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ABSTRACT

The conceptual problems of gquantum mechanics, which over the
last twenty years have led to the development of other approaches, are
outlined and briefly analyzed to show why only stochastic theories could
be acceptable. The formal stochastic theories, in which no physical ba-
sis for the stochastic process is presupposed, are discussed; some of
their weaknesses are adduced to justify the need for physical stochastic
theories. Of these, stochastic electrodynamics is chosen for more de-
tailed discussion as by far the most successful. Its achievements so far
are outlined, as are the difficulties it still faces. It is concluded
that its mathematical formalism is still not adequate to permit the full
exploitation of its conceptual framework, which appears to be sound.

RESUMEN

Se delinean y analizan brevemente los problemas conceptuales
de la mecl@nica cuintica que en los {ltimos veinte afos han provocado en-
foques alternativos, con el fin de mostrar porqué sdlo teorias estocdsti-
cas pueden ser aceptadas. Se discuten las teorias estocdsticas formales
que no presuponen ninguna imagen fisica para el proceso estocidstico; se

t Presentado en la asamblea general ordinaria de la SMF el 25 de marzo
de 1982.
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exhiben algunas de sus debilidades con el fin de subrayar la necesidad

de teorias estocisticas fisicas. De éstas se escoge la electrodinimica
estocdstica para un examen mds detallado por ser de lejos la mids exitosa.
Se bosquejan sus logros hasta la fecha, asi como las dificultades que

aiin ha de enfrentar. Se concluye que su formalismo matemitico todavia

no permite explotar a fondo su marco conceptual, el cual se ve stlidamen-
te establecido.

1. CONCEPTUAL DIFFICULTIES OF QUANTUM ME(HANICS

Almost from the first days of quantum mechanics, the debate con-
cerning its interpretation and correct foundation has raged, and it shows
no signs of flagging today. The majority of physicists —and certainly
almost all writers of textbooks— adhere in one way or another tc what is
known as the Copenhagen or orthodox conception; most textbooks, moreover,
present it in rather dogmatic fashion, leaving the young generation of
physicists in ignorance of the fact that there is a small but not negli-
gible group actively engaged in developing alternative views. It is the
purpose of this paper to present a brief review of what appear to be the
most significant achievements and the chief problems still open in this
line of research.

Quantum theory offers us a function ¥, defined over the whole
of space and satisfying a wave equation (which here we shall take to be
Schrédinger's), to describe corpuscular behaviour. Are the objects des-
cribed by quantum mechanics particles or waves? To this question Bohr
(1935) answers that they are at times particles, at times waves, and the
two descriptions complement each other yet never coexist; Mott (1964)
insists that only particles have real existence, while waves appear sim-
ply as the collective behaviour of many particles; de Broglie (1953) sees
a pilot wave carrying along, piggyback, a particle; Bunge (1967) offers
the "quanton'' concept —objects that are neither particles nor waves but

combine aspects of both. Quot homines tot sententiae.

To back up this apparently limitless variety of fundamental

concepts, a bewildering range of Gedankenexperiment have been developed

to show up one or another conceptual weakness. Even a quantum version of

Zeno's paradox has made its appearance in recent years (Misra and Sudar-
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shan 1977; for a simplified discussion see Peres 1980) .

The most famous of these thought experiments is, of course, due
to Einstein (Einstein, Podolsky and Rosen 1935, referred to, according to
custom, as EPR). Consider a compound system, e.g., a neutral hydrogen
atom, in a well-defined state. After a time it disintegrates, and when
the resulting particles are sufficiently far from each other so as no
longer to interact, we measure the momentum, say, of the electron; be-
cause linear momentum is conserved, the proton must be in the correspond-
ing eigenstate of its momentum operator, ¢(p), let us say. But had we
determined the electron's position instead, the proton would have to be
in an eigerstate ¥(x) of its position operator. Yet these two states are
incompatible and cannot simultaneously be used tc describe the proton.
Then how did the proton, beyond any interaction with the electron, know
which state to adopt?

In his equally famous rebuttal of the conclusion EPR drew from
this odd situation, Niels Bohr (1935) explicitly stated that their argu-
ments were straightforward consequences of the transformation theorems of
quantum mechanics; moreover, Schrédinger (1935, 1936), submitting the mat-
ter to a very searching examination, so far from removing the problem,
generalized and deepened it; he concluded that it indicated a serious de-
ficiency in quantum mechanics. Nevertheless, the EPR result has commonly
been treated as a paradox (e.g., Cooper 1950, Mittelstaedt 1974) or even
as fallacious (e.g., Sharp 1961, Rosenfeld 1968, Kellett 1977), —so much
so that it has been thought worthwhile to prove its validity from an en-
tirely different standpoint (Flores et al. 1981).

In fact, the conceptual confusion is so great that one philoso-
pher of science openly speaks of '"the great quantum muddle" (Popper 1967);
yet, perhaps one should say unexpectedly, quantum mechanics has achieved
remarkable advances in our knowledge of nature and continues to do so.
The "muddle' seems to be irrelevant. Even the out-and-out Copenhagen
textbooks reveal this: they emphasize Bohrian complementarity and the re-
duction of the wave packet (von Neumann's projection postulate) in the
first few chapters on basic concepts, but later on make no further use of
these notions.
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This situation is explained when a more detailed analysis shows
that opposing the Copenhagen interpretation there is only one genuine al-
ternative, which most physicists use in a quite intuitive fashion, often
without being aware of it, at the same time as they declare their firm
belief in Copenhagen. This alternative view is what is commonly called
the statistical interpretation, though a better name would be the ensem-
ble interpretation. The confusion of the great quantum muddle largely
arises from more or less inconsistent mixtures of these two points of
view, which in themselves can achieve considerable internal consistency;
they have, however, very different implicaticns when confronted with ac-
tual practice.

The Copenhagen view takes as its starting point the postulate
that the wave function ¥(x) describes one and only one physical system
—a given particle, for instance. When measurement on this particle
yields one result (and not another one of the possibilities whose proba-
bility as given by ¥ is > 0), this requires explanation. The projection
postulate is added for this purpose: the wave function '"collapses', in an
unpredictable fashion, into one of its components during the measurement
process. When a straightforward argument leads to Heisenberg's famous
inequality AxAp 2=%h, the two quantities Ax and Ap must be interpreted as
limits on experimental precision, for we have only one system to which
they could apply and no other plausible meaning is open for them. But if
the theory offers an intrinsic limitation on measurement precision, this
implies that in quantum mechanics we have reached as far as it is possi-
ble for physical research to go: a consistent defender of the Copenhagen
view therefore sees quantum mechanics as the ultimate theory, which may
be refined and extended but not improved upon. When, finally, we talk of
probability as applying to a single system (and therefore not defined by
means of an appropriate sample space), there is no consistent way of
seeing this as a property of the system by itself, so that it must be in-
terpreted as a degree of uncertainty in our knowledge of the system: thus
the way lies open to abandoning the fundamental philosophical principle
that physics (like any science) is about this world and not about our
knowledge of it: '"Quantum mechanics does not describe an objective state
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in an independent external world, but the aspect of this world gained by
considering it from a certain subjective standpoint” (Born 1949). And
one step further leads tc this: [When its position is being measured]
""the electron has to make a decision. We force it to take up a well-
defined position; before that it was not in general either here or there;
it has not yet decided on its position... it is we who produce the facts
we observe" (Jordan 1934). Even more disastrous conclusions are possi-
ble, as we shall see below.

