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ABSTRAeT

The conceptual problems oi quantum mechanics. which over the
last twenty ycars have led to the development of other approaches, are
autlined and briefly analyzed to show why only stochastic theories could
be acceptable. The formal stochastic theories, in ~hich no physical ba-
sis for the stochastic process i5 presupposed, are discussed: sorne of
their weaknesses are adduced to justify the need for physical stochastic
theories. Of these, stochastic electrodynamics i5 chaseo for more de-
tailed discussion as by far the most successful. Its achievements so far
are autlined, as are the difficulties it still faces. It i5 concluded
that its mathematical formalism is still not adequate to permit the full
exploitation of its conceptual framework, which appears to be sound.

RESUltEN

Se delinean y analizan brevemente los problemas conceptuales
de la mecánica cuántica que en los últimos veinte años han provocado en-
foques alternativos, COn el fin de mostrar porqué sólo teorías estocásti-
cas pueden ser aceptadas. Se discuten las teorías estocásticas formales
que no presuponen ninguna imagen física para el proceso estocástico; se

t Presentado en la asamblea general ordinaria de la SMF el 25 de marzo
de 1982.
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exhiben algunas de sus debilidades con el fin de subrayar la necesidad
de teorías estocásticas físicas. De éstas se eSCOge la electrodinámica
estocástica para un examen más detallado por ser de lejos la más exitosa,
Se bosquejan sus logros hasta la fecha, así como las dificultades que
aún ha de enfrentar. Se concluye que su formalismo matemático todavía
no permite explotar a fondo su marco conceptual, el cual se ve sólidamen-
te establecido.

1. CQ\iCEP'IUAL DIFFICULTIES DI' QUANTlH-1HEQlA\ICS

Almost from the first days of quantum mechanics. the debate coo-
ccrning its interpretatían and correet faundatían has raged, and it sho~s
no signs of fl3gging texby. Thc majority of physicists -and certainly

almost a11 ¡.,'ritcrs of tcxthooks- adhcre in Qne way or another te what is

knovm as thc Copcnhagcn or orthoJox eonccption; most tcxtbooks, moreover,

prcscllt i t in rathcr dogmat ie fashion, leaving the young generation of

physicists in ignorance of the fact that there is a small but not negIi-

gibIc group actively engageJ in Jcveloping alternative vieh's. It is the

purpose oí thi5 p..1.pcr to present a brief revie .•..' oí hhat appear to be the

most significant achievcmcllts and the chief problems still open in this

I ine oE research.

Quanttml thcory offcrs us a fWIction li', Jcfined over the .•...hole

of spacc anJ sntisfying ;¡ ••••'avc equation (which hcre we shall take to be

Schrodingcr's). to describe corpuscular behaviour. Are the objects des-

cribed by quanttlrn mechanics partieles or h',Jves? To this question Bohr

(1935) anSh'er5 that they are at times partieles, at times h'aves, and the

th'O descriptions complement each other ret never cocxist; t-btt (1964)

insists that only particles have real existenee, .•..hile ....'aves appcar sim-

pI y as the colleet ive behav iour oE many particles; de Brogl ie (1953) 5ees

a pilot wave earrying along, piggybacJe, a particIe; Bunge (1967) offers

the "quanton" conccpt -objcets that are nei ther particles nor v,:aves but

canhinc 3spects of both. QUO! homincs tot scntentiac.
To back up this apparently limitless variety of fundamental

conccpts, a bCHih1cring ra.nge of C,edankenexperirncnt have been developed

to sho.....up o.ne or ;lIlothcr conceptual ••.•'eakncss. Even a quantLml version of

:cno's paradox has maJe its appcarar:.ce in recent ycars (Misra and Sudar-
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shan 1977; fay a simplified discussion sec PeTes 1980).
The mast famous oí these thought cxperiments is. oí course, due

to Einstein (Einstein, Podolsky and Rosen 1935, referred to, according to
custom, as EPR). Consider a compound systcm, e.g., a neutral hydrogen
atom, in a well.defined state. After a time it disintegrates, and when
the resulting partieles are sufficiently far frem cach other so as no
longer to interaet, we measure the momcntum. sayo oE the electron; be-
cause 1inear momentum is conserved, the protoo must be in the correslxmd-
ing eigenstate oí its momentum operator, ~(p), let us sayo But had we
determined the electron's position instead. the protoo would have to be
in an eigerstate f(x) of its position opcrator. Yct these two states are
incompatible and cannot simultaneously be used te describe the proton.
Then how did the proton, beyond any interaction with the electron, know
~hich state to adopt?

In his equally famous rebuttal of the conclusion EPR drew from
this odd situation, Niels Bohr (1935) cxplicitly stated that their argu-
ments were straightforward consequences of thc transformation theorems of
quantum rncchanics; moreover, Schr&.linger (1935, 1936), submi tting the mat-
ter to a very searching examination, so far fram removing the problem,
generalized and deepened it; he concluded that it indicated a serious de-
ficiency in quantum mechanics. Nevertheles5, the EPR result has cornmonly
been treated as a paradox (e.g., Cooper 1950, ~tittelstaedt 1974) OT even
as fallacious (e.g., Sharp 1961, Rosenfeld 1968, Kellett 1977), -so TTUch
so that it has been thought ~'orth~nilc to prove its validity írem an en-
tirely different standpoint (Flores et al. 1981).

In fact, the conceptual confusion is so great that one philoso-
pher of scicnce openly speaks of "the great quantum muddle" (Popper 1967);
yet, perllaps one should say unexpcctedly, quantum mechanics has achieved
rcmarkablc aJvances in OUT knowledgc oí nature and continues to do so.
The "muddle" scems to be irrelevant. Even thc out-and-out Copenhagen
textbooks reveal this: they emphasize Bohrian complementarity and the re-
ductioo oí the wave packet (von Neumann's projection postulate) in thc
first fcw chapters on basic concepts, but latcr on make no further use of
thcsc notions.



This situation is explained when a more detailed analysis shows
that opposing the Copenhagen interpretation there is only one genuine al-
ternátive, which-most physicists use in a quite intuitive fashion, often
without being aware of it, at the same time as they declare their firm
belicf in Copenhagen. This alternative vicw is what is cornmonly called
thc statistical interpretation, though a better name would be the ensem-
ble interpretation. The confusion of the great quantum muddle largely
arises frem more or less inconsistent mixtures of these two points of
view, ~hich in themselves can achieve considerable internal consistencYj
they have, however, very different implications when confronted with ac-
tual practice.

The Copenhagen view takes as its starting point the postulate
that the wave function ~(x) describes one and only one physical system
--a given particle, for instance. ~~en measurernent on this particle
yields one result (and not another one of the possibilities whose proba-
bility as given by ~ is> O), this requires explanation. The projection
postulate is added for this purpose: the wave function "coHapses", in an
unpredictable fashion, into one of its components during the measurement
process. When a straightfoTh'ard argument leads to Heisenberg I s famous
inequality óxAp ~j-h, the twü quantities D.x and óp must be interpreted 3S
limits on experimental precision, [or we have only one system to which
thcy could apply and no other plausible mcaning is open for them. But if
the theory offers an intrinsic limitation on measurement prccision, this
implics that in q~~ntum mechanics we have reached as far as it is possi-
ble [or physical research to go: a consistent defender of !he Copenhagen
view therefore sees quantum mechanics as the ultimate theory, which may
be refineu and extended but not improved upon. When, finaHy, we talk of
probabil ity as applying to a single system (and therefore not defined by
means of un appropriate sample space), there is no consistent way of
sccing this as a propcrty oE thc system by itself, so that it must be in-
terpreted as a degree oE uncertainty in our knowledge oí the system: thus
the way lies oren to abandoning the fundamental philosophical principIe
that physics (like any science) is about this world and not about our
knowledge of it: "Quanturn mcchanics does not describe an objective state
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in an independent externaI world, but the aspect oí this world gained by

considering it íTem a certain subjective standpoint" (Born 1949). And
ane step further leads te this: [When its position is being mcasured]
"the electron has to make a decision. Weforce it to take up a wel1-
defined position; befare that it was not in general either here ar there;
it has not yet decided on its position ... it is we who produce the facts
we observe" (Jordan 1934). Even more disastrous conclusions are possi-
bIe, as we shall see below.

The ensemble interpretation, in contras!, takes the wave func-
tian to represent an ensemble (in the Einstein-Gibbs sense). a generally
infinite set oí theoretical replicas oí the physical system under study.
a11 similarly prepared but otherwise not necess3ri1y alike. Quantum-
mechanical predictions are thereíore expectation va1ues in the statisti-
cal sense: the va1ues which we expect the mean oí long series oí measure-
ments to take. These predictions imp1y nothing for individual measure-
ment resu1ts (except. oí course, that they must belong to the spectrum of
possib1e va1ues) and hence no projection postu1ate is required to exp1ain
them; only their re1ative frequency must be -and is accounted for. Hence
no "measurement problem" ariscs O.bldauer 1972) and the endless theories
on this subject become superfluous, -a1ways provided that due account is
taken of the distinction between the preparation o£ a state and a measure-
ment on it (Margenau 1959). Similarly, of course, the projection postu-
late (which gives rise to the lIcollapse" mentioned aboye) is now super-
£luous: it was only needed to explain the individual measurernent, a re-
quirement explicitly renounced here. The Heisenberg inequality is merely
a relation be~'een the dispersions oí two measurement series carried out
on systems described by the same enserrble; the two types of measurement
can but need not be carried out on the same set oí systems, a conclusion
which mirrors the experimental procedure used to verify that the inequa-
Ji ty holds; calling it an ''uncertainty relation" rather than a "variance
relation" is therefore misleading (on this see Popper 1967). And the
prObability o£ any event is he re well defined within an unproblematic
materialist philosophy: while the írequency interpretation oí von Mises
(1919, 1928) and Reichenbach (1935) is possible, with sorne difficulties
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and awkwaru unsolved problems, it is much more straightforward to use the
ensemble concep! itsel£ as the basic Datian (Brody 1975, 1979) on ~nich
probability can be dcfincd as the expcctation value (i.c., the average)
of an appropriate indicator function.

