
RESEARCH Revista Mexicana de Fı́sica62 (2016) 461–469 SEPTEMBER-OCTOBER 2016

The stability of the 1u state of H+
2 in magnetic fields with arbitrary orientations

D. J. Nader and J.C. Lopez Vieyra
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de Ḿexico,
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The existence and stability of the van der Waals1u state of the molecular ionH+
2 with fixed centers (infinitely massive nuclei) in the presence

of a magnetic field with arbitrary orientations in the range of strengths0 ≤ B ≤ 10 a.u. (1 a.u.≡ 2.35 × 109 G) is studied within the
non-relativistic framework. The study is based on the variational method with physical relevant trial functions. A particular emphasis to the
gauge optimization through variational parameters is incorporated. It is shown that, for all the magnetic fields studied, the potential energy
curve has a pronounced minimum for finite internuclear distances and the optimal configuration of minimal total energy is realized when the
molecular axis is oriented along the magnetic field lines (parallel configuration). We found a domain of magnetic fields0 ≤ B . 6.6 a.u.
where the1u state in parallel configuration is stable towards dissociationH+

2 9 H + p. The maximal stability is found to be at magnetic
field B ∼ 2 a.u. where the potential well supports one vibrational state below the dissociation limit.
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1. Introduction

The elucidation of the origin of the spectra coming from mag-
netic white dwarfs and neutron stars is only possible if we un-
derstand the behavior of simple atoms and molecules in the
presence of strong magnetic fields. Chemistry of molecules
in strong magnetic fields is quite different from traditional
chemistry. For example, in strong magnetic fields, the pres-
ence of exotic species of atoms and molecules is possible
(the case of one-two electron systems made out of protons
and/or alpha particles is reviewed in [1] and [2] and refer-
ences therein). Exotic molecules in strong magnetic fields
were predicted by Ruderman [3,4] when he suggested that in
strong magnetic fields linear chains of Hydrogen are formed
along the magnetic field orientation. These predictions were
motivated by the presumable existence of strong magnetic
fields B ∼ 1012 G in neutron stars. Currently, such mag-
netic fields in neutron stars are confirmed by observations,
and there is evidence [5] that even stronger magnetic fields
can appear in magnetars (B ∼ 1014−15 G). Since then, the
study of molecules and atoms in strong magnetic fields has
gained relevance. In particular, from the observation by the
Hubble Space Telescope of Helium atmospheres in magnetic
white dwarfs [6] and more recently, from observations by
Chandra X-Ray Observatory in 2002 when they detected a
considerable amount of data of thermal emission showing
clear signals of absorption features from the surface layer of
the isolated neutron star 1E1207.4-5209 [7], which is char-
acterized by an enormous magnetic fieldB & 1012 G. This
conclusion was supported in 2003 by observations of XMM-
Newton X-ray Observatory [8] (see also [9]). The origin of
these absorption lines in spectra is not fully understood yet.
Simple spectral models demonstrate that the atmosphere of
the 1E1207 object cannot be Hydrogen or ionized Helium in
ultra-strong magnetic fields, but leading to the extreme con-

clusion that the presence of oxygen or neon can possibly ex-
plain the absorption features (see for example [10]). Other
possibilities led to the proposal of models based on the ex-
istence of simple exotic compounds likeH++

3 (see [11] for
example).

The simplest moleculeH+
2 has been widely and exten-

sively studied by many authors with and without the pres-
ence of a magnetic field. In the absence of a magnetic
field, the ground state (1g) is absolutely stable while the
first excited state (1u), usually considered as unbound and
purely repulsive, is characterized by a shallow Van der Waals
minimum with a large inter-proton equilibrium distance
(∼ 12 − 13 a.u.)i. Such minimum even supports the
first vibrational level which remains stable towards dissoci-
ation [12]. This Van der Waals minimum remains stable even
in the case of nuclei with finite masses (See [13]).

In the presence of a uniform magnetic field the ground
state remains stable for any orientation of the magnetic field,
and the well becomes deeper as the magnetic field increases.
The parallel configuration realizes the optimal configuration
of minimal total energy. For larger magnetic fields, the do-
main of inclinations where theH+

2 -ion exists (where the
minimal total energy lies below the energy at the dissocia-
tion limit), reduces as the magnetic field increases and finally
becomes 0-25◦ atB = 4.414×1013 G (see [1] and references
therein).