The ensemble interpretation, in contrast, takes the wave func-
tion to represent an ensemble (in the Einstein-Gibbs sense), a generally
infinite set of theoretical replicas of the physical system under study,
all similarly prepared but otherwise not necessarily alike. Quantum-
mechanical predictions are therefore expectation values in the statisti-
cal sense: the values which we expect the mean of long series of measure-
ments to take. These predictions imply nothing for individual measure-
ment results (except, of course, that they must belong to the spectrum of
possible values) and hence no projection postulate is required to explain
them; only their relative frequency must be —and is accounted for. Hence
no "measurement problem'' arises (Moldauer 1972) and the endless theories
on this subject become superfluous, —always provided that due account is
taken of the distinction between the preparation of a state and a measure-
ment on it (Margenau 1959). Similarly, of course, the projection postu-
late (which gives rise to the "collapse'" mentioned above) is now super-
fluous: it was only needed to explain the individual measurement, a re-
quirement explicitly renounced here. The Heisenberg inequality is merely
a relation between the dispersions of two measurement series carried out
on systems described by the same ensemble; the two types of measurement
can but need not be carried out on the same set of systems, a conclusion
which mirrors the experimental procedure used to verify that the inequa-
lity holds; calling it an "uncertainty relation' rather than a 'variance
relation" is therefore misleading (on this see Popper 1967). And the
probability of any event is here well defined within an unproblematic
materialist philosophy: while the frequency interpretation of von Mises
(1919, 1928) and Reichenbach (1935) is possible, with some difficulties
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and awkward unsolved problems, it is much more straightforward to use the
ensemble concept itself as the basic notion (Brody 1975, 1979) on which
probability can be defined as the expectation value (i.e., the average)
of an appropriate indicator function.

The ensemble interpretation was first adumbrated by Slater
(1929). By 1935, when he was working on the EPR paper, Einstein had prob-
ahly accepted it; certainly he contributed considerably towards its deve-
lopment (Einstein 1949, 1953), as also did Blokhintsev (1953), Margenau
and his erstwhile pupil Park (Margenau 1958, 1959, 1963; Park and Marge-
nau 1968; Park 1968; Park and Band 1971; Band and Park 1979; Park, Band
and Yourgrau 1980) and many others. Detailed accounts of it will be
found in Ballentine (1970), Ross-Bonney (1975) or Brody (1983); see also
Jammer (1974).

2. THE INCOMPLETENESS OF QUANTUM MECHANICS

The principal achievement of the ensemble interpretation is its
conceptual simplicity and clarity: the traditional paradoxes do not ap-
pear in it.

In the EPR situation, for instance, the single measurement one
imagines according to the Copenhagen view does not determine the ensemble.
We need a long series of measurement results; if we let them range freely,
we obtain an experimental sample of the ensemble, while if we accept only
those that satisfy a particular condition, we obtain a subensemble, with
properties conceivably different from those of the complete one. 1f only
those electrons in a whole series are picked out which have the same po-
sition as the first one, then we have selected a subensemble whose corres-
ponding protons will be correctly described by a position eigenfunction.
But if we pick the electrons with the same momentum as the first one,
they will be a different set and hence make an entirely different suben-
semble; and so will their partner protons.

Similar considerations hold for other so-called paradoxes.

That the ensemble interpretation thus cleanly resolves the pa-

radoxes should make it very attractive. Yet the philosophers, for one,
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either ignore it completely (thus Putnam 1965) or dismiss it with a few
words (e.g., Fine 1973), even with contempt (Hanson 1959).

One reason for this state of affairs —apart from the bandwagon
effect— is, presumably, that the ensemble interpretation has not yet
achieved the status of a finished theory. If it is to provide the basis
for considering quantum mechanics a fully statistical theory, then it
should (among other things) offer an account of the joint probability
distribution of two observables, even non-commuting ones, so that expec-
tation values may be computed over phase space, in a way analogous to
statistical mechanics. To take the case of the position x and the mo-
mentum p of a one-particle system in one dimension, it should be possible
to derive from the wave function ¥(x) a distribution f(x,p) such that the
expectation of any function g(x,p) may be calculated as

gy = [ fomgpdxes 2.1

where § is the Hilbert-space operator corresponding to g. Egq. (2.1) in-

cludes of course the three special cases:

JJ f(x,p)dxdp = 1 s (2.2a)
Jf(x,pjdp - ¥z, (2.20)
Jf(x,dex = @2 (2.20)

where ¢(p) is the momentum-space wave function corresponding to ¥(x).
Many such functions f have been proposed; the best known was found by
Wigner (1932):

fw(x,p) = é% J YA (x * %hr]eirpw(x - %ﬁT]dT . (2.3)

and a complete phase-space formalism for (2.3) has been given by Moyal
(1949). But it can be shown (Shewell 1959) that none of these functions
is satisfactory over the whole range of quantum problems; for each such
function is linked to one particular quantization rule, through the as-
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sociation g(x,p) «— g, and no one of these rules will always work; the
Wigner function, for instance, is positive-definite only for a restricted
class of wave functions (Urbanik 1967, Hudson 1974). However, as Cohen
(1966) has shown, the class of possible distribution functions is cir-
cumscribed by

£(x,p) = 411—2 (” ¥(n + 2 h1) y(0,0)e* ™M y(n - L hrydedndr , (2.4)

where y(6,1) is any function satisfying
¥00,1) & F0;0) = T (2.5)

Cohen (1976) has also taken the first steps towards a complete phase-
space formalism with a general distribution of the type (2.4), and has
also shown (Cohen and Zaparovanny 1980) that they can be constructed so
as to have any desired linear correlation between x and p. For, given
any distribution h(u,v) on the unit square 0 <u,v < 1, we can define a
function

k(x,p) = h(u,v) - hu(u) - hv(v) + 1 5 (2.6}
where
1 1
hu(u) = J h(u,v)dv , hv{vJ = J h(u,v)du (2:7)
0 0
and
x P
usud = [ M©l%E L v - [1o@iz . @9
Then
£(x,p) = [|¥Y(x)|2[¢(p)|2{1 + ck(x,p)} (2.9)

(where the constant c can be arbitrarily chosen provided the factor in
{ } is never negative is a perfectly satisfactory joint probability den-
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sity, with a connecting function of the form
v(6,1) =” £(x,p) et %P gy qp f ¥ (n + 3 th)e*®Py(n - 2ohydn . (2.10)

The linear and higher-order correlations are (except for a trivial trans-
formation) c times those of h(u,v). Now these results show that construct-
ing a phase-space formalism may need much more information than standard
quantum mechanics provides; thus even if all the correlations are 0, i.e.,
if h(u,v) factorizes, neither its detailed form nor the value of ¢ is un-
ambiguously determined. The question whether the higher-order correla-
tions are experimentally accessible does not seem to have received atten-
tion.

It is commonly stated that quantum mechanics cannot be a statis-
tical theory since no joint probability distribution can be written for
it. The results just quoted show that this is not the case: rather do we
have an infinite set of possible distribution functions, since almost any
correlation whatever is compatible with a given wave function ¥. What is
true, however, is that no one choice of the connecting function y will
provide a satisfactory joint distribution for all cases. This is what is
usually meant when the existence of joint distributions is denied. Yet
such a requirement is patently absurd: not only do we not impose any si-
milar condition on classical statistical theories, but the condition
would furthermore imply the choice of a particular quantization rule,
thus making quantum mechanics dependent on classical mechanics in a high-
ly undesirable way (for further details see, e.g., Brody 1983).

