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Analysis of charge variation in fractional order LC electrical circuit
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In this paper, the charge variation in time has been investigated in electrical LC circuit within the framework of fractional calculus. The
second order differential equation related to the LC circuit has been re-solved by using Caputo fractional derivative. The solution of this new
equation has been obtained in terms of Mittag-Leffler function which behaves in between power law and exponential law forms. The order
of time-fractional derivative characterizes the time fractality effects in the system, and is considered in the interval1 < α ≤ 2. The obtained
results have been compared with the other studies in the literature. It has been concluded that the Mittag-Leffler function and the order of
time-fractional derivative have a special importance to take into account the non-local behaviour of the physical process in time.
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1. Introduction

A DC LC circuit in which an inductor (L) and a capacitor
(C) are connected to each other is shown in Fig. 1. If the
capacitor is initially charged and the switch is then closed,
both the current in the circuit and the charge on the capacitor
oscillate between negative and positive values. The charge
variation of the capacitor with respect to time is defined by
a homogeneous second order linear differential equation as
follows;

d2q(t)
dt2

= − 1
LC

q(t). (1)

If there is no resistance in the circuit, the standard solu-
tion of Eq. (1) is obtained as follows;

q(t) = q0 cos (ωt) , (2)

where,ω = 1/
√

LC is angular frequency of the circuit and
q0 is the initial capacitor charge at timet = 0 [1].

In traditional approach where the time scale is considered
homogenous, namely, the flow period of time remains un-
changed during the physical process (non-relativistic mathe-
matical time), Eq. (1) is local in time and insufficient to take
into account the non-conservative nature of physical process.
The equations related to the non-conservative systems should
be non-local in time. Friction is a well known exemplary for
a non-conserved phenomenon and, causes irreversible dissi-
pative effects in the physical processes. As a result of these
dissipative effects, time-reversal symmetry is not valid for
non-conservative systems. Ohmic friction in the electrical

circuits causes the same dissipative effects [2,3]. In the liter-
ature, in order to compensate these dissipative effects theoret-
ically, the fractional calculus is applied to various electrical
circuit problems as a useful mathematical tool [4–15]. In this
respect, an approach to design analogue fractional-order con-
trollers was described by Podlubnyet al. [5]. An experimen-
tal study of two kinds of electrical circuits, a domino ladder
and a nested ladder, was presented by Sierociuk, Podlubny
and Petras [6]. Some fractional models used in electrochemi-
cal systems [7], multivibrator built around a single fractional
capacitor [8], evolution of a current in a resistor [9], frac-
tional linear systems [10] and reachability of fractional elec-
trical circuits [11] were investigated. The series RLC circuit
in the fractional-order domain was studied and, the stabil-
ity issues for different cases which were required to design
the fractional-order filters and oscillators were discussed in
Ref. 12. The fractional methods were used to solve prob-
lems in conservative and non-conservative oscillatory sys-
tems with RL and RLC applications [13]. Fractional vis-
coelastic models were applied to biomechanical constitutive

FIGURE 1. The LC circuit.
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equations [14]. The time fractional differential equation re-
lated to electrical RC circuit was solved by making use of
Caputo fractional derivative in our previous study [15] .

Fractional differential equations for RLC and RC-LC cir-
cuits in terms of the fractional time derivatives of the Caputo
type were proposed in Refs. 16 and 17. To keep the dimen-
sional coherence, a new parameter,σ

L
, was introduced by

them [18]. This parameter characterizes the existence of frac-
tional structures which emerges from the non-local behaviour
of the system in time. In Ref. 17, Eq. (1) is re-defined as fol-
lows;

1

σ
2(1−γ)
L

d2γq(t)
dt2γ

= −q(t)
LC

, (3)

d2γq(t)
dt2γ

= −q(t)
τ2
Lγ

, (0 < γ ≤ 1) (4)

where,τLγ
= (

√
LC/σ(1−γt)

L
) is called fractional time con-

stant due to its dimension. The parameterσL characterizes
the presence of fractional structures in the system. Theγ pa-
rameter represents the order of fractional time derivative. It
is related to theσ