The case of the1u state in a magnetic field is by far, much
less studied. The majority of studies were performed for the
parallel configuration. Previous studies of this state in an ar-
bitrarily oriented magnetic field only found stability when the
molecular axis is oriented along the magnetic field lines and
for relatively small strengths. In some cases, the accuracy
of calculations has not allowed to make a definitive conclu-
sion about the stability with respect dissociation and nuclear
motion effects (see [1]).
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The present study is focused to the1u state ofH+
2 in pres-

ence of a uniform magnetic field in the range of strengths
(B = 0 − 10 a.u.). Our goal is to confirm the stability of
this excited state when the system is interacting with an arbi-
trarily oriented constant magnetic field. We are particularly
interested in knowing the optimal configuration of minimal
total energy. We developed a variational study with a physics
recipe for choosing variational trial functions (described in
full generality in [14]).

2. Hamitonian

The Hamiltonian which describes a system of two infinitely
massive protons and one electron(ppe) (or H+

2 ) placed in a
uniform magnetic fieldB, is given (in atomic units) by

H =
1
2
p̂2 +

1
R
−

(
1
r1

+
1
r2

)
+

1
2
(p̂ ·A+A· p̂)+

1
2
A2, (1)

where p̂ = −i∇ is the momentum of the electron,A
is a vector potential corresponding to the magnetic field
B = ∇×A, r1, r2 are the distances between the electron
and each proton, andR is the internuclear distance. The total
energy of this system is defined as the total electronic energy
plus the classical Coulomb repulsion energy between the pro-
tons. We will consider the general situation where the molec-

ular axis is oriented along thez-axis interacting with a uni-
form magnetic field arbitrarily oriented forming an angleθ
with respect to the molecular axis

B = B(sin θ, 0, cos θ) . (2)

A 2-parameter vector potential corresponding to the magnetic
field (2) is given by

A = B(λ1y, (cos θ + λ1)x + λ2z, (sin θ + λ2)y) , (3)

whereλ1 and λ2 are two arbitrary parameters. Gauge (3)
satisfies the Coulomb gauge (∇ · A(r) = 0). The sym-
metric gauge (A = (1/2)B × r) corresponds to the case
λ1 = −(1/2) cos θ andλ2 = −(1/2) sin θ. For a magnetic
field oriented along thez-axis (θ = 0◦), the Landau gauge
corresponds toλ1 = −1 andλ2 = 0. Gauge (3) includes
a) the linear gaugeA = ((1 + λ1)y, λ1x, 0) if λ2 = 0 for a
magnetic field oriented parallel to thez-axis, and b) the linear
gaugeA = (0, λ2z, (1+λ2)y) if λ1 = 0 for a magnetic field
oriented parallel to thex-axis. The parametersλ1 and λ2

will be treated a priori as independent variational parameters
in the present study.

Using the gauge (3) defined by 2 parameters, the Hamil-
tonian takes the form

H =
1
2
p̂2 +

1
R
−

(
1
r1

+
1
r2

)
+ iB

(
λ1y

∂
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∂
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∂

∂z

)

+
B2

2

(
[λ2

1 + (sin θ + λ2)2]y2 + (cos θ + λ1)2x2 + λ2
2z

2 + 2λ2(cos θ + λ1)xz

)
. (4)

In the parallel configuration, the problem is characterized
by the quantum numbers corresponding to: (i) spatial parityp
and (ii) the angular momentum projectionm on the magnetic
field direction (z-direction). In cases of arbitrary inclination
of the magnetic field, axial symmetry aroundz-axis does not
exist, therefore only spatial parityp characterizes the system.
The notation we use for the different states is based on the
following convention: the first number corresponds to the
number of excitation - “principal quantum number”,e.g. the
number 1 is assigned to the ground state, the number 2 to the
first excited state, and then a subscriptg/u (gerade/ungerade)
corresponding to positive/negative eigenvalues of the parity
operator.

3. Method

Since we used an approximate method for solving the
Schr̈odinger equation with the Hamiltonian (1), our approx-
imate energies can well be gauge-dependent (only the exact
ones are gauge-independent). The present study is based on
the variational method with the form of the vector potential
chosen in a certain optimal way. The choice of trial functions

is made according to the following recipe: As a first step,
we construct anadequate variational real trial function
Ψ0 [14-17], for which the associated potential
V0 ≡ (∆Ψ0/Ψ0) reproduces the original potential near
Coulomb singularities and the harmonic oscillator behavior
(transverse to the magnetic field direction) at large distances.
The trial function should support the symmetries of the orig-
inal problem. We then performed a minimization of the
energy functional by treating the free parameters of the trial
function and the parametersλ1 and λ2 defining the vector
potential on the same footing. Such an approach enables us
to find theoptimal form of the Hamiltonian as a function of
λ1 andλ2. It is worth to emphasize one important assump-
tion in the present study. Namely, that for a fixed value of
B and a given inclination, we can find a gauge for which the
eigenfunction is realii. This gauge optimization is nothing
but a mechanism to justify the use of real trial functions.
Therefore one can discard any imaginary term in the Hamil-
tonian. This prescription was used in [1] and led to adequate
trial functions to study the two lowest states ofH+

2 in strong
magnetic fieldsB > 109 G.
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FIGURE 1. Geometrical setting for theH+
2 molecular ion in pres-

ence of a magnetic field forming an angleθ with respect to the
molecular axis and parallel to thex-z plane. The protons are sit-
uated along thez-axis separated by a distanceR. The origin of
coordinates coincides with the midpoint along the molecular axis,
and it is chosen as the gauge origin.