Accepting, then, the freedem of choice of y as physically plau-
sible, we observe that in the ensemble interpretation quantum mechanics
is unfinished in that finding the form of ¥, say as the eigenfunction of
an appropriate Hamiltonian, still leaves undetermined the correlation
needed to define y and hence (2.4). The usually accepted form for the co-
variance, %' ((%p + PR) ), is not derived from the basic postulates of
quantum mechanics but is merely a plausible analogy with the classical

case. This is recovered in the limit h — 0. However, for any real A,

OGP+ PR + IXGRP - PR, (2.11)



470

also goes to the classical limit and satisfies the statistical require-
ments for this sort of parameter. Should it turn out that quantum-mecha-
nical arguments do not allow us to deduce a value for 3, then the ensemble
interpretation will be not so much unfinished as inccmplete, in the spe-
cific sense of EPR.

We return to their 1935 paper for the conclusions they drew
from the seeming paradox sketched above. They started frem two postu-
lates which we may rephrase as follows:

(i) The world has real and independent existence, its component
parts therefore have real properties, and one way of es-
tablishing the reality of a property is that one can meas-
ure its value without perturbing the system.

(11) A physical theory is complete if to each (relevant) real
property of the systems it describes, it assigns a theo-
retical counterpart.

Assuming the validity of the quantum-mechanical formalism, they
conclude that both the position and the momentum of the proton are real
properties, since they can be determined by measuring the corresponding
property of the electron, measurements which do not perturb the proton if
it is far enough away. But quantum mechanics cannot predict both values
for the proton: it is therefore incomplete.

It is this incompleteness that becomes unpalatably evident in
the ensemble interpretation.

One way to overcome it is the addition to quantum theory of so-
called "hidden variables'; these would make determinate such quantities
as the correlations discussed above. Now if these hidden variables are
"deterministic", i.e., reduce the theory to a non-statistical one analo-
gous to Newtonian mechanics, a well-known argument due to von Neumann
(1932; for a discussion of the limits to its validity and references to
earlier work see Brody 1983) shows the impossibility of introducing them
consistently. The von Neumann proof, in other words, implies that hidden
variables, if any, must be stochastic in nature.

More recently, Bell (1965) has used a revised version of the
EPR Gedankenexperiment to derive an inequality that hidden-variable theo-
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ries must satisfy if they are local; if, that is to say, electron and
proton no longer interact when they are far apart, so that a hidden va-
riable affects one or the other but not both. Because the quantum pre-
dictions, as well as most of the experimental evidence since produced,
violate this inequality, Bell concludes that local hidden-variable theo-
ries, even if they are statistical in nature, cannot account for quantum
phenomena (the extensive literature is reviewed in Clauser and Shimony
1978 or Bruno et al. 1977). Since then the very ingenious experiments of
Aspect et al. (1982) have seemingly yielded definitive confirmation even
in one extreme case. It is a pity that Bell's inequality can be proved
in at least three further ways (Wigner 1970 and also Holt 1973; Eberhard
1977, a simplified version of which is Peres 1978; and in a somewhat dif-
ferent vein, Suppes 1982); and none of these requires the notion of a hid-
den variable at all. Hence the violation of the inequality in quantum
mechanics cannot be laid at the door of the hidden-variable theories, and
the Bell argument is irrelevant to the question if quantum mechanics can
be completed by adding further dynamical variables. The inequality has,
indeed, been shown to require a tacit assumption quite evidently not sa-
tisfied by quantum mechanics (de la Pefia, Cetto and Brody 1972, Brody and
de la Pefia 1979, Brody 1980; for a different point of view see Selleri
and Tarozzi 1981). This has not prevented several misguided authors from
seeking to explain its violation by postulating the transmission of sig-
nals at speeds beyond that of light, either macroscopically (Costa de
Beauregard 1965) or microscopically (Vigier 1982). The resulting semi-
philosophical speculations —that physics has experimentally disproved
the reality of the material world (d'Espagnat 1979) or that it has es-
tablished the possibility of parapsychological phenomena (Le''pinay 1980;
Zohar 1980; Costa de Beauregard 1981) — can only bring discredit on phys-
icists:.

Those who perpetrate such speculations are apparently unaware
that their very assumptions make them unnecessary. For if signals can
propagate at superluminal velocities, then the electron and the proton in
the EPR situation never become independent, we cannot any longer conclude
that our choice of measurement on the electron has no influence on the



proton, and hence we ought not to accept the reality of position or mo-
mentum as proved by the EPR argument. In other words, hidden variables
are no longer necessary; indeed, the superluminal signals merely provide
one specific mechanism to implement the "feature of wholeness' sought by
Bohr (1963). We simply fall back into the Copenhagen interpretation.

It might be noted here that quite independently of the Bell in-
equality it should have been evident that quantum mechanics is inherently
a non-local theory. Thus to determine a particle's energy we have to in-
tegrate over its configuration space to compute (¥|H|¥), while the same
quantity is found directly from the local coordinates in classical me-
chanics; and the Pauli principle is another obviously non-local element
in the theory. That such points (and their implications) should be so
generally ignored is only another sign of how badly quantum mechanics is
understood.

We conclude that statistical local hidden-variable theories
cannot be excluded on these grounds. They are, however, undesirable on
quite other grounds. Physical theories possess an organic integrity
which is particularly important in the case of a fundamental theory such
as quantum mechanics, since as well as a formalism they provide the con-
ceptual background for our understanding; patches on them, such as hidden
variables, should therefore be considered at best a last resort. In the
present case, this implies that instead of adding stochastic variables we
should rather attempt to formulate a complete stochastic theory.

The stochastic nature of such a theory follows already from the
von Neumann hidden-variable argument referred to above: this shows that
the theory must be statistical, and since it must also give an account of
the time evolution of quantum systems, it must be based on one or more
stochastic processes. Another way to see this is to chserve that quantum-
like behaviour is of three kinds: the existence of discrete values for
certain dynamical variables, interference phenomena and other wave-like
behaviour, and the appearance of fluctuations in experimental results.
Now Bohr's "old" quantum theory took the first phenomenon as its starting
point; present-day quantum mechanics starts from the second; but the

third way has not yet been tried (L. de la Pefia, private communication).
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A more serious argument is the following: Every physical system is sub-
ject to the constant influence of the remainder of the universe (or at
least of large parts of it); in order to restrict ourselves to the va-
riables intrinsic to the system, we average over these influences. If
this averaging is done before setting up and solving the equations of mo-
tion for the system, we arrive at that central concept of classical phys-
ics, the closed system; if we average afterwards, we have a stochastic
theory for open systems. To the extent that this argument is valid, the
peculiar inconsistencies of quantum mechanics (at least in the Copenhagen
sense) are explained: it is an attempt to do closed-system physics where
the open-system effects are still significant. This matter will be taken
up again below.

Several varieties of stochastic theories have been developed.
In what follows we shall classify them as formal or physical theories ac-
cording to whether they postulate the necessary stochastic process or de-
rive it from a physical model. In spite of considerable successes
achjeved by the formal theories, we shall argue that they have certain
fundamental weaknesses, and we therefore devote more attention to that
physical stochastic theory which has shown far-reaching results.