The ensemble interpretatían was first adumbrated by Slater
(1929). By 1935. whcn he was working on thc EPR paper, Einstein had prob-

ably accepted it; ccrtainly he contributed considerably towards its deve-
lopmcnt (Einstein 1949, 1953), as alsodid Blokhintsev (1953), ~1argenau

and his crstwhile pupil Park (fo.1argcnau 1958, 1959, 1963; Park and !>lIrgc-

nau 1968; Park 1968; Park and Band 1971; Band and Park 1979; Park, Band

and Yourgrau 1980) and m:my othcrs. l~tai1ed aCcoW1ts oí it will be

found in Ballcntine (1970), Ross-BOllliCY (1975) or Brody (1983); see also

.JaJJDTIcr (1974).

2. 11IE INCO~IPLEfENESS01' QU¡\NTUM~IEOlANICS

The principal achievement of the ensemble interpretation is its

conceptual simplicity anJ clarity: the traJitional paraJoxes do not ap-

pear in it.
In the EPR situation, for instance, the single mcasurement one

imag ines accorJing to the Copenhagen view does not detennine the en..<;emble.

\'ie ne~d a long series of me<.tsurement results; if we let them range freely,

.•.•'c obtain an experimental sample of the ensemble, while if we accept only

those that satisfy a particular conuition, we obtain a subcnsemble, with

propcrties conceivably different from those of the complete one, If on1y

those cleetrons in a whale series are picked out which have the salTlepo-

sition as the first one, then we have sclectcJ a subcnsemble whose corres-

ponding protans will be correetly described by a position eigenfunetion.

But if we pick the clectrons with the same momentwnas the first one,

they wi11 be a Jifferent set and hence make an entirely different suben-

semblc; and so •....ill thcir partncr protons.
Similar considerations hald for other so-called paradaxes.

That the ensemble interpretatían thU3 cleanly resolvcs the pa-

radoxes shoulJ make it ver)" attractive. Yet the philasaphers, for one,
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either ignore it completely (thus Putnam 1965) or dismiss it with a few

words (e.g., Fine 1973), even \\ith contempt (Hansan 1959).

Q1e rcason for thi5 state of affairs -arart fram the banm.'agon

effect-- is, presumably, that the ensemble interprctation has not yet

achievcd the status of a finished theory. 1£ i t is to pravide the basis

for considering quantum mechanics a fully statistical theory, then it

should (aroong other things) affer an account of the joint probability

distribut ion of two observables, cven non-comrlluting ones, so that expcc-

tation values may be computcd over ~lase space, in a way analogou5 to

5tat1stical mcchaniC5. To take the case of the position x ano the mo-

rrentum p of a one-particle system in one dimension, it should be possible

to derive from the wave function If(x) a distribution [(x,p) such that the

expectation of any fWlCtion g(x,p) may be calculatcd as

f! f(x,p) g(x,p)dx dp (2. 1)

h'bere g is the Hilbert-space operator corresponding to g. Eq. (2.1) in-

eludes of course the three special cases:

(2.2e)

(2.2b)

1~(p)12

1~(x)l'

f! f(x,p)dxdp (2.2a)

f f(x,p)dp

f f(x,p)dx

h'bere 4J(p) i5 the mornentlUn-space \-.'ave funetion corresponding ta If(x).

~1anysuch fWlCtions f have been proposcd; the best kOQ\m h'as found by

Wigner (1932):

1 f 1 iTp 11fw(x,p) = 2n '¥*(x + ~H)e If(x - "2lT)dT (2.3)

and a complete phase-space fonnalism for (2.3) has becn givcn by !'obyal

(1949). But it can be ShOhTI(5h(''1,-;el11959) that none of these functions

is satisfactory over the whole rangc of quanttU11problcms; far each such

functioll is 1inked lo one p.1.rticular 4uanti::ation rule, through the as-
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sociation g(x.p)~ &, and no ene oí these rules will always work; the
Wigner function, foy instanee, is positive-definite only for a restricted
class of wavc functions (Urbanik 1967, Hudson 1974). However, as Cohen
(1966) has shown, the class of possible distribution functions is cir-
cLD1lScribed by

f(x,p) = 4~'JJJ ~'(D + ~ hT) y(e,T)ei(8"+TP-8X)~(D - ~ hT)dedDdT , (2.4)

where y(S,l) is any function satisfying

y(D,T) y(e,D) (2. S)

eohen (197b) has a150 taken the first steps towards a complete phase-
spacc fOTIml1ism with a general distribution of the type (2.4), and has
a150 ShO~l (Cohen anu Zaparovanny 1980) that they can be constructed so
as to have aoy ucsircd linear correlation between x and p. For, given
any distribution h(u,v) on the tulit square O'" u,v ~ 1, we can define a
fWlction

k(x,p) h(u,v) - h (u) - h (v) + 1u v

wherc , ,
hu(u) J h(u,v)dv h)v) J h(u,v)du

O O

and

D~(i;) ¡'di;
p

u = u(x) v = v(p) LI~(¡¡¡)I'd¡¡¡

Thcn

(2.6)

(2.7)

(2.8)

f(x,p) I~(x)¡'IHp) 1'{l + ck(x,p)} (2.9)

(where the constant c can be arbitrarily chosen provided the factor in
{ } is nevcr ncgativc is a perfcctly satisfactorr joint probability den-
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sity, with a connecting funetían oí the form

~(6,1) = JI f(X,p)ei(eX+TPldxdi f ~'(n + ~1 h)eiep~(n - ~T h)dn. (2.10)

The linear and higher-order corrclations are (except [ar a trivial trans-
formation) e times those oí h(u,v). Now these results show that construct-
ing a phase-space formalism may need much moTe infonnation than standard

quantum mechanics provides; thus even if a11 the corrclations are O, i.e.,

if h(u,v) factorizcs. neither its detailed £01111 nor the value oí e is un-

aniJiguously dctennined. The qucstion whether the higher-order corre la-

tiaos are experimcntally accessible does not seem to have received atten-
tían.

It is cornmonly stated that quantum mcchanics carmot be a statis-

tical theory since no jaiot prObability distribution can be written far

it. The results just quoted sho,.,' tilat this is not the case: rather do we

have an infinite set of possible distribution functions, since almost any

correlation .•.•.hatever is compatible ",'ith a givcn wave flU1ction '¥. l~hat is

true, however, is that no one choice of the connecting function y will

provide a satisfactory joint distribution for all cases. This is what is

usually meant when the existence oí joint distributions is denicd. Yet

such a requiremcnt is patently absurd: not only do ••..'c not impose any si-

milar condition on classical statistical theories, but the condition

would furthennore imply the choice of a particular quantization rule,

thus rroking quantum mechanics dependent on classical mcchanics in a high-

ly undesirable way (íor further details see, e.g., Brody 1983).

Accepting, then, th(' freed0m of choice oí y as physically plau-

sible, we observe that in the ensemble interpretation quantum mcchmlics

is unfinished in that finding the fonn of \f, sayas the cigenfunction of

an appropriate lIamiltonian, still lcaves undetenninnl the correlation

nccded to define y anu hence (2.4). Thc usually accepted form for the co-

variance, ~ «(XfJ + px) } , is not dcrived frGm the basic postulates oí

quantum mechmlics but is merely a plausible analogy ••..'ith the classical

case. This is recovered in the limit h - O. Howcver, [or any real A,

(2. 11)
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also gocs to the elassieal limit anu satisfics the statistieal require-

ments [or this sort of pür~m~tcr. Should it turn out that quantum-meeha-

nieal arglID¡Cnts do not allov.: us to deduce 3 value for A,then the ensemble

interprcto3tion ¡..¡i11be not so nueh lUlfinished as inecmplete, in the spe-

eifie scnse o[ EPR.

1,le return to their 1935 paper for the eonelusions they drew

frcm the sccming paradox skctchcJ aboye. 'nlCY started frcm two postu-

lates which we may rephrase as follows:

(i) The ,,"'orld ho3Sreal and indepcndent existence, i ts eomponent

parts therefore have real properties, and one way of es-

tablishing the real i ty of a property is that one can meas-

ure it5 value without pcrturbing the system.

(i i) A physic31 thcory is complete if to each (rclev3nt) real

property of the systems it describes, it assigns a theo-

retical cOlU1tell'art.

i\sswning the va 1idi ty of the quantum-mechanieal formal ism, they

concludc th3t both the position <llld the momentumof the pro ton are real

properties, since they (tUl he determined by measuring th(: corresponding

property oC the clectron, mcasurcments which do not perturb the proton if

i t is [ar cnoup,h away. But qtuUltwn mechanics carmot predict both values

for thc proton: i t is therefore incomplete.

lt is this incompletcness that becomes lUlpalatably evident in

the cnsenu)lc interpretation.

Ct¡C way to overcomc i t is the addi tion to quantLUnthcory of so-

called "hiJucn variables"; these "',,'Quldmake dctcnninate such quantities

as the correlations discussed above. Now if these hidden variables are

"detenninistic", i.e., reduce the theory to a non-statistical one analo-

gous to Ne...•'tonian mcchanics, a wc11-known argt..1TlCntdue to ven Neumann

(1932; for a discussion of thc limits to its validit)t and refercnces to

('arl ier \.:ork see Brody 1983) .shows the impossibility of introducing them

consistcntly. rhe von !\cum.:mnproof, in other words, implies that hidden

variables, if ~Ul)', must be stochastic in nature.