L
such asγ = σ

L
/
√

LC.
Another study on this subject was carried out by Rousan

et al in Ref. 19 where the differential equations related to RC
and RL circuits are merged in a single equation as follows;

d1+αq (t)
dt1+α

= −ω1+αq (t) (0 < α ≤ 1) . (5)

where,ω (α) = ωα
1 ω1−α

2 , ω1 = 1/
√

LC andω2 = 1/RC.
Equation (5) represents RC and LC circuits whenα is equal
0 and1 respectively. The solution of Eq. (5) is given as fol-
lows;

q (t) = q0

∞∑
n=0

(−1)n (ωt)α+αn+n

Γ (α + αn + n + 1)
, (6)

where,q(0) = q0.
Since the nature of electrical LC circuit is non-linear and

non-local in time, Eq. (1) is not qualified to give a realistic
description for considered phenomena. To make a descrip-
tion closer to reality, the effects of ohmic friction and tem-
perature (as a physical quantity related to resistance), which
cause the non-local behaviours in time, should be taken into
account in calculations. Eq. (1) is only a simple descrip-
tion of the LC circuit by ignoring the dissipative effects and
fractality of time. Therefore, in order to take into account the
fractality of time, time-fractional derivative should be used in
Eq. (1). Some studies, which are interested in this problem,
can be found in the literature. But, one of them has incorrect
oscillation of the fractional solution [19] and, some of these
studies have used a new parameter to keep the dimensional
coherence [16–18]. In the present study, Caputo definition
has been preferred for the time-fractional derivative and, the
dimension of time-fractional equation is preserved without
using any parameter.

In section two, preliminarily of fractional calculus and the
meaning of using time fractional derivative is presented. In
section three, the differential equation for LC circuit is solved
in a fractional manner and, the charge variation of capacitor
with respect to time is obtained in terms of Mittag-Leffler
function. In section four, the graph of the charge variation
versus time is plotted for the different values of fractional
derivative orderα. Finally, conclusions have been given in
the last section.

2. The Meaning of Using Time Fractional
Derivative

Standard mathematical approaches are not sufficient to ex-
plain the realistic behaviour of the many physical processes
in which the fractal property of space and the non-Markovian
nature of statistical phenomena occur. Time-reversal symme-
try and time locality, which are valid for conservative sys-
tems, fails for the realistic nature of physical processes. In
order to account for the time-fractality effects (namely, non-
locality in time, time-irreversibility and, memory effects) en-
countered in the physical systems, time fractional derivative
operators are often used in the course of calculations. Espe-
cially, they are very successful in the study of the self-similar,
hierarchically organized systems and, the linear response of
systems with memory [20–27].

Fractional calculus is a branch of mathematics which
deals with the generalization of integer-order integration
and differentiation and, includes the standard definitions as
particular cases. The most commonly definitions used in
the literature are Riemann-Liouville, Caputo and Grünwald-
Letnikov fractional derivatives [4,21,22,25]. The presence of
many different definitions of fractional derivative makes pos-
sible to be taken additional physical information into account
in calculations [27].

In this study, as a time fractional derivative, we prefer to
use Caputo definition instead of standard time derivative. The
left-sided Riemann-Liouville fractional integral of orderα is
given as follows,

Jαf(t) =
1

Γ(α)

t∫

0

(t− τ)α−1f(τ)dτ, (7)

where,α is any positive real number andΓ(α) is Gamma
function and,t parameter corresponds to the last measured
value of mathematical time. Caputo fractional derivative of
orderα is given by the definition:

Dα
c f(t):=





1
Γ(m−α)

t∫
0

f(m)(τ)
(t−τ)α+1−m dτ, m−1 < α < m,

dmf(t)
dtm α = m,

(8)

where,m is the smallest integer greater thanα, i.e. m− 1 <
α < m. In physical applications, Caputo definition of
fractional derivative is more preferred, other than Riemann-
Liouville definition, because it includes the initial values of
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the function and its integer order derivatives when Laplace
transform method is used [4,20,21,25].