3. FORMAL STOCHASTIC THEORIES

The first to suggest a formal stochastic approach was Schrddinger
(1931), who observed that the equation which bears his name has the form
of a diffusion equation. However, the diffusion coefficient is purely
imaginary when ¥ itself is taken as the stochastic process, so that the
equation is of hyperbolic type and hzs time-reversible solutions, while a
physically meaningful diffusion process must have a parabolic differential
equation.

The first reasonably complete stochastic theory was formulated
by Fényes (1952). He begins his development by postulating, without fur-
ther discussion of his choice, a Markov process for the position vector;
for the probability density p(r,t) of this process he then establishes
the Fokker-Planck equation
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ap _ - i
20 —-3, ©') + 33,00 (3.1)

where b, is the drift velocity:

1

b,(r,t) = lim &

(ri(t +4t) - ri(t)) H (3.2)
§t»0t

while Dij is the diffusion tensor:

= 1 1 + = + =
Dij - Giig+ Ef'({ri(t &t) ri(t))(rj(t §t) rj(t))) . (3.3)

In (3.1), 9; indicates partial derivation with respect to T, repeated in-
dices are summed over, and () signals an ensemble average (that is to say,
over all possible realizations of the stochastic process). Fényes defines

for this process a velocity operator

c, = B~ 8By 3 (3.4

[ri,E.] = B, s (3.5)

Frcm (3.5) he can derive a very general inequality of the Heisenmberg type:

Arse, # e ~ v Xe ) #4m, )] . (3.6)
1] 1] 1 E 1]
1f the Markov process is a simple diffusion, then

L)ij = Dé}ij s (3.7)

with D a constant; neglecting the covariance between 1 and Ej in (3.6)

yvields in this case the more usual Heisenberg inequality:

Ar Ae, 2 DS . (3.8)
. | ij

Fényes then supposes that the drift velocity can be derived from a po-
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tential s,

dids (3.9)

where m is the mass of the particle; then p can be written in terms of
another potential o:

o= stem [ ] (3.10)

Now with the definition

¥ = oexp [-i—gﬁl]exp [-%] ’ 3T

the Fokker-Planck Eq. (3.1) can be rewritten as

- o5 (¥%) + div (YU¥* - yRTY) = 0 . (3.12)
This is the quantum-mechanical continuity equation provided we fix

p = A (3.13)

Fényes also derived the Schridinger equation but needed to pos-
tulate for this a somewhat artificial Lagrangian. A much cleaner deriva-
tion is due to Nelson (1966, 1967). He writes the Markov process in dif-

ferential form as

dri(t) = bi(zjt)dt ¥ dwi(t) i (3.14)

where bi is the drift velocity as before and W, (t) is a Wiener process,
that is to say a stochastic process of Gaussian distribution with zero
mean and a diffusion tensor

Dy = (AW (t)dW,(t)) = D5 dt (3.15)

(This sort of theory was of course first established for Brownian motion,
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kT
mB

instead of (3.13), is the diffusion coefficient). Nelson now defines the
backward drift velocity

8

bi(z,tJ = lim Tt

(r (t) - r,(t-61)) . (3.16)
§t>0t

Note that this does not correspond to a time reversal of the process, but
to a change in how the ensemble averaging is done: both in (3.2) and in
(3.16) all trajectories going through ri(t) are selected, but in (3.2)
their position a time &t later is averaged over, while in (3.16) it is
their positions a time &t earlier that are used. With (3.16) we also

have, for the same stochastic process,

dr (t) = b (r,t)dt +dW (v) (3.17)

with Wi(t) an analogous Wiener process. Now (3.14) and (3.17) yield two
Fokker-Planck equations:

dp _ _

o Bi(bip) + Daiaip 5 (3.18a)
do . 3 (b.p) - 2,3 (3.18b)
dt 157% E ) ip ? :

which together give the continuity equation

. .
2 - e (3.19)

where we have defined

(b.. + b} . (3.20)

If Vi is derived from a potential function, then it is straightforward to
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show that for the function ¥ of (3.11):

-i ééf Y = DYy - 51@ Yy + B(B)Y (3.21)
where B(t) can be made to vanish by a suitable normalization of the velo-
city potential. With the identification (3.13), this is then the
Schrdinger equation.

A third and physically perhaps more plausible version has been
given by de la Pefia (1969, see also de la Pefia and Cetto 1975, 1982). Ob-
serving that for functions g(r,t) of a stochastic variable r one may de-
fine numberless derivative-like operators, they chose two:

1 -
g = (3™ -, (3.22)

1 -
vg® = L 1@e® + gy - g (3.23)

(o) )

= g(xlt))s g(t = g(r(t+8t)) to clarify the nota-
tion). When we take g(xr(t)) = T, these are evidently related to the two
drift velocities by

(we have written g

v, = %[bi » By (3.24)

Dr,

1 1

= =1 B =
Vri = u, = E(bi - bi) = DBian 5 (:3.25]

where in (3.25) we define the stochastic velocity u, . Now the stochastic
generalization of Newton's equation,

mad?vi = £, (3.26)

is plausibly written as a linear combination of the four accelerations
Dug, Dv,, Vui, Yv,. It should satisfy three physical conditions:
(i) Given the time-reversal properties

D(t) =-D(-t) , yir) = ¥(-t) . (3.27)

V(0 =-v 8, w0 = u G, (5.28)
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which follow from the physical meaning of these quanti-
ties, the generalization of (3.26) should be invariant
under time reversal, just as (3.26) is;

(1i) the probability density should satisfy the continuity
equation (3.19);

(iii) in the classical limit (D + 0), Eq. (3.26) should be re-

covered.

The stochastic generalization of (3.26) then becomes

m(Dvi = Ayui] = f, " (3.29)

.

with A an as yet determined parameter. If the force f; also has a poten-
tial V, then one can show that so do the velocities:

<
I

ZDBiS . (3.30a)

=
L[}

ZDBiR . (3.30b)

Now (3.29) and (3.19) may be integrated once and the solution rewritten
in linear form, to give

d = 2
Sov, = mb2aeav, v VY, (3.31)

+2mDva

where

oR28/ vy

v, = : (3.32)

In (3.31) X is still undefined; its absolute value may be com-
bined with D, so that only its sign is significant. If ) = 1, Egs.
(3.31) are parabolic and describe the irreversible evolution of the real
amplitudes ¥ ; superposition is always additive so that no interference
effects appear, and we have a stochastic process of Brownian type. If on
the other hand ) = -1, Egs. (3.31) reduce, using (3.13), to Schrodinger's
equation, which is hyperbolic and has solutions that allow interference
terms to appear and that admit time reversal. It is evident from this

formulation that the two stochastic processes, while they have much in
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common, must nevertheless be clearly distinguished because they also show
essential differences (de la Pefia 1968, 1969) .

This detailed discussion of the three approaches should make
clear their strengths. Among these are a conceptual clarity (shared by
the ensemble interpretation) and a simple mathematical structure for the
stochastic process. They allow several generalizations beyond quantum
mechanics (for instance, extended and sharpened Heisenberg relations)
and a clearer discrimination between various sorts of stochastic processes.
These advantages have made feasible a long list of applications of very
diverse nature. To quote only a few examples: a phenomenological descrip-
tion of spin has been given (Dankel 1970, 1977; de la Pefia1970a, 1971);

a path-integral formalism has been developed (Berrondo 1973) and used to
study barrier penetration (Weaver 1978; Yasue 1981); relativistic general-
izations have been developed (de la Pefia 1970; de la Pefia and Cetto 1971;
Cetto and de la Pefia 1971; Lehr and Park 1977; Vigier 1979); and a
stochastic field theory has been developed (Moore 1980 and references
therein). The theory is restated from a different point of view by David-
son (1979). More detailed accounts and further references will be found
in Guerra (1981) and de la Pefia and Cetto (1982). One of the most re-
markable uses made of the basic conception of these approaches was to
develop an ergodic theory of quantum processes —or at least the rudiments
of it— (Claverie and Diner 1973, 1975) which has helped to dissipate sev-
eral of the confusions in the '"great quantum muddle'.