~brc recentl)', Bell (1965) has used a revised version of the

EPR Gedankencxperiment to derive an inequality that hidden-variable theo-
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ries must satisfy if they are local; if, that is to say, electron and
protao no looger interact .•.•.hen they are far apart, so that el hiddcn va~

riable affects ane ar the other but not both. Becausc the qu:mtum pTe-

dictions, as well as mast of the experimental cvidcnce sincc produccd,
violate this inequality, Bell concludcs that local hidden-variable theo-
ríes. cven if the)' are statistical in natufe, cannot account [or quantum
phenornena (the extensivc literatuTc is reviCh'cd in Clauser and Shimony
1978 ay Bruno et al. 1977). Sincc then the very ingenious cxpcrirncnts of
Aspcct et al. (1982) have scemingly yielded definitive confirm.'ltion even

in ane extreme casc. It is a pit)' that Bell's incquality can be proved
in at least three further ways (Wigner 1970 and a150 Holt 1973; Eberhard
1977, a simplified version of whieh is Peres 1978; and in a somewhat dif-
ferent vein, Suppes 1982); and none of these requires the notion of a hid-
den variable at a11. tlenee the violation of the inequalit)' in quantum
mcehanies earmot be laiú at the door of the hidden-variable theories, and
the Be11 argument is irrelevant to thc question if quantum mcehanics can
be eompleted by adding further d}TIamieaJ variables. The inequality has,
indced, becn shQ\\.TIto rcquire a tacit assumption quite evidentl)' not sa-
tisficd by quantum mechanics (de la Peña, Cetto and Brady 1972, Brady and
de la Peña 1979, Brady 1980; for a different point of view sce Sellcri
and Tarozzi 1981). This has not prevcnted several misguided authors from
seeking to explain its violation by postuIating the transmission of sig-
naIs .1t specds beyond that of light, ei ther lTk"leroscopica11y (Costa de
Reauregard 1965) or microseopically (Vigier 1982). The resulting semi-
philosophicaI speculations --that physics has experimentally disproved
the reality of the material ~orld (d'Es~"lgnat 1979) or that it has es-
tablished the possibility of parapsychologicaI phenamena (Le"pinay 1980;
Zohar 1980; r~sta de Beauregard 1981)-- can onIy bring discrcdit on phys-
icists.

Those ~no perpetra te such spccuIations are apparently una~are
that their very assumptions make them unneeessary. For if signals can
propaga te at 5uperluminal velocities, theo the electron and the proton in
the EPR situation never become independent, we cannot any longer conclude
that our choice of measurcmcnt on the electron has no influencc on the
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proton, and hencc we ought no! to accept the Teality of position ay 00-

mcntlDll as proved by the EPRargumento In other words, hidden variables
are no longcT nccessary; indced, the supcrluminal signals merely provide
Dne spccific rncchanism to implcrncnt the "feature oí "..holeness" 50ught by

Bahr (1963). Ne simply fal! back into the Copenhagen interpretatian.

It might be Bated he re that quite independently oí the Bell in-
cquality it should have bcen cvident that quantum mechanics is inherently
a non-local thcory. Thu5 to determine a particle's energy we have to in-
tegrate over its configuratían space to compute {'fIHI'l'} J while the sarne

quantity is faund directly from the local coordinates in classical me-
chanics; and the Paul i principIe is another obviously non-local clernent
in the theory. That such points (and their implications) should be so
gcnerally ignored is only another sign of how badly quantum rnechanics is
understood.

We conclude that statistical local hidden-variable theories
cannot be excluded on these grounds. They are, however, undesirable on
quite other grounds. Physical theories possess an organic integrity
wh ich is particularly important in the case of a flUldamental theory 5uch
as quantum mechanics, since as well as a fonnalism they provide the con-
ceptual background for our understanding; patches on them, such as hidden
variables, should therefore be considered at best a last resort. In the
present case, this implies that instead of adding stochastic variables we
should rather attempt to formulate a complete stochastic theory.

1ne stochastic nature of such a theory follows already frem the
von Neumann hiJden-variable argument referred to aboye: this shows that
the theory must be statistical, and since it rnu~t also give an accolUlt oí
the time evolution of quantum systems, it must be based on one or more
stochastic processes. ¡\nother way to see this is to observe that quantum-
likc hehaviour is of thrcc kinds: the existence of discrete value5 for
certain dynamical variables, interference phenomena and other wave-like
bch3viour, anJ the appearance of fluctuations in experimental resul ts.
Now Bohrls "old" quantum theory took the first phenomenon as its starting
point; present-day quantum mechanics starts from the second; but the
third way has not yet been tried (L. de la Peña, private cornmunication).



A more serious argument is the following: Every physicaJ system is sub-
ject to the constant influence oí the remainder oi the universe (or at
least of large parts of it); in order to restrict ourselves to the va-
riables intrinsic to the system, we average over thcse influences. If
this averaging is done before setting up and solving the equations of mo-
tion for the system, wc arrive at that central concept oí classical phys-
ics, the closed system; if we average afte~'ards. we have a stochastic
theory for open systems. To the extent that this argument is val id, the
peculiar inconsistencies of quantum mechanics (at least in the Copenhagen
sense) are explained: it is an attempt to do closcd-system physics where
the open-system effects are still significant. This matter will be taken
up again bclow.

Several varieties oí stochastic theories have been developed.
In ~TIat fo110ws we shall classify them as fOTTIk~1or physica1 theories ac-
cording to ",,'hetherthe)" postulate the necessary stochastic process or de-
rive it from a physica1 modelo In spite of considerable successes
achieved by the formal theories, we shall argue that they have certain
fundamental weaknesses, and we therefore devote more attention to that
physical stochastic theory which has shOhTI far-rcaching results.

3. FORl-1AL STOOlASTIC 11IEORIES

The first to suggest a formal stochastic approach was Schrodinger
(1931), who observed that the equation which bears his name has the forro
of a diffusion equation. However, the diffusion coefficient is purely
imaginary when ~ itself is taken as the stochastic process, so that the
equation is oí hyperbolic type and h,.s time-reversible solutions. ~hile a
physically meaningful diffusion process nust have a parabolic differential
cquation.

The first reasonably complete stochastic theoD' was formulated
by Fényes (J952). He bcgins his deve10pment by postulating, without fur-
ther discussion of his choice, a ~brkov process for the position vector;
for the probability density p(r,t) of this proccss he then cstablishcs
the Fokkcr-Planck equation



wherc b
i

is the urift vclocity:

(3.1)

h.(r,t)
> -

lim lt (r.(t+lt) - r.(t»
6t-+O+ r:: ~ ~

(3.2)

while D.. is the J.iffusion tensor:>l

IJ ..>l
lim 6\ «r.(t+6t)-r.(t))(r.(t+6t)-r.(t))}

ót-+O+ ~ ~ J J
(3.3)

In (3.1), di indicates partial c1erivation with respect to Ti' repeated in-
dices are surrmcd aver, and ( ) sibJ1la1s an ensemhle average (that is to say,

aver 311 possiblc rcalizations oE the stochastic process). Fényes defines

fay this proccss a velocity opcrator

c.
>

h., 3.0 ..l >l
(3.4)

v,¡hich has a comnutator

Il ..l>
(3.5)

Frem (3.5) he can derive a vcry gcncr,.I1 incquality of the Heisenberg type:

Ir the ~1arkov proccss is a simple diffusion. then

D ..
'l

(3.6)

(3.7)

",.ith 11a constant; ncglecting the covariance bctwecn Ti and cj in (3.6)

)licIds in this case the more usual Hciscnberg inequality:

!1r.b.c. ~ 1l6 ..
.1 J .lJ

(3.8)

Fénycs then supposcs that the drift vclocity can be derived from a po-
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tential s,

b., a.Sm , (3.9)

~nere ro is the maS5 oE the particle; then p can be writtcn in terms oí
another potential a:

p a' exp [-:n J (3.10)

Now with the definition

~ = a exp [- i(2:O°) Jexp [ - 2~ ]

the Fokker-Planck Eq. (3.1) can be re.Titten as

i a
D at (~.~) + div (~v~. - ~'V~) o

(3.11 )

(3.12)

This is the quantum-mechanical continuity equation provided we fix

D h
2m (3.13)

Fényes a150 derived the SchrOdinger equation but nceded to pos-
tulate far this a so~.hat artificial Lagrangian. A much clcaner deriva~
tion is due to Nelson (1966, 1967). He ....Tites the ~1aTkov process in dif-

ferential form as

= b.(r,t)dt + dW.(t),- , (3.14)

where b is the drift velocity as befare and W,(t) is a Wiener process,, ,
that is to saya stochastic proccss oí C~ussian distribution with zero
meananó a diEfusion tensor

= <dW.(t)dW.(t», )
(3.15)

(This sort oE theory was oí course first establishcd far Brownian metioo,
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where

D
kT
mB

instead of (3.13). is the diffusion cocfficient). Nelson nan' defines the

back~ard drift vclocity

(3.16)

Note th3t this does not correspond to a time reversal of the process, but

to a changc in how the ensemble averaging is done: both in (3.2) and in

(3.16) 311 trajectories going through ri (t) are selected, but in (3.2)

their position a time 6t later 1S avcragcd over, while in (3.16) it is

their positions a time ét earlicr that are used. \'Iith (3.16) we also

have, for the samc stochastic process,

(3.17)

""ith ~r. (t) an an310gous \\'iener process. Now (3.14) and (3.17) yield !'n'o,
Fokker- Planck ('quat ions:

.'o!f'. -di (biP) .•. Ddid
iPdI

dp
-ai (biP) - OdidiPdI

....hich together givc the continui ty cquation

dp
-di(ViP)al

(3.18a)

(3.18b)

(3.19)

wherc we have d(.'fincJ

(3.20)

If V. i5 Jcrived from a potentiaJ function. then it is straightfoTh'ard to,
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showthat for the function ~ of (3.11):

(3.21)

where SCt) can be made to vanish by a suitable normalizatían oí the velo-
city potential. With the identificatían (3.13), this is then the
Schr&linger equation.