A key point in the present study is based on the observa-
tion that in the Landau problem (one electron in a constant
magnetic field) with the magnetic field given by (2) and the
corresponding vector potential (3), the exact (real) eigenfunc-
tion for the ground state is given by

ΨLandau
0 = e−

B
4 |~ρ ′|2

= e−
B
4 (cos2(θ) x2+y2+sin2(θ) z2−2 sin(θ) cos(θ) xz) , (5)

where|~ρ ′| is the transverse distance between the electron po-
sition and the magnetic field line (see Fig. 1). For the parallel
case (θ = 0◦) the standard form, in the symmetric gauge,
i.e. ΨLandau

0 = e−(B/4)ρ2
, whereρ is the radial cylindrical

coordinate, is recovered.
Motivated by the exact solution (5) for an electron in the

presence of a constant magnetic field given by (2) we propose
a trial function of the form

ΨGZ =
(
e−α3r1−α4r2 ± e−α3r2−α4r1

)

× e−
B
4 [β3xx2+β3yy2+β3zz2−βcxz] , (6)

which is a (symmetric (gerade)/antisymmetric (ungerade))
function with respect to the interchange of the nuclei, of
the Guillemin-Zener type multiplied by the Landau factor in
the form (5). In (6)α3, α4, β3x, β3y, β3z and βc are vari-
ational parameters. So, this function is characterized by 6
variational parameters. The function (6) is a modification of
the Guillemin-Zenner type function used in [1]. Due to the
symmetrization the trial function (9) can be separated in two
termsψGZ−a,b. Following a criterion of physical adequacy
described in [14], the associated potential (V = ∆Ψ/Ψ) cor-
responding to the first termψGZ−a of the trial function (6)
is

VGZ−a =
α2

3

2
+
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4

2
− B

4
(β3x + β3y + β3z)− α3

r1
− α4

r2

+
B2

8

(
β2

3xx2 + β2
3yy2 + β2

3zz
2 − βc(β3x + β3z)xz

+
1
4
β2

c (x2 + z2)

)
+
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BR

4
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2
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− α3α4

4
[R2 − 4r2]

r1r2
. (7)

The dominant terms in the associated potentialVGZ−a repro-
duce the terms of the original potential in (4), for the sym-
metric gauge, ifα3 = α4 = 1, β3x = cos2 θ, β3y = 1,
β3z = sin2 θ, βc = 2 cos θ sin θ. The associated poten-
tial contains additional terms which are sub-dominant near
Coulomb singularities and at large distances. It is important
to mention that if the parametersβc = β3 = 0, then the as-
sociated potential reproduces the potential and, correspond-
ingly, the trial function used in [1]. This situation occurs in
the configurations of maximal symmetry0◦ and90◦.

The Guillemin Zener type function (6) reduces to the
particular cases of Heitler-London type, and Hund-Mulliken
type functions, whenα3 = α4 andα3 = 0, respectively.

3.1. Trial function

In order to describe the1u state we consider in the present
study a linear combination of three functions: two functions
of the Guillemin-Zener type, each with its own variational
parameters, and one Ansatz of the Hund-Mulliken type:

ψHM =
(
e−α2r1 − e−α2r2

)

× e−
B
4 [β2xx2+β2yy2+β2zz2−β2cxz] . (8)

where α2, β2x, β2y, β2xz, βc are variational parameters.
The Hund-Mulliken type function describes adequately the
physical situation of large internuclear distances. On the
other hand, the Guillemin-Zener type function describes ad-
equately the domain of intermediate and small internuclear
distances. Thus, the complete trial function proposed in this
study is the linear combination

Ψ = A1ψHM + A2ψGZ−1 + A3ψGZ−2, (9)

where the coefficientsA1, A2, A3 are considered as varia-
tional parameters. One of these parameters can be chosen
arbitrarily as a part of the normalization of the trial function.
In general, the total number of variational parameters in (9)
is 20 and the total number of parameters includingR and the
gauge parametersλ1,2 is 23.

In the particular case of the parallel configuration, the
system exhibits an azimuthal symmetry around the axis of
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the magnetic field. This azimuthal symmetry reduces effec-
tively the total number of parameters, because the parameters
in front of the crossed termsxz, and in front of thez2 terms
in the Landau factor in (6)i.e. βc andβ3z, must be zero in
order to reproduce the corresponding magnetic field oriented
along thez-axis. It is worth to mention that, in this parallel
configuration, the trial function (9) coincides with that used
in [1] with an additional second Ansatz of the Guillemin-
Zener type.