The solution of fractional differential equations can usu-
ally be expressed in terms of the Mittag-Leffler function as a
natural generalization of exponential function and, is defined
by the series expansion as follows [4,21,26]:

Eα(x) =
∞∑

n=0

xn

Γ(nα + 1)
. (9)

In the well known differential calculus developed by
Newton, time is assumed to have a homogeneous equably
flowing nature and, is also specially called “mathematical
time” which has no relation to external factors. Indeed, the
successfully use of differential calculus in the study of the
mechanics of macro-particles is based on the mathematical
time assumption. In the view of the Newtonian approach,
the total mathematical time consists of geometrically equal
time intervals. On the other hand, since the measurement
process of time intervals cannot be made at the same time,
it is not possible to find an evidence which shows the ho-
mogeneity (or equality) of time intervals. According to the
current views in relativity theory, time intervals are not abso-
lute physical quantities, but instead they depend on gravita-
tional fields in which the measurements of time intervals are
made. The inhomogeneous nature of time is indicated by the
term of “physical (or cosmic) time”. The total physical time
consists of geometrically non-equal time intervals. As an ex-
ample, the time flows non-equably for the physical processes
handled in relativistic manner [28].

In the time fractional approach adopted by Podlubny,
the left sided Riemann-Liouville fractional integral has
been reformulated in the form of Stieltjes integral, namely
Jαf (t) =

∫ t

0
f (τ) dgt (τ) . In this formalism,τ has been

considered as homogenous mathematical time and,gt (τ)
has been interpreted as inhomogeneous physical time scale.
The transformed time,gt (τ), describes the relationship be-
tween the locally recorded mathematical time scale and non-
locally recorded cosmic (physical) time scale. As seen from
Eqs. (1), (2) and (3) in Ref. 28, physical time scale,
gt (τ), depends also ont which represents the last measured
value of mathematical time. As a result, the dependence of
physical time intervaldgt (τ) on t makes possible to take
into account the memory and time-fractality effects in con-
sidered physical systems [28]. In some cases, the kernel
of left-sided Riemann-Liouville fractional integral, namely
(t− τ)α−1

/Γ (α), is called “memory function” [27].
In the present study, we know that the amount of current

transferred to the circuit varies for each∆t time intervals. If
the current being transferred to the circuit at each∆t step is
considered to be equal to each other, the width of∆t time
intervals may be considered different from each other. When
we make such a consideration, the physical reality does not
change and, we can say that the physical event considered in
this paper exhibits non-local behaviour in time. Therefore,
in order to make a more realistic description, time-fractional
derivative can be used in the calculations.

3. Analysis of Electrical LC Circuit in Frac-
tional Order

In order to establish a time fractional differential equation
which describes the LC circuit, the Caputo fractional deriva-
tive of orderα is used instead of the first order standard time
derivative. Thus, the equation in fractional order is given by

Dα
Cq (t) = −ωαq (t) , (10)

whereDα
C denotes the Caputo fractional derivative of order

α, and1 < α ≤ 2. Here, with the aim of retaining the dimen-
sional coherence on both sides of the Eq. (10), the angular
frequencyω varies with powerα. For α = 2, the fractional
LC circuit equation reduces to the standard one,i.e. Eq. (1).

In order to obtain a solution, firstly the Laplace transform
is performed to Eq. (10) leading to

q̃ (s) =
q0

s

sα

sα + ωα
, (11)

where,̃q is the Laplace transform of the time dependent quan-
tity q (t) and,s is the Laplace transform parameter. One can
express the Eq. (11) in terms of a series expansion such as

q̃ (s) = q0

∞∑

k=0

(−1)k
ωkα

skα+1
. (12)

The inverse Laplace transform of Eq. (12) can be ex-
pressed in terms of Mittag-Leffler function,

q (t) = q0

∞∑
n=0

(−ωαtα)n

Γ (nα + 1)
= q0Eα (−ωαtα) . (13)

4. Results and Discussion

Assuming the components of LC circuit have negligible re-
sistance, the variation of capacitor charge with respect to
time is obtained as Eq. (2) in course of the standard calcu-
lations. According to this solution, the charge of capacitor is
not damped, but instead makes oscillation between negative
and positive values. However, in realistic frame, the compo-
nents of circuit have resistance and the variation of charge
is damped and, converges to zero with time. In the present
study, in order to represent the realistic situation, standard LC
circuit equation,i.e. Eq. (1), has been re-defined as Eq. (10)
by using time fractional derivative of orderα. The solution
of this new equation has been obtained in terms of Mittag-
Leffler function as Eq. (13). In order to investigate the graph-
ical representations, the values of inductor and capacitor have
been taken as L=1H and C =1 F in calculations, respectively.