A third and physically perhaps more plausible version has becn
giyen by de la Peña (1969, see also de la Peña and cetto 1975, 1982). Ob-
serving that for functions g(~,t) oí a stochastic variable Lene may de-
fine numberless derivativc.like operators, they chose two:

Dg(O) ...l-(.!o( (+) _ g(-I)}
ót 2 g (3.22)

(3.23)

(wehaye written g(ol = g(1:(t)), g(') = gC1:(t, ót)) to clarify the nota-
tion). When we take g~(t)) = Ti' these are evidently related to the two
dríft velocities by

Dr. 1 b)y, "2(bi +
1 1

Yr. 1 5) Dai lnpu. = "2(bi =
1 1

(3.24)

(3.25)

where in (3.25) we define the stochastic velocity u
i
' Now the stochastic

generalizatían oí Newton's equation.

(3.26)

is plausibly written as a linear combinatían oí the four accelerations
Du

i
' Dv

i
• Yu

i
, Vvi, It should satisfy three physical conditions:
(i) Given the time-reversal properties

D(t) = - D(-t)

y.(t) =-y.(-t)
1 1

Y(t) = Y( -t)

U. (t) = u, (-t)
1 1

(3.27)

(3.28)
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which follow from the physical meaning of these quanti-
ties, the generalizatíon of (3.26) should be invariant
undcr time reversal, just as (3.26) i5;

(ii) the probability uensity should satisfy the continuit)'

equatian (3.19);

(iii) in the classical limit (D ~ O), Eq. (3.26) should be re-
covcrcu.

The stochastic generalization of (3.26) then becomes

(3.29)

wi th A an as ye! uctcnnincd parametcr. If the force f i al so has a poten-

t ¡al \'. then ane can show that so do the vcloci tics:

v.,
u.,

2Ila .s,
21ld.R,

(3.30a)

(3.30b)

N~' (3.29) and (3.19) may be intcgratcd once and the solution re~Titten
in 1 iocar [onn, to give

v.'hefe

2m1)2\d.a.l/'+ + \!'¥+_,, - (3.31)

(3.32)

In (3.31) A is 5ti11 undefincd; it5 absolutc value may be cam-
hincu "úth n, so that cnly it5 sign 1S significant. If A = " Eqs.

(3,31) are paraholic amI describe the irreversible evolution oí the real

ampl ¡tudes lf!; superposition is always lldditive so th3t no interference

effccts appear, ami ""e have :l stochastic process of Bro\<oniantypc. If on

the othe1' h:.mú A = -1, Eqs. (3.31) reduce, using (3.13), to Schrooinger's

equat ion, \\'hich is hyperbol ic and has solutions that allow interference

tl'nll'" to appen1' and that admit time reversal. It is evident from this

fOl11ulation that the t"".o stochastic processes, ""hile the}' have much in
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cornmon, must ncvertheless be clcarly distinguished because they a150 show
essential differences (de la Peña 1968, 1969).

This detailed discussion oí the thrcc approachcs should make
clear their strcngths. Among these are a conceptual clarity (shared by
the ensemble interpretatían) and a simple mathematical structurc far the
stochastic process. They allow severa! generalizations beyond quantum
mcchanics (far instanee, extended and sharpenedHeisenberg relations)
and a clearer discriminatían betwecn various sorts oí stochastic processes.
These advantagcs have made feasible a long list oí applications oí very
diverse nature. To quote only a few exarnples: a phenomenological descrip-
tion of spin has been given (IJankel 1970, 1977; de la Peña 1970a, 1971);

a path-integral formalism has been developed (Berrondo 1973) and used to

study barrier penetratían (1~eaycr 1978; Yasue 1981); relativistic general-
izations have becn developed (de la Peña 1970; de la Peña and Cetto 1971;
Cetto and de la Peña 1971; Lehr and Park 1977; Vigier 1979); and a

stochastic field theory has becn developed (~bore 1980 and references
therein). The theory is restated froro a differcnt point of view by David-
son (1979). ltk:>redetailed aCcOlmts and furthcr references wiU be fOlmd
in Guerra (1981) and de la Peña and Cetto (1982). One of the most re-

markable uses made of the basic conception of these approaches was to
develop an ergodic theory of quanturn processes -or at least the rudiments
of it- (Claverie and Diner 1973, 1975) •.hich has helped to dissipate sev-

eral of the confusions in the "great quantum nuddle".
It should be noted that the correspondcnce be~'een the stochastic

process in a formal and the equivalent quanturn-mechanical description is
not one-to-one. As Suppes and Zanotti (1976) huye ShOhTI in general terms
and Davidson has (1979) demonstrated, to each wave function thcre corre-
sponds an infinite set of different ~mrkov processes. In other words, the
incanpleteness of quantum mccha.nics is even more profound than """aS noted by
EPR (1935): the quantum mechanical account does not even fully spccify the

equivalent stochastic process.
In spite of their considerable achievements. the fO~ll stochas-

tic theories have received nuch criticism (Nicholson 1954; Gilson 1968;
Albeverio and t~egh-Krohn 1974; Kracklauer 1974; Ghirardi~. 1978;
Grabner et al. 1979; Mielnik and Tengstrand 1980). Unhappily, many of
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these commentsei ther do not take into accotmt the distinction worked out
aboye between Brownian and quantum stochastic processes, OY eIse take
(3.16) to be a time-reVcTscd stochastic process. Gilson attempts to show
that the diffusion coefficient (3.13) mus! be zera if quantum mechanics
is a stochastic process, and overlooks the faet that he specifies the coo-
ditions, no! far a quantum process, but far a classical process oí the
Maxwell-Boltzmann type, where indeed, as _already pointed out by Fényes
(1952), no diffusion tcrm appears. Sorne othcr questions raised by these
critics are cornmented upon by Lavenda (1980).

A more serious poiot was discussed first by Albeverio and H~egh-
Krohn (1974) and later by several of the authors cited. Since the formal
stochastic theories lead straightforwardly to !he SchrOdinger equation,
they accept a1so the excited-state solutions of the 1atter as possib1e
forms for the density. But these solutions have nadal surfaces at which
p = O. The stochastic system thus has vanishing probability of crossing
these surfaces, which thereforc break up configuration space into mutual-
Iy inaccessiblc regions. Nelson (1967) suggested reconnecting them by a
small perturbation. Though this way oí solving the problem is physically
not unreasonable, it does tacitly make the theory at best an approximate
one. Another solution oí the diíficuIty is mentioned be1ow.

But only the last oí the quoted papers shows an understanding
of whcre the real weakness oí the fonnal theories lies, namely in their
very fonmality: they provide us only with a mathematical model of the
underlying stochastic process. The physicalmcchani~lbehind this process
is not elucidated. There cannot then be any explanation beyond that of
mathematical convenience oí why it should be Markovian¡ deriving the ve-
locities from as many potential functions, though plausible in general
and certainly an important special case, does not receive any adequate
physical justification; nor, finally. can one explain the identification
of D by means of Eq. (3. 13). What these theories provide, in other
words, is a mathematical illustration oí the ensemble interpretation,
which they therefore show to be perfectly viable. But while their consid-
erable contributions should not be underestimated, it must be said that
thcy do not offer us any deeper physical understanding.
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The physical stochastic theories pursue the aim oí rcmedying
this defecto They propase specific mechanisms far the stochastic proc-
esscs underlying quantl~ mechanics. In the next section we discuss the
mest successful oí these theories; scction S will review sorne oí the dif-
ficulties it exhibits, and a150 sorne oí the suggcstions that have becn
made far rcsolving them.

4. A IllYSlCAL STOOIASTIC TIlEORY: SfOOlASTIC ELECTRO~IICS

Stochastic electrodynamics (SED) originated almost in parallel
with the formal stochastic theories discussed aboye. The idea oí trcat-
ing the vacuum fluctuations oí quantum electrodynamics (QED) as real rath-
er than virtual lies behind the work of Welton (1948) and Weisskopf (1949),
but seems first to have been spelt out explicitly by Kalitsin (1953). It
was developcd quite indcpendently by BTaffort and coworkers (BTaffart,
Spighel ffildTzara 1954, Braffort and Tzara 1954), and also by ~TIrshall
(1963, 19653, 1965b). A detailed account is given by de la Peña (1983),
foll~'ing shorter rcvi~'s by Boycr (1975a) and Claverie and Diner (J976).

These and later papers eonsider real fluctuations of the elas-
sieal clectromagnetic [icld. The origin of these fluctuations is best
understood as a special case of the conception, mentioned aboye, that a
physicaI system is isolated frorn the rest of the universe only to first
approximation. A chargcd particle, rather than moving in a nuIl field,
must be considered to movc in a randorn background field formed by the un-
correlatcd cmissions oí all acceleratcd chargcs in the universe. The fun-
damental question for SED is, then: how dces a classical charged particle
behave in such a random field? This qucstion ITk'ybe broken up into sev-
eral parts.