3.2. The Hellman-Feynman theorem: Configurations of
maximal symmetry

The configurations of maximal symmetry are especially rel-
evant from a theoretical point of view. Some qualitative fea-
tures of any system with an explicit dependence on a certain
parameter can be predicted through the Hellman-Feynman
theorem. For the particular system ofH+

2 , the variation of
the total energy as a function of the orientationθ of the mag-
netic field with respect to the molecular axis can be found by
the relation

∂E

∂θ
= 〈Ψ|∂H

∂θ
|Ψ〉 , (10)

whereΨ is the variational wave function (a stationary point
for the Schr̈odinger functional) corresponding to the eigen-
valueE, andH is the Hamiltonian of the system.

Considering that the trial function (9) is real, the ex-
tremals of the total energy as a function of the inclination
angleθ, are found by the relation

〈Ψ|∂H
∂θ
|Ψ〉 = 〈Ψ|∂A

2

∂θ
|Ψ〉 = 0 , (11)

where

∂A2

∂θ
= B2[−2(cos θ + λ1) sin θx2

+ 2(sin θ + λ2) cos θy2 − 2λ2 sin θxz] . (12)

Thus, using the variational results (seee.g. Table V) we ver-
ify that Eq. (11) is satisfied in the configurations of maximal
symmetry

∂E(θ = 0◦)
∂θ

=
∂E(θ = 90◦)

∂θ
= 0 . (13)

This relation should be gauge invariant. A similar analysis
was done in [18] where the symmetric gauge was used lead-
ing to the same conclusion. It is also worth to notice, that
in the case when the magnetic field is chosen along thez-
axis and the molecular axis is inclined (as it was done in [1])
there is no explicit dependence on the inclination angle in the
Hamiltonian, and the Hellman-Feynman theorem cannot be
applied.

4. Results

We carried out a variational study of the1u state of the
system (ppe) with infinitely heavy nuclei, interacting with

a magnetic field0 < B ≤ 10 a.u. in inclined configura-
tion 0◦ ≤ θ ≤ 90◦ with respect to the molecular axis. In
this range of magnetic fields the total energy of the1u state
presents a pronounced minimum. Our variational results in-
dicate that there exist some critical fields and critical incli-
nations where the1u becomes unstable towards dissociation
H+

2 → H + p. This is described in more details below.
The numerical calculation was developed using subrou-

tines D01FCF of NAG-LIB [19] for the 2(3) dimensional in-
tegrations (depending to the symmetry of the configuration)
and the package MINUIT of CERN-LIB [20] to minimize
the energy functional. In order to reach a higher (and sta-
ble) accuracy, the (finite) domain of integration was manu-
ally and conveniently subdivided following the profile of the
integrand. Usually, the domain of integration along each co-
ordinate was subdivided into 3 or more subregions. The vari-
ational results are presented with an estimated relative accu-
racy of10−6.

4.1. Configurations of maximal symmetry

The results of our variational calculations with the trial func-
tion (9) for the 1u state of H+

2 in the presence of a uni
form magnetic field, in maximal symmetry configurations
θ = 0◦, 90◦, are presented in Table I and Table II, respec-
tively.

TABLE I. Total,ET , binding,Eb = Ee−ET , energies and equilib-
rium distanceReq for the state1u as a function of magnetic fieldB
in the parallel configurationθ = 0◦ which becomes1σu. This state
represents the first excited state or the ground of state of negative
parity. The optimal gauge is found to correspond to the symmetric
gauge(λ1 = −1/2, λ2 = 0) for all magnetic fields. The ground
state of energy of the Hydrogen atom1s0 [27] is presented in the
last column for comparison. The horizontal line divides the fields
where the1u is stable/unstable.

B (a.u.) ET (a.u.) Req (a.u.) Eb (a.u.) EH (a.u.)

0 −0.500049 12.77 0.500049 −0.500000

0.1 −0.497583 12.43 0.547583 −0.497526

0.5 −0.447348 10.80 0.697348 −0.447211

1 −0.331403 9.57 0.831403 −0.331169

−0.331355† 9.73†

−0.330000∗ 9.6∗

−0.331436• 9.58•

2 −0.022474 8.29 1.022474 −0.022214

−0.022638• 8.34•

5 1.119484 6.90 1.380516 1.119601

6 1.531709 6.68 1.468291 1.531754

8 2.380879 6.31 1.619122 2.380615

10 3.252534 6.04 1.747466 3.252203

3.261810† 6.34†

† results from [1].
∗ results from [24].