It should be noted that the correspondence between the stochastic
process in a formal and the equivalent quantum-mechanical description is
not one-to-one. As Suppes and Zanotti (1976) have shown in general terms
and Davidson has (1979) demonstrated, to each wave function there corre-
sponds an infinite set of different Markov processes. In other words, the
incompleteness of quantum mechanics is even more profound than was noted by
EPR (1935): the quantum mechanical account does not even fully specify the
equivalent stochastic process.

In spite of their considerable achievements, the formal stochas-
tic theories have received much criticism (Nicholson 1954; Gilson 1968;
Albeverio and Héegh-Krohn 1974; Kracklauer 1974; Ghirardi et al. 1978;
Grabner et al. 1979; Mielnik and Tengstrand 1980). Unhappily, many of
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these comments either do not take into account the distinction worked out
above between Brownian and quantum stochastic processes, or else take
(3.16) to be a time-reversed stochastic process. Gilson attempts to show
that the diffusion coefficient (3.13) must be zero if quantum mechanics

is a stochastic process, and overlooks the fact that he specifies the con-
ditions, not for a quantum process, but for a classical process of the
Maxwell-Boltzmann type, where indeed, as already pointed out by Fényes
(1952), no diffusion term appears. Some other questions raised by these
critics are commented upon by Lavenda (1980).

A more serious point was discussed first by Albeverio and Héegh-
Krohn (1974) and later by several of the authors cited. Since the formal
stochastic theories lead straightforwardly to the SchrBdinger equation,
they accept also the excited-state solutions of the latter as possible
forms for the density. But these solutions have nodal surfaces at which
p = 0. The stochastic system thus has vanishing probability of crossing
these surfaces, which therefore break up configuration space into mutual-
ly inaccessible regions. Nelson (1967) suggested reconnecting them by a
small perturbation. Though this way of solving the problem is physically
not unreasonable, it does tacitly make the theory at best an approximate
one. Another solution of the difficulty is mentioned below.

But only the last of the quoted papers shows an understanding
of where the real weakness of the formal theories lies, namely in their
very formality: they provide us only with a mathematical model of the
underlying stochastic process. The physicalmechanism behind this process
is not elucidated. There cannot then be any explanation beyond that of
mathematical convenience of why it should be Markovian; deriving the ve-
locities from as many potential functions, though plausible in general
and certainly an important special case, does not receive any adequate
physical justification; nor, finally, can one explain the identification
of D by means of Eq. (3.13). What these theories provide, in other
words, is a mathematical illustration of the ensemble interpretation,
which they therefore show to be perfectly viable. But while their consid-
erable contributions should not be underestimated, it must be said that
they do not offer us any deeper physical understanding.
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The physical stochastic theories pursue the aim of remedying
this defect. They propose specific mechanisms for the stochastic proc-
esses underlying quantum mechanics. In the next section we discuss the
most successful of these theories; section 5 will review some of the dif-
ficulties it exhibits, and also some of the suggestions that have been
made for resolving them.

4. A PHYSICAL STOCHASTIC THEORY: STOCHASTIC ELECTRODYNAMICS

Stochastic electrodynamics (SED) originated almost in parallel
with the formal stochastic theories discussed above. The idea of treat-
ing the vacuum fluctuations of quantum electrodynamics (QED) as real rath-
er than virtual lies behind the work of Welton (1948) and Weisskopf (1949),
but seems first to have been spelt out explicitly by Kalitsin (1953). It
was developed quite independently by Braffort and coworkers (Braffort,
Spighel and Tzara 1954, Braffort and Tzara 1954), and also by Marshall
(1963, 1965a, 1965b). A detailed account is given by de la Pefia (1983),
following shorter reviews by Boyer (1975a) and Claverie and Diner (1976).

These and later papers consider real fluctuations of the clas-
sical electromagnetic field. The origin of these fluctuations is best
understood as a special case of the conception, mentioned above, that a
physical system is isolated from the rest of the universe only to first
approximation. A charged particle, rather than moving in a null field,
must be considered to move in a random background field formed by the un-
correlated emissions of all accelerated charges in the universe. The fun-
damental question for SED is, then: how does a classical charged particle
behave in such a random field? This question may be broken up into sev-
eral parts.

The first part is the statistical characterization of the ran-
dom electromagnetic background field. Because we expect this field to
play a role in the stability of atomic structures (which would collapse
rapidly if electrons were classical particles moving in a null background),
even at the absolute zero it must have a zero-point component that is
therefore temperature independent. Such a component, of energy %—hw per
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normal mode, was postulated already by Planck (1911, 1912), and its cos-
mological and other consequences were explored by Nernst (1916). In or-
der to find its distribution, arguments of simple physical plausibility
suffice. To begin with, even if quite strong correlations between the
sources are assumed, Einstein and Hopf (1910) showed that the Fourier
components of such a radiation field have amplitudes with independent
Gaussian distributions; a fortiori this holds when the sources have no
such correlations. The means of these distributions are of course zero,
and only the fluctuation amplitudes (i.e., the standard deviations) remain
to be determined. A number of quite different arguments converge to show
that, as well as

<Ei(£’t)) = (Bi(z,t)) =0 (4.1a)

we have

<Ei(m)faj(w-)> = <1§i(m)ﬁj(m')>= muaﬁ(m—m')éij . (4.1b)

where Ei and Bi are the (instantaneous) components of the electric and
magnetic vectors, while the symbol ~ indicates the Fourier transform. On-
ly o remains now to be determined. The main arguments are: Firstly, if a
charged particle moves through the radiation field, it should not suffer
a frictional drag which would be observable; in other words, the distri-
bution function of the field components should be lorentz invariant,

since otherwise it could provide a privileged reference frame for which
there is no evidence. Secondly, if the energy density at the absolute
zero does not vanish, it must be given by the low-temperature limit of
Wien's law,

plw,T) = w3e(w/T)

Thirdly, the Wheeler-Feynman absorber theory, combined with the very sug-
gestive idea of random boundary conditions, yields a random action on

charged particles of precisely the right spectrum (Braffort, Spighel and
Tzara 1954; Pegg 1980). Lastly, the fluctuation-dissipation theorem, ap-

plied to the radiation reaction, yields the same form of random field
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(Milonni 1981). All these arguments yield the form (4.1b); since the
number of normal modes per unit frequency interval is proportional to w?,
this makes the energy per normal mode proportional to w, as Planck had
already anticipated and as is, furthermore, in agreement with QED (even
though we are considering real fluctuations, not virtual ones).

The value of o may be found as follows; if we add the hypothesis
of a random zero-point field characterized by (4.1a) and (4.1b) to the
classical assumptions that lead to the Rayleigh law for the black-body ra-
diation, then instead the Planck distribution (including the zerc-point
term) is found; comparison with the usual form then fixes ao:

4h
¢ T e (4.2)

(Jiménez, de la Pefia and Brody 1980; Jiménez and del Valle 1982).