TI1C first part is the statistical characterization of thc ran-
dom electromagnetic background field. Bccause we expect this field to
playa role in the stability oí atomic structurcs (which would collapse
rapidly if elcctrons werc classical particles moving in a null background),
even at the absolutc zcro it must havc a zCTo.point component that is

1thcrefore tcmperature independent. Such a componcnt, of cncrgy 2 hw per
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nonnal mode, was postulated alrcady by Planck (1911, 1912), and its cos-
JIPlogical and other conscqucnccs weTe explored by Nernst (1916). In or-

der to find its distribution, arguments of simple physical plausibility
~;ufficc. To bcgin with, cven if quite strong correlations between the

sources are assLDucd.Einstein and Hopf (1910) showed that the Fouricr
componcnts of such a radiat ion field have ampl i tudes wi th independent

Gaussian distributions; a fortiori this holds when the sources have no

such correlations. The menns of these distributions are of course zera,
and cnll' the fluctuation amplitudes (Le .• the standard dcviations) remain

to be dctennincd. A number of qui te di fferent 3TgtmlCnts converge to show

that. as well as

""c have

o (4. la)

(E.(w)E.(w')} = (B.(w)B.(w')= aw36(w-w')6.
1. J 1 J 1.J (4. lb)

whcrc Ei and Bi are the (instantaneous) components of the electric and

magnctic vectors, ~hile the s)'1OO01- indicates the Fourier transfoIln. On-

Iya. rcmains now to be dctennined. The main argurncnts are: Firstly, if a

chargcd particIc moves through the radiation ficId, it shouId not suffer

~ frictionaI drag \,;hich \Io'ouldhe observable; in other words, the distri-

bution function of thc ficld componcnts should be Lorcnt2 invariant,

since othcnúse it couId provide a privilcgcd refercncc frume for which

thcre is no evidcncc. Seconoly, if the cnergy density at the absolute

zero docs not vanish, it must be given by the low-tempcrature limit of

h'icn's law.

p(w,T) w3~(w/T)

"ro i n.11y, the \\1lCelcr- Feyrunan absorber thcory, conbined \Io'ith the very sug-

gcstive idea of ramIom bowllbry conditions, yields a nUldom action on

chargcd particlcs of precisely the right spcctrum (Braffort, Spighcl ~Uld

Twra 1954; Pegg 1980). Lastly, tht~ fluctuation-dissipation thcorem, ap-

pIicd to the raJi3tion reaction, yields thc same fonn of random ficId
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(MilOlmi 1981). Al! these arglU1lCnts yield the fonn (4.lb); sinee the
number oí normal modcs per unit frequenc)' interval is proportional to w2,
this makes the energy per normal mode proportional to w. as Planck had
already anticipated and as is, furthermore, in agrccmcnt with QED (cven
though we are considering real fluctuations, no! virtual ones).

The valuc oí el may b(~ fotUld as fo 11ows ; iI wc add the hypothesis

of a random zero-point field characterized by (4. la) and (4. lb) to the
classical assumptions that lead to the Rayleigh law far thc hlack-body ra-

diation, then instead the Planck distribution (including the zero-point
tcrm) is faund; comparison with the usual form then fixcs a:

a =
4h

3lTc2 (4.2)

(Jiménez, de lo Peña and Brody 1980; Jiménez and del Yalle 1982).
A ver)' simple way oí sccing h~ the Planck distribution arises

is due to Boyer (1969b) and Theimer (1971). Write the energy of the
black-body radiation at a mode of frequency w as the sum oí the zcro-
point and thermal parts:

E (W) E + Eo T
(4.3)

If the amplitudes of the f¡eId componcnts have a Gaussian distribution
wi th zera mean, thcn the variancc of this energy is givcn by

o'
E

( £2}2 (4.4)

Bere ""re suppose the zera-point and thennal componcnts to be uncorrelated:

this is reasonable, since they arise from different sources, the one is
Lorentz invariant and the othcr no!. Now we know that the zero-point

fieId is al 50 Gaussian:

a' ( E )'
o o

Corrbining thesc thrcc equations. ••.•'e have

o' ( E
T
)' + 2( £ )( E )

T o T

(4.5)

(4.6 )
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h'e now employ a well-known rcsult far the variance oí the energy oí a sys-
tem in thermal equilibrium with a heat bath at temperature T (sec, e.g'I

Reif 1965):

o'
<

B 1
KT (4.7)

(4.8)o

a rclation that Einstein (1904) made very cffective use oí in analyzing
Planck's law. Applying (4.7) to the thennal fluctuations (4.6) we get

a( c
T
)

-"-B + (e )' + 2( e )( e )
a T O T

The solution of (4.8) is

exp
2( e )

o
(2B( e » - 1o

(4.9)

Note that Planck's law appcars sjmply bccause oí the cross tcm in (4.8).

Without it, one ohtains the ~1yleigh law. lnis cross tcnm is of course
due to the assumpt ion of a random zera-point ficId -we do not even need
to bl0~ its spcctrum in arder to derive (4.9), we couId obtain it by com-
parison wi th what we know expcrimentally to hold. No ather non-classical

assumption entcrs the argurncnt. Hence we can no longer regard the Planck

spectnun as a quantumphenomcnon;i t is, rather, the resul t of two special
asstunptions, that there is .:1 zera-pa¡nt [ield, and that cquilibrium with
it is achieved. But ",'hetherthese assumptions lead us beyond the fr¿u¡¡e-
work of classical physics is, perhaps, a tcnninological rather than .:1

physical question.
The conclusion frcm such argumcnts is that the total random

backgrOlUldfield which is in equilibrium at a temperature has a spcctral
dcnsi ty which is the surnof the zero-point field and the Planck tenn
(4.9); putting in the fonn (4.lb) for (e) multiplied by the nunber of

o
noma] modes pcr frequcncy intcrval and using the value (4.2) far n, we
find

p (w, T) _1_1 _ w3 + hw3

2n'c' n'c'l exp(hw/kT) - 1 J

hw3 hw= -- coth - , (4.10)
2112c3 kT
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where k is the Boltzmann constant.
It must not be forgottcn, however, that if other matter is prc-

sent in the neighbourhood, pcrhaps not even distributcd isotropically,
then (4.10) will not apply: the field will have a distribution that must
be worked out anew far each case. This faet has consequenccs we mention
below.

The concept oí the zera-point ficId thus established has one
important blemish: with the spectrum (4.10), the zera-point energy densi-
ty, given by

u = foop(w,O)dw
o

diverges. We come back to this problem below. Disregarding it here, we
note that the concept oí thc zera-point ficId has becn vcry successful1y
applicd in various ways. Part oí this success may be lll1derstood through
the parallelism with QED; this question has becn extensively studied in
the literature (~brshall 1965a, 1965b; Santos 1974, 1975a). Yet it seems
more natural to consider thc zero-point fluetuations as real, so that QED
mimies them rather than the oter way arOlU1d. This point of view has sig-
nificant eonsequenees in thennodynamics (Boyer 1969b).

Historically the first important use made of the zero-point
field was in the expIanation of the Casimir effeet, that is to say the at-
traetive force between neutral pIates due to the eorreIation between the
fluctuating dipoIes induced by the random field. This effeet was caleu-
latcd (casimir 1948) on the basis oí taking as real the QED fluctuations;
it was then derived in a physieally much more transparent way on the ba-
sis of SED by ~brshall (19ó5b; see also Henry and ~brshall 1966) and ex-
tensively studied by Boyer (1970, and referenees eited therc) fram the
same point oí view. Both attaeks prcdict an attractive force between the
pIates of the fonn

~nere A is the area oí the piates and d
Though this force is very small. it has

(4.12)

the distance scparating them.
been measured and the theory well
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confirmed (Sparnaay 1958).

Later, Casimir (1956) suggested that this attractive force,
acting bctwcen the infinitesimal charge elemcnts making up the electron.
couId countcrbalance the electrostatic repulsion and so explain not on1l'
the stability of the partiele but a150 the magnitude oí its charge. This

idea is very appealing: the quantization of charge would then be due to
the zeTo~point fluctuations, and a typicaJ fcature oí the submicroscopic
world would find its explanation in very large-scale, indeed cosmological,
cffects. Unfortunately, dctailed calculations far the case oí a s¡:herical

chargcJ shell suggest that the force is repulsive rather than attractive
(Royer 1968, 1970; ~lilton. de Raad and SChwinger 1978), though the last

word has not yet beco said (Milton 1930).
According to SED, the same fluctuating electromagnetic fieId

which on a macroscopic scale gives rise to the casimir effeet gives rise

to forces between neutral but polarizable moIecuIes that are well kn~TI

since the days of van der Waals. This point of vi~' has given resuIts of

great conceptual simpIieity ano exceIIcnt accuracy in the hands of Boyer

(1969a, 1970, 1972a. 1972b, 1974, 1975c).

lIaving thus establishcd the nature and statistical behaviour of

the zero-point [ieId, wc take !he next step towards answering the question

at the beginning of this section. Now the physical picture is simple: a

cIassieal charged particle, moving in the zero-point fieId, both absorbs

energy from i t and emits i t again (whenever i t is acceIerated). On the

average, stability will be achieved if the ernission and absorption rates

balance each other. The mot ion will then be largely that oí the same

particle wcre it neither to emit nor to radiate (as was Bohr's assumption

in the "old" theory), but modified by the fluctuations due to the back-

growld ficld. lhis ficId will be given by (4.10), wlIess nearby matter

pcrturbs i t. lhe equation of motion shoulo then simpIy be !he Newtonian

one, with one added tenn for emission and another one for absorption:

m!(t) = iC!. t) + mi!:: (t) + ef(t) 2e'
t = 3mcJ (4.13)

In writing (4.13), known as the Braffort-f.b.rshall equation, a

munber of sirnplifying asstonptions have been made. FirstIy, it is assumed
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that the magnetic part of the Lorentz force, i. l( !!/c, 1S negligible bc-
cause a11 vclocities are sm,ll compared to c. Secondly, it i5 assumcd
that the random part of !he elcctric fieId, f(t) J varies 5:10'..••.ly wi th !.
and may be taken, in the so-called dipolc approximation. to be independ-
ent cf it; this may well be a dangerous approximation, in view. oí the
dominant role dipole interactions play in the Casimir effeet. Thirdly.
the Abraham-Lorentz approximation has beco used fay the radiation rcac-
tion (whence a150 the valuc oí 1); this is valid fay a point particle
(which the electron probably is not. al least in SED, as we shall see
below), but is kn~n to be the source of troublesome.problems. Fourthly.
the influcncc oí the rest oí the univcrse on the electron is represcnted
by a simple additive termo This seems a rathcr simplistic assumption.
If .•..'e start from the fuIl notion of an open system, it is clear that ",re
carmot writc the cquation of motion cvcn for a single cIcctron, let alone
salve it; but making !he fundamental assumption that this influence may
be adequately represented by the stochastic background {ieId, then (ana-
lyzing it into its Fouricr components in a finite region of size L) ~e
may write a Hamiltonian

H = ~(£ - ~ ~' • V(!,) • ~ ¿ (p '. q 'w)
'::ffi C .::nA nA nA n

to find that !.' 12 and ~ sat is fy the equat ions of motion

mr = n-£.A"- c-

(•. l.)