• results from [25].
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TABLE II. Total, ET , binding,Eb, energies and equilibrium dis-
tanceReq for the state1u as a function of magnetic fieldB in
the perpendicular configurationθ = 90◦. This state represents
the first excited state or the ground of state of negative parity.
The optimal gauge is found to correspond to∼ Landau gauge
(λ1 = 0, λ2 = −0.08) for all magnetic fields. The ground state of
energy of the Hydrogen atom1s0 [27] is presented in the last col-
umn for comparison. The horizontal line divides the fields where
the1u is stable/unstable.

B (a.u.) ET (a.u.) Req (a.u.) Eb (a.u.) EH (a.u.)

0 −0.500049 12.77 0.500049 −0.5000000

0.1 −0.495345 11.17 0.545195 −0.497526

0.5 −0.413423 8.51 0.663423 −0.447211

1 −0.249852 7.28 0.749818 −0.331169

−0.249815† 7.26†

2 0.145674 6.32 0.854326 −0.022214

5 1.487704 5.39 1.012296 1.119601

6 1.954286 5.23 1.045714 1.531754

8 2.901345 5.02 1.098655 2.380615

10 3.859941 4.87 1.140059 3.252203

3.864990† 4.87†

† Results from [1].

In the parallel configuration our results for the total en-
ergy of the1u state are in excellent agreement with the best
results [21-25]. For example, forB = 1 a.u. the difference
with respect to the best known results existing in the litera-
ture [25] is beyond10−5 a.u. Qualitatively, we observed a
monotonous increase in the totalET and bindingiii energy
EB , accompanied by a monotonous decrease in the equilib-
rium internuclear distanceReq as a function of magnetic field
(0 ≤ B ≤ 10 a.u.) It is worth emphasizing that in this par-
ticular configuration, our results improve slightly the results
from [1] with a simple addition of one Guillemin-Zener type
function (the improvement was∼ 10−5 for B = 1 a.u.).
However, such a small difference may be enough to confirm
or discard stability in some cases. The fact that we obtained a
small improvement in the total energy, even adding one more
Guillemin-Zener term to the trial function (i.e. 5 more vari-
ational parameters), can be interpreted as a manifestation of
the convergence of the trial function. However, the obtained
equilibrium distanceReq = 9.57 a.u. atB = 1 a.u. shows a
better agreement with results in [24,25] (see Table I).

The 1u state in the perpendicular configuration has re-
ceived less attention in the literature. The only exceptions
are references [24-26]iv. In the perpendicular configuration,
the system also exhibits an increasing behavior of the total
and binding energies as a function of the magnetic field, ac-
companied by a monotonous decrease in the equilibrium in-
ternuclear distance (see Table II). For all the magnetic fields
considered, the total energy for the1u state in the perpendicu-
lar configuration is always larger compared with the energy in
the parallel configuration. Also, for all magnetic fields stud-

ied, we observe that in perpendicular configuration the sys-
tem is more compact (the internuclear equilibrium distance
is smaller) in comparison to the parallel configuration (e.g.
by∼ 2.3 a.u. atB = 1 a.u.)

One of the main goals of the present study is to find the
optimal configuration (of lowest total energy) for this state.
From our variational results, we confirm the conjecture that
the parallel configuration realizes the configuration of mini-
mal total energy of the H+2 molecular ion in the1u state for
all magnetic fields considered in the present study (see Ta-
bles I and II). In particular, forB = 1 a.u. the minimal total
energy in the parallel configuration is in agreement with adi-
abatic potential energy calculations carried out in [24] where
a basis set of∼ 360 generalized optimized atomic orbitals
was used. It is worth to notice that for the optimal (parallel)
configuration our 20-parameter trial function (9) provides a
better (lower) total energy (by∼ 1.4 × 10−3 a.u.) in com-
parison to [24].

The difference between the energies of maximal sym-
metry configurations increases as a function of the magnetic
field (∆E = ET (90◦)− ET (0◦) = 0.8 a.u forB = 1 a.u.),
such behavior is interpreted as the1u state becomes more
rigid towards rotations as the magnetic field increases.

4.2. Stability of 1u state: Critical Fields

One can observe from Table I and Table II that the1u state is
not stable for all the magnetic fields. First of all, it is impor-
tant to emphasize that a high accuracy was required in order
to analyze the stability the1u state, since it is a weakly bound
state and the potential well is very shallow. The present vari-
ational results show that the energy of the1s ground state of
Hydrogen atom and the total energy of the1u state ofH+

2 in
the parallel configuration are very close. Therefore, it is nec-
essary to analyze the dissociation energy (see Fig. 2).

