiconductor withL width, consideringα = 2 and
β = −5 in the von Roos operator, Eqs. (13,14).

L=50 a0 L=60 a0 L=70 a0 L=80 a0 L=90 a0 L=100 a0
[Hartree] [Hartree] [Hartree] [Hartree] [Hartree] [Hartree]

Ground state 0.01181 0.00820 0.00603 0.00461 0.00365 0.00295

Excited 1 0.09951 0.06911 0.05077 0.03887 0.03071 0.02488

Excited 2 0.22919 0.15916 0.11693 0.08953 0.07074 0.05730

Excited 3 0.41077 0.28526 0.20958 0.16046 0.12678 0.10269

Excited 4 0.64425 0.44740 0.32870 0.25166 0.19884 0.16106

Excited 5 0.92962 0.64557 0.47429 0.36313 0.28692 0.23240

TABLE VI. Energy for an electron on the ground state, first excited state, second excited state and third excited state, considering
L = 100.00 a0.

Ground State First Excited

α β Energy α β State Energy

[Hartree] [Hartree]

-3.00 5.00 0.01385 -3.00 5.00 0.03325

-2.00 3.00 0.01077 -2.00 3.00 0.02982

-1.00 1.00 0.00815 -1.00 1.00 0.02727

-0.50 0.00 0.00701 -0.50 0.00 0.02633

0.00 -1.00 0.00599 0.00 -1.00 0.02561

0.50 -2.00 0.00508 0.50 -2.00 0.02511

1.00 -3.00 0.00427 1.00 -3.00 0.02482

2.00 -5.00 0.00295 2.00 -5.00 0.02488

3.00 -7.00 0.00198 3.00 -7.00 0.02574

4.00 -9.00 0.00128 4.00 -9.00 0.02736

5.00 -11.00 0.00081 5.00 -11.00 0.02968

6.00 -13.00 0.00049 6.00 -13.00 0.03263

7.00 -15.00 0.00029 7.00 -15.00 0.03612

8.00 -17.00 0.00017 8.00 -17.00 0.04008

9.00 -19.00 0.00010 9.00 -19.00 0.04442

10.00 -21.00 0.00006 10.00 -21.00 0.04905

Second Excited Third Excited

α β State Energy α β State Energy

[Hartree] [Hartree]

-3.00 5.00 0.06558 -3.00 5.00 0.11097

-2.00 3.00 0.06222 -2.00 3.00 0.10761

-1.00 1.00 0.05970 -1.00 1.00 0.10510

-0.50 0.00 0.05876 -0.50 0.00 0.10416

0.00 -1.00 0.05804 0.00 -1.00 0.10344

0.50 -2.00 0.05752 0.50 -2.00 0.10293

1.00 -3.00 0.05723 1.00 -3.00 0.10263

2.00 -5.00 0.05730 2.00 -5.00 0.10269

3.00 -7.00 0.05828 3.00 -7.00 0.10363

4.00 -9.00 0.06019 4.00 -9.00 0.10547

5.00 -11.00 0.06305 5.00 -11.00 0.10824

6.00 -13.00 0.06686 6.00 -13.00 0.11195

7.00 -15.00 0.07161 7.00 -15.00 0.11664

8.00 -17.00 0.07727 8.00 -17.00 0.12234

9.00 -19.00 0.08378 9.00 -19.00 0.12906

10.00 -21.00 0.09107 10.00 -21.00 0.13682
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With the linear combination of wave functions (9,10), the elementHi,j of the Hamiltonian matrix can be written as

Hi,j =
1
2

(
2
L

) L∫

0

1
m5(z)

{
[∇m2(z)]2 sin

(
iπz

L

)
sin

(
jπz

L

)
+ m2[∇m2(z)]

(
jπ

L

)
sin

(
iπz

L

)
cos

(
jπz

L

)

+ m2[∇m2(z)]
(

iπ

L

)
cos

(
iπz

L

)
sin

(
jπz

L

)
+ m4(z)

(
ijπ2

L2

)
cos

(
iπz

L

)
cos

(
jπz

L

) }
dz

+
(

2
L

) L∫

0

sin
(

iπz

L

)
V (z) sin

(
jπz

L

)
dz. (20)

The solution of the Schrödinger equation for this case
provided us with the energies shown in Table V and in Fig. 5.

Analyzing the energy from ground state and excited state
for different values of the parametersα andβ, it can be seen
that for a specific value for those parameters the energy has
a minimum value for any value ofL. Table VI shows the
ground state energies and the first three excited states, respec-
tively, for different values of the parameters andL = 100.00
a0. Figure 6 shows how the energy for anα value varies.