( •. 15)

and

sin k • r
-n -

Pn,
• -- cos

W
n

( •. 16)

~
n ,A Pn, . kA = "'j'""'j" C L e: (q cos k • r - - s In ' .!J

- L nA nA nA -n - wn -n
(4.17)

together w ith
are the usual

corresponJing equations [or
polarization vcctors anu wn

the qn>..and Pn>... IIcre the
= c Ik l. Wc have sUPposcd

-n
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force f in (4.13) to be derived from a potential V(!.l. These equations
should make it elear that the Braffort-Marshall equation (4.13) can be
validly derived only under certain special circumstances which do no!
hold in general. (For further detail see, e.g., Cetto and de la Peña
1978). Among these are the statistical properties of the stochastic
fieId components qnA and PnA: if these do no! have independent Gaussian
distributions, then averaging over (4.14) may no! lead to (4.13), even
in first approximation.

Fifthly and lastly, all the equations have been written far the
non-relativistic case, and this is no! consistent with the ~bxwell equa-
tions the fields are expected to satisfy.

Since the Braffort-Marshall equation contains a stochastic
force far which only the statistical properties are known, direct solu-
tions oí it (possible in the linear case) are not normally of interest.
Rather one requires the calculation of expectation values (in the statis-
tical sense). The usual approach is therefore to derive from it a Fokker-
Planck equation for the probability density for finding the particle at a
point in the appropriate space. This involves further approximations, in
particular approximating the "real" process by a Mnkovian one, so as to
be able to write a Fokker-Planck equation in the usual way. This can be
done in various ways. Alternatively (de la Peña and Cetto 1977a, 1977b,
1978) one may write a Liouville equation,

(4. 18)

for the distribution of both field and particle variables, and then, using
Eqs. (4.14) to (4.17), eliminate the field variables. To first order one
finds that

Q Q(DE, t)

satisfies

:t Q + ~!'.. VrQ + Vp • [f + '(E' Vr)fJQ e2vp' f\(t,t'l • VpQ(t')dt' •
o

(4.19)
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whcrc G(t,t') is an operator involving the averageJ clectric ficId at
times t and t'. The integral tenn on the right of (4.19), very different
írom the diffusion tcrm in Bro~nian motian, implies that here the proccs5
is not ~E.rkovian and has a rruch longer "mernory". This is v..nyJ in the com-
manest approach, a suitable ~nrkovian approxUnation is sought foro

Far tIle traditional ....'ork1lOTscoí the thcoretical physicist, the
harmonic oscillator. thcsc and similar methods lead to very satisfactory
and complete Tesults. If the oscillator has frequcncy w and is surrounded

o
by a heat bath 3t ternperature T, then the equil ibrium distribution takes
the fonn (de la Peña and cetto 1979)

11-8 [ 2 l-I!l[n 1 2 ]Q(r.¡»=---exp ---- "-+"mwr ]
- ntJ. 1"18 hw l"'C 2m L. oo

where

(4.20)

I!l =

This is the Wigncr distribution (2.3) for the harmonic oscillator (Feynman
1972). Froro it all the usual quantum results may be obtained, including
the analysis into discrete levels oí cnergy (n +~)hwo' But these no longer
correspond to stable eigenstates; not only are they simply components of
the equilibrium state, but the instantaneous energy oí the oscillator
fluctuates widely around them. Yet because these fluctuations are highly
correlated, the width of emission or absorption lines is much narrower
and in faet exactly equals the quantum-theoretical prediction. Note here
that these conclusions resolve the difficulty the formal theories had
with the excited states, since thcsc no longer have an independent exist-
encc; we see hcre one oí the strengths of SED as a physical theory.

The same agrccment with quantum mechanics is fmmd when a con-
stant magnetic field is added to the harmonic-oscillator force; already
in 1963, ~nrshall was able to show írem this that SED predicts prccisely
the di~'gnetie behaviour found quantum-mechanical1y at a11 temperatures.
Indeed, even th(l spin may be taken into account (de la Peña and Jáuregui
1982) .

It is worth noting that if one further arder of carrectian
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terms beyond the ~bTkov approximation is introduced, an integral giving
the Lud) shift fay the harmanic oscillator is obtained. This integral
diverges lagari thmically, a difficu1ty a150 faced by QED. This diver-

gence is duc to that of the background radiation density, Eq. (4.11).
Since it suhsists even fay the free particle. the observed I~ shift

should be givcn by the diffcrence; this now converges, and the result in-
deed agroe, with QED (de la Peña and Cetto 1979).

WChave not discussed the derivation oí !he Schrooinger equa-
tian in SED. hherever a Mukov approximation to the SEDprocess is S3-

tisfacto~', such a derivation is possible and simply follows along the
lines alrcady describcd in scction 3. Indced, [ay any l-brkov process

with vclocitics derivable from potentia1 functions, a SchrOdinger equa-

tion mal' he wri tten (de la Peña 1967). But where the non.Markovian as-

pects are important, the SchrOdinger equation wou1d contain modifications

and additional tenns. This is to be expectcd: since SED explicitly takes

into account the interactíon with the electromagnetic field (or at least

its randan component), the quantum.theoretical equivalent of SEDmust

contain both radiation terms and others possibly reflecting spin effects;

and nei thcr appear in the Schrodinger equation.

That spin is intrinsic to SED is strongly suggested by the con-

sideration that in any stochastic mation of a particle (Markovian or not)

llildcr the influence on1l' of central forces we must have that (1.) = O,

where 1. = !.)( P. is the angular momentum, while (L2)., O. Using the hannon.

ic oscillator as a model and letting its frequency go to O, one mal' cal-

culate frem (4.13) that

(4.21)

1his is twice the quantwn- theoretieal value i f this is indeed the spin

(~brshal1 1963; Boyer 1975b; the spin interpretation is due to Jáuregui

and de la Peña 1981, de la Peña and JáuregJi 1982). One can .1150 show

that this "spin", even if its value is not yet right, does add to the or-

bital momcntumand gives rise to the correet gyramagnetic ratio.
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5. PROBID!3 AND PERSPECflVES IN STIXHASflC ELECfRODYNAMICS

A large number oí other prOblems have a150 becn tackled íTcm
the starting point oí SED; several results have becn Obtained that are
entirely satisfactory, in the sense oí coinciding with those oí the
usual quantum approach where this has a basis in experimental data, or
cIsc differing in ways not susceptible to experimental confirmatían. SED
thus appears to be a rather successful theory.

Yet in sorne prOblems quite unacceptable results turn up. From
among these we here select two situations which we believe shed light on
th€ outstanding qucstions in SED.

!he first ane is a study oí n harmonic oscillators coupled
through the zero-point field (Blanco and Santos 1979). The authors write

the equations oí JOOtion in the fonn

m,r.>-> (i 1 ••• n) (S. 1)

The radiation-reaction terro ineludes a150 the interaction (to lowest or-
der) between the particles and is derived in this fonn by Landau and
Lifshitz (1964); the supposition that the field is the samc for all par-
tieles is justified by the authors provided that the bounds R and n oí
the distances and frequeneies satisfy

R11 « c (5.2)

This is reasonable if the oseillator energy. which is at most mR2n2• is
of the order of hQ, for then Rn' (hQ/m)1/2 is a typical velocity. But

now the authors show that the system (5.1) can be decoupled in at least
one specific case into a single quantum-mechanical oscillator (having
radiation-reaction and randam-field terms) and n - 1 classical ones (hav-
ing neither). Taking for simplicity the one-dimensional version of (5.1),

with harmonic-oscillator forces, the equations oí motion reduce to

d2 2 T d'
[- + K- - Q Q -]X(t)
dt2 3c2 - - dt' - • 9. E(t) (5.3)
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where K is the diagonal matrix of force constants, g is the vector oí
charges and fe!) that oí positions; we have supposed the masses a11 = 1.
Now if K is a multiple oí the unit matrix, the Eqs. (5.3) wil~ decouple
if g (~le indicates the transpose) is diagc.naJ.;bu! this is possible on-
Iy if all elements of g bu! ene are O. Let this be the first; we then
have

2e 2
1

X, + k}x} 3c3 Xl e,E(t) (S.4a)

X, + k.x. O (i 2... n) (S.4b)
1 1 1

Blanco and Santos show that this case is actually more general than hcre
described; bu! even if there i5 much less degencracy in the system than
needed fay (S.4a,b) to resul!, they show (by an approxirnG,te procedure
corree! to second arder) that the degenerate oscillator modcs wil1 have
arre stochastic mode only, the others becoming classical.