FIGURE 2. Dissociation energyEdiss = EH −ET of the1u state
of H+

2 at equilibrium as a function of the magnetic fieldB in the
parallel configuration (θ = 0◦). The curveEdiss vs B exhibits a
domain of magnetic fields where the1u state ofH+

2 is stable with
respect to dissociation to Hydrogen atom plus proton (positive dis-
sociation energy). The range of this domain goes fromB = 0 a.u
to Bcr ∼ 6.6 a.u.
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FIGURE 3. Total energy (dots) of the1u state of H+
2 as a func-

tion of the internuclear distanceR at the magnetic fieldB = 1
a.u. in the parallel configurationθ = 0◦. The curve represents
the Morse fit to the variational results. The upper horizontal line
represents the asymptotic energy i.e. the total energy of the ground
state1s0 of Hydrogen atomEH = −0.331169 a.u. atB = 1 a.u.
(see [27]). The horizontal line below the asymptotic energy rep-
resents the first vibrational state (Evib

0 = 0.00014 a.u. with re-
spect to the equilibrium energy). The total energy at equilibrium is
ET = −0.331403 a.u. atReq = 9.57 a.u.

Our variational results show that in the parallel configura-
tion the1u state is stable towards dissociationH+

2 → H + p
for B < 8 a.u. In Fig. 2 the dissociation energy is plotted
as a function of the magnetic field. In such plot we can see
that there is a critical value of the magnetic field where the
1u state becomes unstable towards dissociation (the dissoci-
ation energy turns negative), such critical field is estimated at
∼ 6.6 a.u. by a simple interpolation. This critical field de-
fines a domain of magnetic fields where the1u state remains
stable towards dissociation.

As for the parallel configuration we can do a similar anal-
ysis for the perpendicular case. In this configuration the1u
state is only stable for magnetic fieldsB < 0.1 a.u. Thus, the
domain of stability in the perpendicular configuration is quite
smaller compared with that of the parallel configuration. The
critical magnetic field is estimated atB = 2× 10−3 a.u.

In both configurations, for all the magnetic fields con-
sidered, the1u state exhibits a pronounced minimum in the
potential energy curve, but only in those magnetic fields for
which the global minimum of energy at finiteReq is below
the total energy of the Hydrogen atom in the ground state (see
Fig. 3 for example forB = 1 a.u) the system is considered to
be stable. The deepest well in the parallel configuration oc-
curs for a uniform magnetic field of∼ 2 a.u. that represents
the maximal stability of the system (maximum of dissocia-
tion energy as a function of the magnetic field) (see Fig. 2).

4.3. Vibrational states

A natural question concerning the stability of molecular sys-
tems is related to the existence of at least one nuclear vibra-
tional state. In order to answer this question, forB = 1 a.u.
we carried out variational calculations for different fixed val-
ues of the internuclear distanceR and built the potential curve
corresponding to the1u state. In Fig. 3 we show that such

potential curve fits reasonably well a Morse potential. Using
this fit, we computed the energy of the first vibrational state
obtainingEvib

0 = 0.00014 a.u. with respect to the energy at
equilibrium. Therefore, the H+2 molecular ion in the1u state
in the first vibrational state of the nuclei is still stable towards
dissociationH+

2 → H + p. For this magnetic field, the first
vibrational state is more stable with respect dissociation than
in absence of magnetic field [12].

5. Inclined Configurations

5.1. Stability of 1u state: Critical Angles

In the present study, we also considered the analysis of in-
clined configurations0◦ < θ < 90◦ using the trial func-
tion (9). It is important to mention that for arbitrary inclina-
tions of the magnetic field there are almost no references in
the literature. The only exception is [26] where the qualita-
tive description is very different from the behavior obtained
in the present study. We consider that such differences do not
allow for a direct comparison with the present resultsv and
that independent calculations are needed in order to resolve
this disagreement.

Our variational results are presented in Tables III and IV
for the magnetic fieldsB = 0.1 a.u. andB = 1 a.u. respec-
tively.

As we expected the maximal symmetry configurations
are found to correspond to the extremals of energy: the par-
allel configuration is the optimal configuration of total en-
ergy, while the perpendicular configuration corresponds to
the maximum of total energy (though it also corresponds to
the most compact configuration).

The behavior of the total energy of1u state of
(ppe)-system for both representative magnetic fields is
monotonously increasing as a function of the inclination
angle θ of the magnetic field, while the equilibrium dis-
tanceReq decreases monotonically (see Tables III, IV and
Figs. 4, 5).

TABLE III. Total energyET , and equilibrium distanceReq for the
state1u at different orientationsθ of the magnetic field with respect
to the molecular axis for the magnetic fieldB = 0.1 a.u. We esti-
mate that the uncertainty inReq is ∆ ' 0.05 a.u. due to the fact
that the potential well is too flat. The total energy of the ground
state of Hydrogen atom atB = 0.1 a.u. is−0.497527 a.u.

θ (deg) ET (a.u.) Req (a.u.) E†
T (a.u.)