A very simple way of seeing how the Planck distribution arises
is due to Boyer (1969b) and Theimer (1971). Write the energy of the
black-body radiation at a mode of frequency w as the sum of the zero-
point and thermal parts:

e(w) = €, t &p - (4.3)
If the amplitudes of the field components have a Gaussian distribution
with zero mean, then the variance of this energy is given by

9 = Iy2 um il g

og £ E2) o *HL  ; (4.4)
Here we suppose the zero-point and thermal components to be uncorrelated:
this is reasonable, since they arise from different sources, the one is
Lorentz invariant and the other not. Now we know that the zero-point

field is also Gaussian:

o2 = fe )2 . (4.5)

Combining these three equations, we have

c% = (g 0%+ 2e Xe 3 . (4.6)
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We now employ a well-known result for the variance of the energy of a sys-
tem in thermal equilibrium with a heat bath at temperature T (see, e.g.,
Reif 1965):

@ = 38 B = - (4.7

a relation that Einstein (1904) made very effective use of in analyzing
Planck's law. Applying (4.7) to the thermal fluctuations (4.6) we get

B(CT)

oB

+(e )2+ Ae_Ne ) = 0 . (4.8)

The solution of (4.8) is

2(&0)
)~ ST T (4.9)

Note that Planck's law appears simply because of the cross term in (4.8).
Without it, one obtains the Rayleigh law. This cross term is of course
due to the assumption of a random zero-point field —we do not even need
to know its spectrum in order to derive (4.9), we could obtain it by com-
parison with what we know experimentally to hold. No other non-classical
assumption enters the argument. Hence we can no longer regard the Planck
spectrum as a quantum phenomenon; it is, rather, the result of two special
assumptions, that there is a zero-point field, and that equilibrium with
it is achieved. But whether these assumptions lead us beyond the frame-
work of classical physics is, perhaps, a terminological rather than a
physical question.

The conclusion from such arguments is that the total random
background field which is in equilibrium at a temperature has a spectral
density which is the sum of the zero-point field and the Planck term
(4.9); putting in the form (4.1b) for (EO) multiplied by the mumber of
normal modes per frequency interval and using the value (4.2) for a, we
find

3 3
p(w,T) = L 2 Mo coth B9 (4. 10

2n2c3 m2c3[exp(hw/kT) - 11 2n2c3 kT
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where k is the Boltzmann constant.

It must not be forgotten, however, that if other matter is pre-
sent in the neighbourhood, perhaps not even distributed isotropically,
then (4.10) will not apply: the field will have a distribution that must
be worked out anew for each case. This fact has consequences we mention
below.

The concept of the zero-point field thus established has one
important blemish: with the spectrum (4.10), the zero-point energy densi-
ty, given by

i = Jp(m,O)dw , (4.11)
(o]

diverges. We come back to this problem below. Disregarding it here, we
note that the concept of the zero-point field has been very successfully
applied in various ways. Part of this success may be understood through
the parallelism with QED; this question has been extensively studied in
the literature (Marshall 1965a, 1965b; Santos 1974, 1975a). Yet it seems
more natural to consider the zero-point fluctuations as real, so that QED
mimics them rather than the oter way around. This point of view has sig-
nificant consequences in thermodynamics (Boyer 1969b).

Historically the first important use made of the zero-point
field was in the explanation of the Casimir effect, that is to say the at-
tractive force between neutral plates due to the correlation between the
fluctuating dipoles induced by the random field. This effect was calcu-
lated (Casimir 1948) on the basis of taking as real the QED fluctuations;
it was then derived in a physically much more transparent way on the ba-
sis of SED by Marshall (1965b; see also Henry and Marshall 1966) and ex-
tensively studied by Boyer (1970, and references cited there) from the
same point of view. Both attacks predict an attractive force between the
plates of the form

- “20 hehd ™" (4.12)

where A is the area of the plates and d the distance separating them.
Though this force is very small, it has been measured and the theory well
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confirmed (Sparnaay 1958).

Later, Casimir (1956) suggested that this attractive force,
acting between the infinitesimal charge elements making up the electron,
could counterbalance the electrostatic repulsion and so explain not only
the stability of the particle but also the magnitude of its charge. This
idea is very appealing: the quantization of charge would then be due to
the zero-point fluctuations, and a typical feature of the submicroscopic
world would find its explanation in very large-scale, indeed cosmological,
effects. Unfortunately, detailed calculations for the case of a spherical
charged shell suggest that the force is repulsive rather than attractive
(Boyer 1968, 1970; Milton, de Raad and Schwinger 1978), though the last
word has not yet been said (Milton 1980).

According to SED, the same fluctuating electromagnetic field
which on a macroscopic scale gives rise to the Casimir effect gives rise
to forces between neutral but polarizable molecules that are well known
since the days of van der Waals. This point of view has given results of
great conceptual simplicity and excellent accuracy in the hands of Boyer
(1969a, 1970, 1972a, 1972b, 1974, 1975c).

Having thus established the nature and statistical behaviour of
the zero-point field, we take the next step towards answering the question
at the beginning of this section. Now the physical picture is simple: a
classical charged particle, moving in the zero-point field, both absorbs
energy from it and emits it again (whenever it is accelerated). On the
average, stability will be achieved if the emission and absorption rates
balance each other. The motion will then be largely that of the same
particle were it neither to emit nor to radiate (as was Bohr's assumption
in the "old" theory), but modified by the fluctuations due to the back-
ground field. This field will be given by (4.10), unless nearby matter
perturbs it. The equation of motion should then simply be the Newtonian
one, with one added term for emission and another one for absorption:

mi(t) = £(r,t) +mr (t) + eE(t) , T = f—n“fg . (4.13)

In writing (4.13), known as the Braffort-Marshall equation, a
number of simplifying assumptions have been made. Firstly, it is assumed
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that the magnetic part of the Lorentz force, i:t@/c, is negligible be-
cause all velocities are small compared to c. Secondly, it is assumed
that the random part of the electric field, E(t), varies slowly with r
and may be taken, in the so-called dipole approximation, to be independ-
ent of it; this may well be a dangerous approximation, in view of the
dominant role dipole interactions play in the Casimir effect. Thirdly,
the Abraham-Lorentz approximation has been used for the radiation reac-
tion (whence also the value of t1); this is valid for a point particle
(which the electron probably is not, al least in SED, as we shall see
below), but is known to be the source of troublesome problems. Fourthly,
the influence of the rest of the universe on the electron is represented
by a simple additive term. This seems a rather simplistic assumption.

If we start from the full notion of an open system, it is clear that we
cannot write the equation of motion even for a single electron, let alone
solve it; but making the fundamental assumption that this influence may
be adequately represented by the stochastic background field, then (ana-
lyzing it into its Fourier components in a finite region of size L) we

may write a Hamiltonian
= € a2 1 2 2
Hem@-g 2 + V@) * 7] 7+ %) (4.14)

to find that r, p and A satisfy the equations of motion

mr o= p-<cA , (4.15)
b = -W(1) L e) (r-c )k ( sink +r + Eﬂircos k 1) (4.16)
p = -W(x Fnl_ nd/2n % = -n = :
and
4 A pnk . k 4.17
A=/>gc]E,(q, cos E-g=—gnl 6 . (4.17)
L ni n

together with corresponding equations for the Aoy and P,y Here the EnA

are the usual polarization vectors and w_ = clhn[ We have supposed the
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force f in (4.13) to be derived from a potential V(r). These equations
should make it clear that the Braffort-Marshall equation (4.13) can be
validly derived only under certain special circumstances which do not
hold in general. (For further detail see, e.g., Cetto and de la Pefia
1978). Among these are the statistical properties of the stochastic
field components q_, and Pyt if these do not have independent Gaussian
distributions, then averaging over (4.14) may not lead to (4.13), even
in first approximation.