This paradoxical and unexpected result has given rise to sorne
specu1ation. Further work remains to be done, but as we shall comnent
be1ow, a main souree of the problem turns out to be the dipa1e approxima-
tion used here for al1 the partieles.

The seeond problematie situation is the hydrogen atom. Simple
hcuristie arguments (sce, e.g., Claverie and Diner 1976) lead on~ to ex-
pect that SED should provide a satisfaetory aeeount in the shape of a
stable equilibrium state with an ensemble average energy at the well con-
finmed value of - 13.6 eVo Now a Fokker-Planek equation for the hydrogen
atoro can be derived in various ways (Marshall and Claverie 1980 , Clave-
ric and Soto 1982); the simp1est would appear to be in terms of the rele-
vant integral s of mation. The three classiea1 ones, the energy E, the
total angular momentum M and the excentricity £ of thc orbit, are related
by

whcre

E (1 + 2~PE)'/2
mk2 (S. S)
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(5.6)

is the potential and ro the electron mass. Choosing E and M as the inde-
pendent variables, the Fokker-Planck equation can be derived fairly
straightforwardly; but it dces not seemeasily soluble. Ilowever, in the
limit € --+ O it simplifics to the forro

o (5.7)

where W is the probability density in the (E,M,€) space, which in the lim-
it oí circular orbi ts depends on only one variable, because oí (S. S).
Taking this to be M, we find

-2M/hae (5.8)

This solution is not satisfactory, however. Its phase-space
integral diverges, and hence the expected value (E) for th~ energy becomes
O. The hydrogen atom, in other words, has zero binding energy and will
thcrefore ionize spontaneously. This corrcsponds very well to another 35-

pect oí the matter: the cocfficient oí W in the general Fokker-Planck
equation -not (5.7) - can be shown to vanish as a consequence of the
specific fonn oí the radiation-reaction tenn, so that

VI' = const (5.9)

is a1so a stcady-state s01ution. Now not only is (5.9) also not integrable
over phase space; the existencc of two distinct solutions, (5.8) and (5.9),
which corrcspond to aw/at = O means that there is no equilibrium. This is
intuitively obvious. for the system rrdght jump írem one of these to the
other in an uncontrolled fashion, and yet thc probability density would
not change in time --exccpt discontinuously and perhaps non-causally at
thc jumps. The conclusion can also be proved rigorously (Khas'minskii
1960): if a gcncralized diffusion process (such as the prcscnt one) is
recurrent, then it has a unique invariant measure --a unique steady-state
solution. that is to say, which corresponds to equilibrium. Conversely.
if it has an integrable invariant measurc, thcn the process is recurrent
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and the measurc i5 llllique. "Recurrence" hcrc is defined as follows: if
~ith probability 3 system returns to a given neighbourhood oí its start-
ing point within a finite time, it is recurrent. Note that a recurrent
system is not neccssarily ergodic; but a non-recurren! one is certainly
l;Ot ergodic, far thc probability of its definitely escaping fran any ti.

nite region in phasc space i5 grcater than O.
For thc hydrogen atoID, then, the Khas'minskii theorem shows

that thc SED solution is not crgoJic, so that there carmo! be an equilib-
rium state. This prcdiction i5 in complete and fundamental contradiction
with standard quantummechanics and with the experimental evidence.

The picture so far presented is this: SED arase frem the attcmpt
to gi ve quanturnrncchanics a smmdcr conceptual basis than the Copenhagen
interprctatian allowed, and a salrnder physical basis than the ensemble in-
terpretation provhled. In this the theory is clearly very successful.
It has a1so achieved considerable success in treating a wide range of phe-
nomen:..!in detall: wc have dcseribcd sorneaf the results ahoye. But it
still has te, faec a m.umcrof difficulties. Welist here the ones al-
ready diseussed:

The stochastic background field has a spectral density propor-
tiana1 to w3, which makcs the energy density divergent.
The Braffort-~brsha1l equation (4.13), starting point for de-
seribing the JOOtionoí partieles, is based on a number oí ap-
proximations whose va1idity is not well estab1ished.
Using thcse samc approximations, eoupled hannonic oseillators
turn out to have only one stoehastic m:x:leof motion.
The dcseription ofícrcd by SEDfor certain systems, notably
the hydrogen atom, is WTong.

To this list wc rnight add a last matter, not yet diseussed but implieit
in \..:hat has gone befare:

SEDdaes not exp1ain the quantumbehaviour oí neutral parti-
eles, for ~hieh (4.13) degenera tes into an ardinary Newtonian
equat ion.

Sornepossihle answers to these prohlcms will he sketehed below.
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At least twa possible sources oí modification have becn suggested
fer the tmrestricted w3 law. Firstly, if hw» 2mc2, the probability oí
pair creation can no longer be neglccted. And secondly, fer large w the
energy involved will come from a correspondingly large yolume, where a
flat space-time is no longer a good approximation; Lorentz invariance must
be widcned to a general-relativistic invariance. That this could remove
the w3 divergence seems to be implied in thE;:work oí Ford (1976), who
showed how to regularizc the energy-momentum tensor in a closcd Robertson-
Walker mctric so that the energy density fay the electromagnetic vacuum
is fini te:

u (5. 10)

where R is the radius oí the universe. One may speculate he re that a more
adequate thcory could derive the value oí h íTem cosmological considera-
tions. lhe scope of SED w~uld thus widen in a remarkable fashion.

It should be noticed that the divergences in SED create problems
quite analogous to those in QED. They may be side-stepped, as in QED, by
using a cutoff frequency (usually of the order of mc2/h) or by means of a
renormalization procedure. But in SED these rnethods appear to have more
physica1 significance thml in QED: thus the argument that using a cutoff
corresponds to ignoring a11 but a re1atively near neighbourhood of the
system finds a ready interpretation in the physical model under1ying SED.
~breover, there is less need to renonmalize in SED (Cavalleri 1981).

The approximate arguments menticned in connection with the de-
rivation of the Braffort-~brshall equation are not oí equa1 importance;
nor are the Umprovements oífered by recent work oí equal value. Thus
rewriting (4.13) in relativistic tenms, though it would represent a sig-
nificant stcp forward, remains essentia11y impossib1e because no theo-
retical background for relativistic stochastic proccsses is available; ~e
do not know how to fonnllate rel~tivistic ensembles in a consistent way.
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As far the background ficId, it is taken to be isotropic, homo-
geneous and charactcrized by a temperature T. The distribution oí the
fluctuations is assumed to be Gaussian. AIl of thcse assumptions are

quite well justified when the systcm under consideration is far from
othcr matter; bu! they are clcarly inadequate when other particles are
ncar. For instanee, the SED treatmen! oí the double slit wil1 evidently
be based on the anisotropy oí the ficId fluctuations felt by a particle
going through one slit whencvcr the other slit is open. To put it in
the anthropooorphic language habitual in the discussion oí this problem,

in SED it is neither the particle nor the slit it is going through that
"knows" wh("thcr the other slit is open, it is the random background ficId

tha! "transmits this infonnation" and influenccs the particle' s motion.

But wc are not yet in a J)()sition to ~urk with random ficlds h¿~ing a more

complicatcd distribution.

The inadequacies of th(' Abraham- Lorentz tenn, on the other hand,

are by now well understood. The tenn, in Lorentz' derivation, is computed

by considering an extended structure for the particle (with a charge den-

sity x(!) which is a continuous functian of the position vector), and at

the cnd going to zero particle radius. In this last operation an infinite

electromagnetic contribution to the partic1e's mass appears, nm-away 50-

lutjon~ becomc possible where the acceleration increases exponentially in

the abscnce of .111 external forces, and apparently ac.1usal behaviour may

be manifestcd. But taking this limit may be avoided if the particle is

accepted as possessing extension and hence internal structure; the ques-

tion of how this structure and its stability is to be explained remains

open -wl1ess perhaps casimir's suggestion (see aboye) tums out to work,

after a11. Within classical electrodynamics this is discussed by Kaup

(]9b6), ~bniz and Sharp (1977), Fran~a, Marques and da Silva (1978), de

la Peña, Jiméncz and ~bntcmayor (1982), and others quoted in these papcrs.

For SED the equatian of motian 00\\0' takes the fann

whcrc

t

.!J!:,t) + e1O.(.!:,t)- finLg(t-t')!(t')dt' (5. J J)
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(5.12)

and normally falls off very rapidly with t. It is derived from the form
factor X(k) oí the charge density. the details oí which tum out to be
unimportant provided its radius is larger than te = _)2r • where r is the

o o
classical electron radius. The factor n is given by

and

1 + 16.'1c fmg(t')dt'
o

(5.13)

(5.14 )

provides the lfinite) electromagnetic mass cOTrcction.
Unfortunately (5.11), with its extended memory term, is even

les s easy to work with than (4.13). So far suitable techniques have becn
developed only for the case when the externa] force i depends on nothing
but t. Thus a consistent description oí the free partiele has becn given,
and far a square-well potential resul ts have becn obtained that are in
entire agrcement with quantum mechanics; this is, indeed, the first strong-
Iy non-linear problem for which satisfactory answers have been found in
SED, suggesting that this approach is along the right lines.

The form of (5.11) presupposes that the particle has spherical
symmetry and is completely rigid; the approach described here can in prin-
cipIe be extended to remove these rather unphysical restrictions, by
writing the charge distribution as

X : X(,;:,,;:, i....) (5.15)

50 as to make it depend on the instantaneous conditioIls of the rootion. No
explicit dependence on t should appear, unless thc particle's mation is
already fixed for all time. Of course, the resulting equations are even
less tractable.