0◦ −0.497583 12.43 −0.497583†

10◦ −0.497517 12.22 −0.496800†

30◦ −0.497014 12.18 −0.495668†

45◦ −0.496444 11.97 −0.495459†

60◦ −0.495884 11.90 −0.495383†

80◦ −0.495498 11.45

90◦ −0.495435 11.20 −0.495345†

† results from [1].
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FIGURE 4. Total energyET of the1u state ofH+
2 at equilibrium

as a function of orientationθ at a magnetic fieldB = 0.1 a.u. The
horizontal line represents total energy of the separate systemH+ p
(i.e. the energy of the Hydrogen atom atB = 0.1 a.u.). The orange
curve represents the Hindered Rotor Model. The curve exhibits a
domain of orientations where the1u state ofH+

2 system is stable
with respect to dissociation. The critical angle for which the system
becomes unstable is estimated atθcr ∼ 9◦.

FIGURE 5. Total energyET of the 1u state of H+
2 as a function

of orientationθ with respect to the molecular axis for the magnetic
field B = 1 a.u. The horizontal line represents total energy of the
separate systemH + p (i.e. the energy of the Hydrogen atom at
B = 1 a.u.). The curve exhibits a domain of orientations where the
1u state ofH+

2 system is stable with respect to dissociation. The
critical angle for which the system becomes unstable is estimated
atθcr ∼ 1◦.

For both magnetic fields, the1u state of the (ppe)-system be-
comes unstable towards dissociationH+

2 → H + p from a
certain critical orientation (see Figs. 4 and 5). Critical an-
gles were found atθcr ∼ 9 for B = 0.1 a.u andθcr ∼ 1
for B = 1 a.u. This non-negligible decreasing ofθcr as a
function of the magnetic field corresponds to the increase in
the total energy difference between the maximal symmetry
configurations. Though the improvement to the total energy
using the trial function (9) is relatively small in comparison to
the total energy found in [1], the change in the critical angle

TABLE IV. Total energyET , and equilibrium distanceReq for the
state1u at different orientationsθ of the magnetic field with respect
to the molecular axis for the magnetic fieldB = 1 a.u. We estimate
that the uncertainty inReq is ∆ ' 0.05 a.u. due to the fact that the
potential well is too flat. The total energy of the ground state of
Hydrogen atom atB = 1 a.u. is−0.331169 a.u.

θ (deg) ET (a.u.) Req (a.u.) E†
T (a.u.)

0◦ −0.331403 9.57 -0.331355†

10◦ −0.327681 9.05

30◦ −0.304002 8.60

45◦ −0.281976 8.10 −0.254521†

60◦ −0.264042 7.50

80◦ −0.251663 7.35

90◦ −0.249852 7.28 −0.249815†

† results from [1].

FIGURE 6. Total energyET (in a.u.) of the1u state of H+
2 as a

function of the internuclear distanceR (in a.u.) and the orientation
θ (in degrees) with respect to the molecular axis at the magnetic
field B = 1 a.u. The potential surface exhibits a global minimum
atR = 9.56 a.u. andθ = 0◦, and shows that the configurations of
maximal symmetry correspond to the extremals of energy.

is quite significant. This qualitatively different result implies
that the1u state is more stable towards rotations.

It is worth to observe from Fig. 4 that our variational
results as a function of the inclination angleθ fit well at a
hindered rotator model

V (R, θ) = V (R, 0) + ∆V (R) sin2 θ , (14)

where∆V (R) = V (R, 90◦)−V (R, 0◦) is the barrier height
for a given value ofR. Such behavior would allow us to
make a similar rotational analysis as it was done in [28] for
the ground state1g (this will be done elsewhere).

Using our variational results, it is possible to construct a
surface of energy as a function of the molecular distanceR
and the magnetic field orientationθ (see Fig. 6 forB = 1
a.u). The potential energy surface appears smooth and with-
out indications to any other local minimum.

Additionally, we made an analysis of the behavior of the
expectation values〈x2〉, 〈y2〉, 〈xz〉 as well the gauge param-
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FIGURE 7. Optimal gauge variational parametersλ as a function
of the orientationθ for the magnetic fieldB = 1 a.u. In the par-
allel configuration (θ = 0◦) the optimal gauge corresponds to the
symmetric gauge (λ1 = −1/2, λ2 = 0). In the perpendicular con-
figuration (θ = 90◦) the optimal gauge is very close to the Landau
gauge (λ1 = 0, λ2 = −0.08).

TABLE V. Expectation values, optimal gauge parametersλ1,2, and
the variation of the total energy (10) as a function of the orienta-
tion θ corresponding to the trial function (9) for the magnetic field
B = 1 a.u.