Figure 6 reveals how for the ground state, anα value
for which the energy has a minimum value is not identi-
fied, (see Table VI). On the other hand, in the case of ex-
cited states it can be observed that the energy has a minimum
value for specific values ofα andβ parameters, thus, for the
first excited state the energy will have a minimum value of
0.02474 Hartree forα = 1.43098 andβ = −3.86196, while
the energy of the second excited state has a minimum value
of 0.05715 Hartree forα = 1.42054 andβ = −3.84108,
and the third excited state has a minimum value of 0.10255
Hartree forα = 1.43190 andβ = −3.86380. Also consider-
ing a value ofL = 500.00 a0, energy calculations were made
as a function ofα andβ, finding a similar behavior, so that for
the first excited state a minimum energy of 0.00099 Hartree
for α = 1.43098 and β = −3.86196 was found; for the
second excited state a minimum energy of 0.00229 Hartree
is found, whenα = 1.42054 andβ = −3.84108; and for
the third excited state a minimum energy equal to 0.00410
Hartree is found forα = 1.43190 andβ = −3.86380. Fig-
ure 6 also reveals how, for a given value of size L of the
AlxGa1−xAs structure, the electron energy depends on the
value of theα andβ parameters in the von Roos operator;
this behavior is known in the literature [40-42] as an ordering
ambiguity. In this regard, S.H. Mazharimousavi [40] notes
that the general consensus is that there is not a specific value
for α andβ, and he proposes an operator for the kinetic en-
ergy where there is a superposition of theα, β andγ param-
eters that appear in the von Roos operator. Moreover, V.C.
Rubyet al [41] note that the consideration of different values
for α, β andγ causes that from the von Roos kinetic energy
operator rises some terms that lead to an effective potential.
However, it is possible to find some values for a best fit with
results obtained in the laboratory [42].

5. Conclusions

According to consulted references, the concept of position-
dependent mass is studied in various fields of physics, but it
seems its use is more extensive in semiconductor theory due
to what is known as effective mass. Working with a position-
dependent mass in the Schrödinger equation, a special form
for the operator of kinetic energy in the Hamiltonian must be
used. This form can be deduced from the operator proposed
by O. von Roos which is characterized by three parameters:
α, β, γ, which can have integer or real values, subject to a
constraint rule.

The existence of a position-dependent mass must be
linked to a potential. In our study we have worked with
the von Roos operator based on the study of an electron
with position-dependent effective mass inside a semiconduc-
tor. Considering that the semiconductor has been deposited
with a variable concentration on a substrate, a functional re-
lationship between the effective mass of the electron and its
potential energy with the concentration is established. The
functional relationship defines the geometry under which the
semiconductor was deposited, and on that basis, the analyti-
cal solution of the Schrödinger equation may prove compli-
cated.

Considering that gallium-aluminum arsenide,
AlxGa1−xAs was deposited, the Schrödinger equation was
numerically solved in order to obtain the energies of an elec-
tron within an structure of sizeL, the solution was found
from a linear combination of wave function of a particle
inside a infinite potential well. Calculating the average ef-
fective mass and estimating the energies of the same states
has allowed for a comparison of both results. The energies
obtained with an average mass can be higher or lower than
those obtained for a position-dependent mass, although this
was not seen in our calculations, as was seen in the study of
confinement of an electron in a semiconductor disk [43].

Our calculations showed that for a given value ofL, the
energy of the excited states has a minimum value for a de-
termined value of the parameters in the von Roos operator.
This was observed for two different values ofL. Thus, given
that there is no convergence in their values, there exists an
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ambiguity, so, generating several terms when the operator is
applied on the state function, terms emerge which are being
added to the potential energy leading to an effective potential.

On the basis of the foregoing, the existence of a diversity of
dynamic systems can be considered.
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27. J.J. Pẽna, G. Ovando, J. Morales, J. Garcı́a-Ravelo and C.
Pacheco-Garcı́a, Int. J. of Quantum Chem.108(2008) 2906.

28. A.D. Alhaidari,Phys. Rev. A66 (2002) 042116.

29. A.R. Plastino, A. Rigo, M. Casas, F. Garcias and A. Plastino,
Phys. Rev. A60 (1999) 4318.

30. J. Morales, G. Ovando and J. J. Peña, AIP Conf. Proc. 1323
(2010) 233.
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