Fifthly and lastly, all the equations have been written for the
non-relativistic case, and this is not consistent with the Maxwell equa-
tions the fields are expected to satisfy.

Since the Braffort-Marshall equation contains a stochastic
force for which only the statistical properties are known, direct solu-
tions of it (possible in the linear case) are not normally of interest.
Rather one requires the calculation of expectation values (in the statis-
tical sense). The usual approach is therefore to derive from it a Fokker-
Planck equation for the probability density for finding the particle at a
point in the appropriate space. This involves further approximations, in
particular approximating the "real" process by a Markovian one, so as to
be able to write a Fokker-Planck equation in the usual way. This can be
done in various ways. Alternatively (de la Pefia and Cetto 1977a, 1977b,
1978) one may write a Liouville equation,

] o
sg R+ IR = 0 , R = R(I’E’{qna}’{pnx}’t) . (4.18)

for the distribution of both field and particle variables, and then, using
Egs. (4.14) to (4.17), eliminate the field variables. To first order one
finds that

g = Qlr.pit)

satisfies

] ‘ 1 r 1
QP 7Q+ Y, [£+1@-vENQ = ezvp-J G(t,t') + v Q(t)at' ,
fe]

(4.19)
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where G(t,t') is an operator involving the averaged electric field at
times t and t'. The integral term on the right of (4.19), very different
from the diffusion term in Brownian motion, implies that here the process
is not Markovian and has a much longer "memory". This is why, in the com-
monest approach, a suitable Markovian approximation is sought for.

For the traditional workhorse of the theoretical physicist, the
harmonic oscillator, these and similar methods lead to very satisfactory
and complete results. If the oscillator has frequency w, and is surrounded
by a heat bath at temperature T, then the equilibrium distribution takes
the form (de la Pefia and Cetto 1979)

- 11-@ 2 1-®(p 1 _ 2
WL = 5 778 ™PL- 5 158 | n * 7 ™" ]] ’ Vit
where
-he /T
® = e g

This is the Wigner distribution (2.3) for the harmonic oscillator (Feynman
1972). From it all the usual quantum results may be obtained, including
the analysis into discrete levels of energy (n +%Jhm0. But these no longer
correspond to stable eigenstates; not only are they simply components of
the equilibrium state, but the instantaneous energy of the oscillator
fluctuates widely around them. Yet because these fluctuations are highly
correlated, the width of emission or absorption lines is much narrower
and in fact exactly equals the quantum-theoretical prediction. Note here
that these conclusions resolve the difficulty the formal theories had
with the excited states, since these no longer have an independent exist-
ence; we see here one of the strengths of SED as a physical theory.

The same agreement with quantum mechanics is found when a con-
stant magnetic field is added to the harmonic-oscillator force; already
in 1963, Marshall was able to show from this that SED predicts precisely
the diamagnetic behaviour found quantum-mechanically at all temperatures.
Indeed, even the spin may be taken into account (de la Pefia and Jauregui
1982) .

It is worth noting that if one further order of correction
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terms beyond the Markov approximation is introduced, an integral giving
the Lamb shift for the harmonic oscillator is obtained. This integral
diverges logarithmically, a difficulty also faced by QED. This diver-
gence is due to that of the background radiation density, Eq. (4.11).
Since it subsists even for the free particle, the observed Lamb shift
should be given by the difference; this now converges, and the result in-
deed agrees with QED (de la Pefia and Cetto 1979).

We have not discussed the derivation of the Schrddinger equa-
tion in SED. Wherever a Markov approximation to the SED process is sa-
tisfactory, such a derivation is possible and simply follows along the
lines already described in section 3. Indeed, for any Markov process
with velocities derivable from potential functions, a Schridinger equa-
tion may be written (de la Pefia 1967). But where the non-Markovian as-
pects are important, the Schrddinger equation would contain modifications
and additional terms. This is to be expected: since SED explicitly takes
into account the interaction with the electromagnetic field (or at least
its random component), the quantum-theoretical equivalent of SED must
contain both radiation terms and others possibly reflecting spin effects;
and neither appear in the Schrddinger equation.

That spin is intrinsic to SED is strongly suggested by the con-
sideration that in any stochastic motion of a particle (Markovian or not)
under the influence only of central forces we must have that (L) = 0,
where L = rxp is the angular momentum, while (L?}#0. Using the harmon-
ic oscillator as a model and letting its frequency go to 0, one may cal-
culate frcm (4.13) that

(L2) = %hz . (4.21)

This is twice the quantum-theoretical value if this is indeed the spin
(Marshall 1963; Boyer 1975b; the spin interpretation is due to Jauregui
and de la Pefia 1981, de la Pefia and Jauregui 1982). One can also show
that this '"'spin", even if its value is not yet right, does add to the or-
bital momentum ard gives rise to the correct gyromagnetic ratio.
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5. PROBLEMS AND PERSPECTIVES IN STOCHASTIC ELECTRODYNAMICS

A large mumber of other problems have also been tackled from
the starting point of SED; several results have been obtained that are
entirely satisfactory, in the sense of coinciding with those of the
usual quantum approach where this has a basis in experimental data, or
else differing in ways not susceptible to experimental confirmation. SED
thus appears to be a rather successful theory.

Yet in some problems quite unacceptable results turn up. From
among these we here select two situations which we believe shed light on
the outstanding questions in SED.

The first one is a study of n harmonic oscillators coupled
through the zero-point field (Blanco and Santos 1979). The authors write
the equations of motion in the form

2e, .

n
v i . -
mr = fE@oaait) + gzg-jzi er, * e E(t) G = Tawmd) (5:1)

The radiation-reaction term includes also the interaction (to lowest or-
der) between the particles and is derived in this form by Landau and
Lifshitz (1964); the supposition that the field is the same for all par-

ticles is justified by the authors provided that the bounds R and Q of
the distances and frequencies satisfy

R4 € 5.2

This is reasonable if the oscillator emergy, which is at most mR2QZ, is
of the order of hq, for then R2 = (hq/m)'/?
now the authors show that the system (5.1) can be decoupled in at least

is a typical velocity. But

one specific case into a single quantum-mechanical oscillator (having
radiation-reaction and random-field terms) and n - 1 classical ones (hav-
ing neither). Taking for simplicity the one-dimensional version of (5.1),
with harmonic-oscillator forces, the equations of motion reduce to

R e .
[z * ¥ 3529 53 1X0 = QE®) (5.3)
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where K is the diagonal matrix of force constants, Q is the vector of
charges and X(t) that of positions; we have supposearthe masses all = 1.
Now if K is a multiple of the unit matrix, the Egs. (5.3) wil{ decouple
if Q Q" (T indicates the transpose) is diagemal; but this is possible on-
ly if all elements of Q but one are 0. Let this be the first; we then
have

2%

) vk =%, = eft) , (5.4a)
3¢

X, + kixi = 0 (1= 2:em) s (5.4b)

Blanco and Santos show that this case is actually more general than here
described; but even if there is much less degeneracy in the system than
needed for (5.4a,b) to result, they show (by an approximate procedure
correct to second order) that the degenerate oscillator modes will have
one stochastic mode only, the others becoming classical.