As seen from Fig. 2, the variation of capacitor charge
with respect to time has been plotted by Rousanet al. in
Ref. 19 by using Eq. (6). In this figure,q (t) /q0 values have
been calculated for differentα values. The standard solution,
i.e. Eq. (2), has been indicated with dashed line. As men-
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FIGURE 2. The charge variation of capacitor with time according
to Eq. (6) [19].

FIGURE 3. The charge variation of capacitor with time according
to Eq. (13). (Present study)

mentioned in the first section, whenα is equal 1, Eq. (5) cor-
responds to well known differential equation of LC circuit.
As seen from Fig. 2, all curves start from origin except the
one which corresponds toα = 0. Whereas, att = 0, the ini-
tial values ofq(t)/q0 should be 1. This exhibited behaviour
shows that fractional solution is not in harmony with the well
known standard solution forα = 1 and, there is a phase dif-
ference between the fractional solution and standard one.

Figure 3, presented in this study via Eq. (13), depicts the
charge variation of capacitor with respect to time for different
values ofα. Unlike Ref. 19, as a time fractional derivative
Caputo definition is used in this study. Whenα = 2, Eq. (10)
corresponds to the well known standard differential equation
related to LC circuit. In Fig. 3, the standard solution has been
indicated with dashed line. Forα = 2, a complete harmony
between the standard solution and the fractional solution can
be seen from Fig. 3. In other words, there is no phase differ-
ence between the standard and fractional solutions.

In order to make a realistic description of the considered
physical process, the resistance value of the cables connect-
ing the circuit elements to each other should not be handled

as a constant parameter, instead it should be considered as a
varying physical quantity with temperature. Due to the in-
crease in temperature, the spatial distribution of the charge
carriers in cables changes. Hence, the homogeneity of the
circuit is impaired and, the structural fractal effects become
dominant over time with increasing temperature. As a re-
sult, the charge variation of capacitor with respect to time
exhibits a damped behaviour. In present study, this exhib-
ited behaviour is clearly described with the use of fractional
derivative of orderα which varies between 1 and 2. Hence,
the structural fractal effects, occurred in the LC electrical cir-
cuit due to the temperature, can be taken into account in the
calculations. From these results, it could be said that there
is a close relationship between the temperature and fractional
derivative of orderα.

5. Conclusion

A new time-fractional form of the differential equation re-
lated to electrical LC circuit is determined as Eq. (10). In
this equation, different from Refs. 16 to 18, dimensional co-
herence are preserved without using any parameters.

Equation (1), used in standard approach, corresponds
to ideal case in which the dissipative effects are neglected.
Therefore, LC circuit is handled linear and local in time.
In realistic manner, the resistance of the cables connecting
the circuit elements to each other varies with the tempera-
ture. This unstable resistance causes some dissipative effects
which make the behaviour of LC electrical circuit be non-
linear and non-local in time. Since the temperature of LC
circuit increases with time, an unstable ohmic friction occurs
during the process. Also, in a real capacitor series resistance
is not zero and in the parallel resistance is not infinite. The
series resistance in an inductor is not zero. Hence, the current
transmitted to circuit (and also the charge variation of the ca-
pacitor) per each small time interval (∆t) exhibits a differ-
ence in each∆t step. Hereby, time reversal symmetry for
this process is not valid. From a different perspective, to in-
dicate the nonlocality in time, the transmitted current can be
assumed being unchanged per different time intervals∆t and,
the flow period of∆t intervals can be assumed being variable
depending on the temperature. Consequently, it could be said
that using the time fractional derivative instead of standard
one is a very useful way to describe the realistic feature of
LC electrical circuit that is non-local in time.
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