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A comparison of the effect of multiple scattering on first and
second order X-ray diffraction from textured polycrystals,
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Instituto Polit́ecnico Nacional, Mexico City,

e-mail: jpalacios@ipn.mx

Received 14 January 2015; accepted 27 May 2016

The integrated intensity of Debye-Scherrer (D-S) rings, arising from an eventual second diffraction process of a diffracted X-ray beam, was
calculated. This represents the amount of intensity not arriving at the detector as oriented to register the first diffraction process, and as result,
a measure of secondary extinction. Thus the objective is to investigate in this way if secondary extinction affects measurements of X-ray
diffraction from textured polycrystals. This has been suggested by differences of pole density maxima observed between measured first and
second order pole figures in strongly textured materials. Calculations are performed for a detector scan (varying only 2θ), and the integrated
intensity is determined for first and second order diffraction conditions of a general plane (hkl). Normalization through corresponding
powder is performed. It is found that this especial case of multiple scattering effect, indeed affects both orders essentially in the same way. If
corresponding detector scan measurements verify this, then the observed differences between pole density maxima of pole figures of different
order cannot be attributed to secondary extinction. Instead, they can be attributed to heterogeneous texture or error propagation. On the other
hand, if the detector scans do exhibit a difference as that of pole density maxima, these differences can possibly be attributed to primary
extinction.
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1. Introduction

Several X-ray diffraction measurements of textured polycrys-
tal pole figures have shown that density maxima of second
order reflections are almost systematically larger than those
of first order reflections of the same sample plane. For ex-
ample, the pole density maximum of vacuum annealed sil-
ver with a conventional recrystallization texture (dominant
component [110]〈011〉) is 6.1 for pole figure 111, and 9.2
for pole figure 222, both measured with Kα Mo radiation.
Alternatively, a similar sample, annealed in oxygen atmo-
sphere, shows maxima of 11.9 and 14.6 for pole figures
111 and 222 respectively, when measured with Kα Cu ra-
diation. It is expected that pole figures have to be identi-
cal for different reflection orders because they are produced
by the same crystallographic planes. Consequently, measure-
ments as those above described have motivated the assump-
tion that diffraction from polycrystals is affected by the ex-
tinction phenomenon. This is clearly relevant for single crys-
tals where first order reflections are affected more strongly
than second order reflections. However in the case of poly-
crystals, if secondary extinction is noticeable, it has to be one
of the main causes on the above mentioned pole density dif-
ferences. This has led us to investigate systematically on the
differences of pole figures [1-3]. However, determination of
pole figures requires several steps of calculations, namely:
background subtraction, defocusing correction and normal-
ization, and as result, error propagation could have different
effects on both first order and second order reflections, since

they exhibit strong intensity differences. Additionally nor-
malization needs all measured intensity values. This includes
zones with poor statistics as pole figure edges, and this could
have a large influence in biasing pole density maxima.

A method has been devised here to verify if secondary ex-
tinction is present in textured polycrystals, by a detailed con-
sideration of intensities of multiple scattering in a more direct
way. This is justified to avoid large error propagation from
lengthy calculations and normalization. As it is well known,
secondary extinction in mosaic crystals is observed in rock-
ing curves measurements, where the Ewald sphere presents
essentially only one possible reflection, and the possibility
of a second reflection only in a direction very close to the
primary beam. In such a case, secondary extinction results
as an absorption term of the formgPQ whereg is inversely
proportional to the width∆ of the crystallite orientation dis-
tribution,P depends on polarization, andQ is the integrated
reflection per unit volume [4]. This absorption term is com-
parable to the true absorption coefficientµ, for characteristic
∆ values of mosaic crystals,i.e. minutes or seconds of arch.
In principle the extinction absorption term can be negligible
for misorientation widths found in polycrystals even with a
sharp texture. Nevertheless, the Ewald sphere becomes a set
of concentric shells in polycrystals, and many other possible
secondary reflections take place, contributing to the intensity
loss as registered by the detector,i.e. to secondary extinction.
Also, in textured polycrystals a rocking curve is not a sharp
peak, but a “mountain” composed by several local texture
components. It is therefore unsuitable for extinction determi-
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nation. Instead a detector scan is appropriate. It should also
be mentioned that the irradiated volume remains constant in
a detector scan, as well as in pole figure measurements by the
Schulz reflection method. This volume depends only on the
beam cross section andµ.