Mu.lli - component .&tj.&t: e.trI6

The result obtained by Blanco and Santos, though disconcerting
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at first sight, can be shownto be due to the special assumptions made in
setting up (5.1), and in-particular due to thc dipele approximation. Ií
we writc M,Q far the total mass and charge oí the n-particle system. l
fer the externa! force and B.£ far the position vectors oí the centre oí
mass and the centre oí charge, the sum oí a11 the equations (5.1) is

F + ..l..3 Q2"£•. + Q£(t)
- 3c

and subtracting this from (5.1) we have

(5.16)

m.f,
1-1

e. ...-!.MI'.
Q

e .
f.-.-!.F
-1 Q-

(i 2 ••• n) (5. 17)

where one cquation is redundant. Thus only the motioo oí the centre oí
mass has a stochastic component, while the individual variables

r. '
-1

~t>i
r --R
-i m.Q-

1

are purely classical in nature. Clearly tllC dipole approximation, in
making thc radiation Teaction identical far a11 particles, has removed an
essential part oí the problcm; but a more satisfactory formulation rernains
to be worked out. Note, by the way, that the need for both ~ and £ here
is an indication that we are dealing with an open system. which may ac-
quire a global angular momentum fran the randan backgrOlUld.

The hydAogen atom

The failure of SED in predicting no stable bound state for the
hydrogen atom is in a sense inverse to that of the SchrOdinger equation,
which -lacking any radiative interaction- predicts an infinite nunber
of stable states. This comparison suggests that the nature of stability
in SEU (and a150 in quantum mechanic5!) requires reexamination. AlI the
methods employed so far are in sorne sense equivalent to solving the
Fokker-Planck equation under the condition that the time derivative of
the probabi1ity density vanishes. This yieIos th{: equilibrium distribu-
tion proviocd the system is ergodic; indeed, evcn stronger ergodic sup-
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poSltlons are tacitly made, in that the system i5 judged to reach this
equilibrium in a very short time, oí the arder oí 10-235 far the electron.
(The pre-equilibrium evolution oí a system in SED is not expected to agree
in any sense wi th quantum theory, and may even in lhe future provide the
opportunity far experimental validation oí the theory). But far an i50-

lated hydrogen atom a simple handwaving argument serves to show that this
cannot hold. lf the electron in a ground-state orbit, presumably ncaT
- 13.6 eV, is subject to the background ficId oí SED, there is a 5mall
but non-zera probability that it will suffcr a fluctuation oí positivc
energy that allows it to escape. This is true far any patential [ey which

Lim V (.!:J < 00

r-
(5.18)

And sincc astrophysical arguments show that far any lifetime much longer
than about 20 years the autoionization of neutral cold monoatomic hydro-
gen would be unobservable, we may conclude that the SED prediction,
though apparently grossly mistaken, could well be the physically correet
one. The nonnally observed stability v.ould then be due to the nearby
presenee of other atoJnS. Note that for T > O quantum mechanies already
predicts spontaneous ionization, as was first shown by Brillouin (1930);
see also Fermi (1924), Farley and Wing (1981).

The usual hydrogen ground state is then a long-lived rnetastable
state which the prcsent ~thods of SED do not allow us to recognize. A
possible way out is suggested by the fact that, as we saw aboye, the sto-
chastic process involved is strongly non-r.1arkovian. Now if, from a r.1arko-
vian proeess in scvcral dimensions, we project out a lower-dimensional
one, this is not in general r.1arkovian any longer. The inverse is not
necessarily true, of course; but a hint that it might help ariscs when
attempting to derive a Fokker-Planck equation frem (5.11): this is best
donc, not in the usual phase spacc, but in an extended one with L,i,i as
coordinates. This suggest that a higher-d.iJnensional space, perhaps
(L,E,!], perhaps an cven larger ane, is appropriate even when better ap-
proximatians than (5.11) are uscd. Classical mcchanics in such a space
will have new intcgrals of motioo, and a suitable choice of their values
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could provide just the restriction which 3voids the escape to infinit}.
The metastable ground state would then become stable in the higher-dimen-
siona! phase space so restricted, since now the electron motian recovers
crgodicity; the usual methods would now apply to give appropriate 501u-
ticns. This is entirely analogous to what is currently done in statisti-
cal mechanics, where the Hamiltonian f1ows, non-ergodic ayer the usual
phase space, become ergodic when restricted to the hypersurface oí con-
stant energy. AA additional advantage oí such a procedure is that the
process is probably more nearly f.t1rkovian in the C!:.,!:.,!) space.

We might add here that such considerations could become even
more relevant if wc take into account that the random background field is
aften, perhaps usually, not in full equilibrium, even if it is close to
it; what effeet this will have on quantum-like behaviour as described by
SED remains an open question.

From the point of view oí SED, neutral particles fall into two
catcgories: those with rest mass greater than zero, and those with zero
(or almost zero) rest mass. The first present little problem; theyare
eons idered to be com¡)()site, and their componcnts have charges; they havc,
in general, a non-zero m,:Jgnetiemoment; they have extension and are thcre-
rore polarizable. TIlcse are various ways of stating that they interact
with the eleetro~'gnetie zero-point field mueh as charged partieles do,
and their quantum-like behaviour is therefore explained. Partieles with
no rest mass, on the other hand, eannot at present be deseribed by SED,
whieh almost everywhere makes the assumption that p£_rticle speeds are
wcll below the extreme relativistic IUnit.

Quite a numhcr of speculative suggestions relevant in this eon-
nect ion have been made; but only one, it seems to the present author, mer-
its scrious attention. It is due to Santos (197Sb, 1979). For every
ficld known at present, elementary particles exist that both interaet
with it and pos ses s electric charges. Santos argucs that thrcugh the me-
diation of such particles all fields acquire a background of random fluc-
tuations. If, furthenmore, these fluctuations reach (or at least approach)
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thenoodynamicalequilibrilJt1, their statistical characteristics, and in
particular, their energy amplitudes, will be shared. Hence we can under-
stand why Planck's constant, which describes this amplitude (see Eqs.
(4.1) and (4.2)), is a universal constant. Santos' universal stochastic
theory would explain why particles show the typical quantum fluctuations
even ~nen they do not ioteract with the electramagnetic field.

Santos' theory is a150 relevant to another matter which has not
rcceived much discussion. ~llnY oí the arb~nts uscd aboye to establish
the reality oí the random component in the electromagnetic field could,
and indeed have beco, applied to the gravitational field, and conceptions
such as random fluctuations in the metric tensor ar in space-time have
beco proposcd (see, e.g'l 1'-brch1934. 1937; Yukawa 1966; Blokhintsev 1975;

Frederick 1976; Namsrai 1980•• 1980b. 1981; Vigier 1982). If we accept
Santos' yi~', any discussion oí the relative mcrits oí such theories and
SED would be wide oí the mark: they do not excludc each other. The great
advantage of SED is then simply that a non-relativistic version is pos-
sible, on the basis oí a well understood classical theory, and with consi-
derable experimental evidence available íor the behaviour of the random
fluctuations.

6. CCNCLUS I CNS

In order to asscss the value of ".hat has so far been achieved,
it must be stressed that the aims of SED -in this unlike the fonnal sto-
chastic theories-- are not simply to reproduce the results oí standard
quantum mecranics, and even less to reproduce them exactly. SED arose out
oí the need to provide a physically plausible theory that should complete
the picture offered by the ensemble interpretation of quantum mechanics;
its aim must therefore be that oí fitting experiment at least as well as
quantum mechanics does, and to ofíer a basis for going beyond the present
limits oí this theory.

SED has certainly achieved a clarity and simplicity oí concep-
tual structure quite out oí reach of quantum mcchanic5 (in its Copcnhagen
version, at least). It has establishcu that systcms showing qu;mtum-like
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behaviour mus! be treated as apen systems, with a stochastic interaction
with the rest of the universe. It has a150 shown that this interaction
may be treated as an electromagnetic zero-point field with well established
statistical properties. It i5, furthenmore, a theory completely devaid oí
the conceptual paradoxes we associate with quantum theory. Finally, it
contains (as dces quantum mechanics) ooly ane undetermined quantity, name-
Iy Planck's constan!; with, howcver, an entirely differen! physical mean-
ing.

SED has a150 given adequate and detailed accounts oí a large
numher oí phcnomcna, ranging froro the van deT Waals forces through the
Planck distribution fay cavity radiation to the level structure of the
quantum harmonic oscillator. It has a150 given partial accounts of sev-
eral other problerns. The series of difficulties discussed aboye that it
still faces show, however, that it is in no sense yet a finished theory.

Indeed, what is perhaps mast striking is the variety of approxi-
mations that must be made before any specific problcm can be tackled. oc-
casionally, thesc approximations may even be excessive, as in the case of
the coupleJ harmonic oscillators. ~breover, even when the approxi~~tions
seem appropriate, the mathematical apparatus is complicated, sometimes
clumsy, rarely transparento Thus SED offers a striking contrast to quan-
tum mechanics: a clear and physically plausible conceptual structure com-
bineo with an unduly approximate and somcwhat unclear mathematical formal-
ism on the one hand, and obscure and contradictory conceptual background
togcther with a highly developed, indeed eIegant, formalism on the other.

This is not to suggest, of course, that sorne sort of compromise
could be effected to take advantage of what each side has to offer. It
i5 intended, rather, to underline the direction that, in the author's view,
future efforts could usefully take. For it is evident from the many sug-
gestions far furthcr work cornmented upon in the preceding section that
ample possibilities for development and far new ideas in SED remain open.
But, whatcvcr improvements these may bring with thcm in the ~1thematical
mcthods used, thcrc is every reason to believe that a11 this will be
achicvcd without any major shift in the basic conceptions of the theory.
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