θ (deg) 〈x2〉 〈y2〉 〈xz〉 λ1 λ2
∂E
∂θ

0◦ 0.5360 0.5360 0.0 −0.5 0.0 0.0

10◦ 0.5390 0.5299 0.0847 −0.4985 −0.0058 0.0827

30◦ 0.5612 0.4620 0.1424 −0.4723 −0.0148 0.1703

45◦ 0.5956 0.4235 0.0975 −0.4110 −0.0155 0.1669

60◦ 0.6328 0.3962 0.1122 −0.3050 −0.0242 0.1244

80◦ 0.7175 0.3727 0.0481 −0.1133 −0.0256 0.0412

90◦ 0.7250 0.3705 0.0 0.0 −0.0262 0.0

etersλ1,2, with respect to the orientation angleθ for a mag-
netic field B = 1 a.u. (see Fig. 7 and Table V) as ob-
tained with the trial function (9). From these values, we
can compute the variation of the total energy of the1u state
through Eq. (10). Both expectation values〈x2〉 and 〈y2〉
increase/decrease monotonously as a function of the incli-
nation angle. On the other side, the expectation value〈xz〉
vanishes in the configurationsθ = 0◦, 90◦ due to the sym-
metry z → −z. This corroborates the result predicted by
the Hellman-Feynman theorem,i.e. the variation of the to-
tal energy becomes zero only in the configurations of max-
imal symmetry. The analysis also confirms that the optimal
gauge for the parallel configurationθ = 0◦ corresponds to
the symmetric gauge, while for the perpendicular configura-
tion θ = 90◦, the Landau Gauge seems to be more adequate.

6. Conclusions

We found a range of magnetic fields where the1u state of
H+

2 with infinitely massive protons is stable in both (θ = 0◦

and90◦) configurations of maximal symmetry. With the im-
proved trial function (6) proposed in this study we found in
the parallel configuration a domain of stability for magnetic
fields0 ≤ B . 6.6 a.u. This range of magnetic fields over-
laps with the range of magnetic fields typically present in
magnetic white dwarfs. The maximal stability for this state
is realized atB ∼ 2 a.u. Up to magnetic fieldsB = 1 a.u.
the first vibrational state remains stable towards dissociation.
Additionally, the trial function (6) describes a larger range of
stable orientationsθ for two representative magnetic fields:
θcr ' 9◦ for B = 0.1 a.u. andθcr ' 1◦ for B = 1 a.u.
From the optimization of the vector potential, we confirm that
both gauge parametersλ1,2 are relevant to obtain the minimal
energy in configurations of arbitrary orientation of the mag-
netic field, despite the fact thatλ2 is relatively small. We
confirmed the theoretical predictions by Hellman-Feynman
theorem that the energy extrema correspond to the configura-
tion of maximal symmetry: the minimum corresponds to0◦

and the maximum corresponds to90◦.
From an astrophysics point of view, the stability of the

1u state can be of relevance for the analysis of the spectra of
white dwarfs. For example, in the magnetic fieldB = 1 a.u.
the energy corresponding to the transition between the two
lowest states ofH+

2 is 3.9 eV.

7. Note added in proof

While this manuscript was under consideration the authors
performed an analysis for the ground state1g in magnetic
fields 0.1 a.u. ≤ B ≤ 1 a.u., using a linear superposi-
tion of three functions of the type (6) and found an im-
provement in the variational energy (for intermediate angles
0◦ < θ < 90◦) which is in excellent agreement with the
hindered rotor model approximation (14) used in the refer-
ence [28]. It is worth to mention that the agreement between
the hindered rotor model and the variational results using the
functions of the type (6) is much better in the case of the
ground state1g. This results will be reported elsewhere.
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i. The well is presumably deeper in presence of a magnetic
field [1].

ii. If one assumes that the eigenfunction is a complex func-
tion ψ(r) = %(r)ei ϕ(r), where%(r) = (ψ2

Re + ψ2
Im)1/2, and

ϕ(r) = tan−1(ψIm/ψRe), then, by a gauge transformation,
we can have a real function by gauging the phase.

iii. Binding energy represents the difference between the total en-
ergy of the system and the energy of each component (only the
energy of the electronEe contributes).

iv. The results in Ref. 26 show a very different qualitative behav-
ior. A comparison with those results might be misleading and
therefore we prefer not to include them in the Tables.

v. Despite the fact that the studies in [26] present in general
lower total energies than the total energies of the present study,
they obtained arbitrary inclinations as optimal configurations
of minimal total energy for some magnetic fields in contra-
diction to the Hellman-Feynman theorem. For example, for
B = 0.1 a.u., they obtainedET (0◦) = −0.497590 a.u. at
Req = 12.38 a.u. andET (90◦) = −0.497602 a.u. atReq =
11.49 a.u. On the other hand atB = 1010 G they found the
optimal configuration atθ = 30◦.
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