In the following, the integrated intensity of secondary
D-S rings of a textured sample is evaluated, and compared
for first and second order diffraction conditions of a gen-
eral plane (hkl), after normalization by corresponding two
theta scans of powder samples. Such rings arise from the
diffracted beam, of two theta scans of reflectionsH = (hkl)
and2H = (2h, 2k, 2l). Differences from these reflections
would indicate the extent secondary extinction affects pole
figure determination.

2. Theoretical procedure

Let a two theta X-ray diffraction scan be measured in a sam-
ple in the form of a conventional plate, oriented at the angles
(χ, ϕ) as for the measurement of a pole figure point for a re-
flectionH = (hkl), χ is the tilting angle andϕ is the angle
of rotation around the sample normal. Let this point be the
maximum pole density of the pole figure, although it can be
any other point of the pole figure, as long as sufficient inten-
sity is obtained. Let the detector be in a position to receive
the diffracted beam on the equatorial plane with wave vector
k andθ the Bragg angle of reflectionH, as shown in Fig. 1.
Let alsoω be an angle characterizing the points of any sec-
ondary D-S-ring, in the interval from 0 to 2π.

The intensity of reflectionH, denoted here asIH(χ, ϕ),
is not uniform along theD − SH ring due to texture,
and therefore not given by the well known expression for
the intensity of powder. It must be modified by a factor
ηH(χ, ϕ) which is the ratio of the diffracting crystallites vol-
umeVH(χ, ϕ) of the sample, to the diffracting crystallites

FIGURE 1. Measurement layout: S is the sample,k0 andk are the
incident beam and the diffracted beam wave vectors respectively,k′

is the wave vector of the twice diffracted beam.D−S is one of the
set of secondaryD− S rings produced by planesH ′ andk now as
the incident wave vector, ND is the conventional normal direction
of the sample,N is the normal to the sample, which coincides with
ND at the starting of a pole figure measurement, D is the detector.
2θH is the angle betweenk0 andk, χ is the tilting angle, andω is
an angle characterizing any point on the secondary D-S rings.

volume of powder.ηH(χ, ϕ) is therefore the pole density ap-
pearing in pole figures.VH(χ, ϕ) is the volume of the crystal-
lites diffracting in the direction of the detector,i.e. in a small
segment of theD − SH ring, proportional to the height of
the detector slit. Since the aim of this investigation is a com-
parison of two orders of reflections from the same planes,
only relative intensities are necessary, and so, we can write
IH(χ, ϕ) simply as

IH(χ, ϕ) = Ip
HηH(χ, ϕ)dH(χ) (1)

whereIP
H is the relative integrated intensity of the powder per

unit arch length for the same reflectionH, anddH(χ) the de-
focusing factor, which for a fixed Bragg angle depends only
on χ. IP

H can be expressed as (See for example Eq. (4-21)
of [5]):

Ip
H = |FH |2pH

1 + cos2 2θH

sen2 θH cos θH
e−2MH (2)

with FH the structure factor,pH the multiplicity factor and
e−2MH the temperature factor, for reflectionH. Particu-
larly, the absorption coefficient is considered constant, and
therefore not included. This does not mean that absorption
is considered negligible. Also, since intensity is measured
as counts per second, no angular velocity of the detector is
needed.

The intensity of the D-S ring of any of the secondary re-
flectionsH ′ of the textured sample is also non uniform due
to texture,i.e. it depends onω; the primary beam intensity is
given by (1), and for the new incident wave vector the sample
orientation (χ, ϕ) changes to some other orientation (χ′, ϕ′).
Furthermore,χ′ andϕ′ become functions ofω. As result for
any of the secondary diffraction events, a similar equation as
(1) can be used, replacingηH(χ, ϕ) by a functionρH

H′(ω) .
For any differential segment at the angleω of the D-S ring of
radius 1, the diffracted intensity is

dJH′(χ, ϕ, ω) = IH(χ, ϕ)Ip
H′ρ

H
H′(ω)dω (3)

This ring is not measured by the detector, and conse-
quently there is no need to include defocusing.

The integrated intensity of the secondary D-S ring,JH′ ,
is then

dJH′ = IHIp
H′

2π∫

0

ρH
H′(ω)dω ≡ IHIp

H′V
H
H′ (4)

whereV H
H′ is the total volume of crystallites diffracting on the

H ′ secondary D-S ring, relative to powder, when the incident
beam comes from reflectionH.

It should be noticed that in (3) and (4), the incident beam
for the second diffraction process is taken as the diffracted
beam from the first diffraction process. Therefore this has to
be taken only as an approximation, since the diffracted beam
from the first process is not homogeneous.
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The integrated intensity of all secondary D-S rings is then

JD−S = IH

∑

H′
Ip
H′V

H
H′ (5)

And the intensity passing through the receiving slit and
registered by the detector is

JH=IH−JD−S=IH

[
1−

∑

H′
Ip
H′V

H
H′

]
≡ IH∆qH (6)

where

∆qH = 1−
∑

H′
Ip
H′V

H
H′ (7)

Multiple scattering is also produced in powders. In this
caseρH

H′(ω) = 1, V H
H′ = 2π and the corresponding∆qH for

powder is

∆qp
H = 1− 2π

∑

H′
Ip
H′ (8)

the corresponding intensity arriving at the detector is

Jp
H=IH∆qp

H (9)

The normalized integrated intensity giving the pole density at
point (χ, ϕ) of the pole figure is from (6) and (9)

iH =
JH

Jp
H

=
∆qH

∆qp
H

.

And the corresponding normalized integrated intensity
for the second order reflection2H is

i2H =
J2H

Jp
2H

=
∆q2H

∆qp
2H

.

Comparison of these two expressions leads to the follow-
ing: Any difference between∆qH and∆q2H can only come
through the coefficientsV H

H′ andV 2H
H′ , i.e. the total volume

of the diffracting crystallites on everyH ′ D-S ring. Actually,
a difference in these quantities can be expected. The wave
vectork generating the D-S rings for the first order diffrac-
tion, has a different direction as the one generating the D-S
rings for the second order diffraction. However, in∆qH , as
well as in∆q2H , these volumes appear in a sum weighted
by the power of the possible reflections. This should soften
their individual differences, unless texture is very sharp and,
consisting of a single dominant component. In this case the
reciprocal space will be similar to the one of a mosaic crystal,
and the theory of Zachariasen [4] becomes applicable. Nev-
ertheless, since the crystallite misorientation breath is of the
order of a degree, even for a very sharp texture, the absorp-
tion term due to secondary extinction is negligible. On the
other hand, diffracted beam intensities are at least two orders
of magnitude lower than the incident beam, and the second

terms of Eqs. (7) and (8) should be negligible. This is cer-
tainly the case of (8) for a powder; however, every diffract-
ing situation involves a large numbers of crystallite orienta-
tions in Eulerian space, defining a curve. If some of these
curves cross zones of high pole density in the crystallite ori-
entation distribution function (CODF) of a strongly textured
sample, the second term of (7) could become significant. In
the case of a powder, no volume differences are present be-
cause of the random orientation of the crystallites, and thus
∆qP

2H = ∆qP
H , and to a good approximation

i2H = iH (10)

3. Secondary extinction correction

To obtain a viable secondary extinction correction method is
beyond the scope of this work, althoughJD−S in principle
can fulfill this task if the quantitiesV H

H′ for possible reflec-
tions are calculated. However, this implies the knowledge of
the densityρH

H′(ω), which can only be obtained if the CODF
is known, as it has been done in [3] for the case of neutron
diffraction. The CODF used there was obtained by the con-
ventional method of three pole figures as an approximation.

4. Discussion and conclusions

Equation (6) states that the integrated intensity of D-S rings
is actually affected by secondary extinction. Additionally,
Eq. (10) indicates that secondary extinction affects reflec-
tions of different order of a given set of planes approximately
in the same proportion. If the present result can be experi-
mentally verified, the implication is that observed systematic
differences in the maxima of pole figures of reflections of
different order, are to be attributed to error propagation. This
can clearly affect both pole figures in different ways. An-
other likely possibility can be a heterogeneous texture, since
first and second order reflections have small differences in
penetration depth. If contrary to (10),iH andi2H show the
same relation to each other as in pole figures at the maxima,
this would suggest that primary extinction is present in those
cases.

Two theta X-ray diffraction scans of rolled and annealed
samples of cubic symmetry materials, whose textures are
well known and consist of few dominant texture components,
could be done to verify this theory.
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