This paradoxical and unexpected result has given rise to some
speculation. Further work remains to be done, but as we shall comment
below, a main source of the problem turns out to be the dipole approxima-
tion used here for all the particles.

The second problematic situation is the hydrogen atom. Simple
heuristic arguments (see, e.g., Claverie and Diner 1976) lead one to ex-
pect that SED should provide a satisfactory account in the shape of a
stable equilibrium state with an ensemble average energy at the well con-
firmed value of - 13.6 eV. Now a Fokker-Planck equation for the hydrogen
atom can be derived in various ways (Marshall and Claverie 1980 , Clave-
rie and Soto 1982); the simplest would appear to be in terms of the rele-
vant integrals of motion. The three classical ones, the energy E, the
total angular momentum M and the excentricity e of the orbit, are related
by

- e 2BEyn (5.5)

where
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H| =

Vir) = - (5.6)
is the potential and m the electron mass. Choosing E and M as the inde-
pendent variables, the Fokker-Planck equation can be derived fairly
straightforwardly; but it does not seem easily soluble. However, in the
limit € — 0 it simplifies to the form

hmk? oW . h oW

— — +—— +W = 0 3 S. 7

M2 E 2 M 53
where W is the probability density in the (E,M,e) space, which in the lim-
it of circular orbits depends on only one variable, because of (5.5).
Taking this to be M, we find

W o= ae 2R (5.8)

This solution is not satisfactory, however. 1Its phase-space
integral diverges, and hence the expected value (E) for the energy becomes
0. The hydrogen atom, in other words, has zero binding energy and will
therefore ionize spontaneously. This corresponds very well to another as-
pect of the matter: the coefficient of W in the general Fokker-Planck
equation —not (5.7)— can be shown to vanish as a consequence of the
specific form of the radiation-reaction term, so that

W = const (5.9)

is also a steady-state solution. Now not only is (5.9) also not integrable
over phase space; the existence of two distinct solutions, (5.8) and (5.9),
which correspond to oW/3t = 0 means that there is no equilibrium. This is
intuitively obvious, for the system might jump from one of these to the
other in an uncontrolled fashion, and yet the probability density would
not change in time —except discontinuously and perhaps non-causally at

the jumps. The conclusion can also be proved rigorously (Khas'minskii
1960): if a generalized diffusion process (such as the present one) is
recurrent, then it has a unique invariant measure —a unique steady-state
solution, that is to say, which corresponds to equilibrium. Conversely,

if it has an integrable invariant measure, then the process is recurrent
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and the measure is unique. ''Recurrence'' here is defined as follows: if
with probability 1 a system returns to a given neighbourhood of its start-
ing point within a finite time, it is recurrent. Note that a recurrent
system is not necessarily ergodic; but a non-recurrent one is certainly
1ot ergodic, for the probability of its definitely escaping from any fi-
nite region in phase space is greater than 0.

For the hydrogen atom, then, the khas'minskii theorem shows
that the SED solution is not ergodic, so that there cannot be an equilib-
rium state. This prediction is in complete and fundamental contradiction
with standard quantum mechanics and with the experimental evidence.

The picture so far presented is this: SED arose from the attempt
to give quantum mechanics a sounder conceptual basis than the Copenhagen
interpretation allowed, and a sounder physical basis than the ensemble in-
terpretation provided. In this the theory is clearly very successful.

It has also achieved considerable success in treating a wide range of phe-
nomena in detail: we have described some of the results above. But it
still has tc face a number of difficulties. We list here the ones al-
ready discussed:

- The stochastic background field has a spectral density propor-

tional to w3, which makes the energy density divergent.

- The Braffort-Marshall equation (4.13), starting point for de-
scribing the motion of particles, is based on a number of ap-
proximations whose validity is not well established.

- Using these same approximations, coupled harmonic oscillators
turn out to have only one stochastic mode of motion.

- The description offered by SED for certain systems, notably
the hydrogen atom, is wrong.

To this list we might add a last matter, not yet discussed but implicit
in what has gone before:
- SED does not explain the quantum behaviour of neutral parti-
cles, for which (4.13) degenerates into an ordinary Newtonian
equation.

Some possible answers to these problems will be sketched below.
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The spectral density

At least two possible sources of modification have been suggested
for the unrestricted w® law. Firstly, if hw >> 2mc2, the probability of
pair creation can no longer be neglected. And secondly, for large w the
energy involved will come from a correspondingly large volume, where a
flat space-time is no longer a good approximation; Lorentz invariance must
be widened to a general-relativistic invariance. That this could remove
the w? divergence seems to be implied in the work of Ford (1976), who
showed how to regularize the energy-momentum tensor in a closed Robertson-
Walker metric so that the energy density for the electromagnetic vacuum

is finite:

11hc

SAn.onk @ 5.10
240m2R4 ( )

where R is the radius of the universe. One may speculate here that a more
adequate theory could derive the value of h from cosmological considera-
tions. The scope of SED weuld thus widen in a remarkable fashion.

It should be noticed that the divergences in SED create problems
quite analogous to those in QED. They may be side-stepped, as in QED, by
using a cutoff frequency (usually of the order of mc?/h) or by means of a
renormalization procedure. But in SED these methods appear to have more
physical significance than in QED: thus the argument that using a cutoff
corresponds to ignoring all but a relatively near neighbourhood of the
system finds a ready interpretation in the physical model underlying SED.
Moreover, there is less need to renormalize in SED (Cavalleri 1981).

The Braffort-Marshall equation

The approximate arguments menticned in connection with the de-
rivation of the Braffort-Marshall equation are not of equal importance;
nor are the improvements offered by recent work of equal value. Thus
rewriting (4.13) in relativistic terms, though it would represent a sig-
nificant step forward, remains essentially impossible because no theo-
retical background for relativistic stochastic processes is available; we
do not know how to formulate relativistic ensembles in a consistent way.
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As for the background field, it is taken to be isotropic, homo-
geneous and characterized by a temperature T. The distribution of the
fluctuations is assumed to be Gaussian. All of these assumptions are
quite well justified when the system under consideration is far from
other matter; but they are clearly inadequate when other particles are
near. For instance, the SED treatment of the double slit will evidently
be based on the anisotropy of the field fluctuations felt by a particle
going through one slit whenever the other slit is open. To put it in
the anthropomorphic language habitual in the discussion of this problem,
in SED it is neither the particle nor the slit it is going through that
""knows'' whether the other slit is open, it is the random background field
that "transmits this information'" and influences the particle's motion.
But we are not yet in a position to work with random fields having a more
complicated distribution.

The inadequacies of the Abraham-Lorentz term, on the other hand,
are by now well understood. The term, in Lorentz' derivation, is computed
by considering an extended structure for the particle (with a charge den-
sity y(r) which is a continuous function of the position vector), and at
the end going to zero particle radius. In this last operation an infinite
electromagnetic contribution to the particle's mass appears, run-away SoO-
lutions become possible where the acceleration increases exponentially in
the absence of all external forces, and apparently acausal behaviour may
be manifested. But taking this limit may be avoided if the particle is
accepted as possessing extension and hence internal structure; the ques-
tion of how this structure and its stability is to be explained remains
open —unless perhaps Casimir's suggestion (see above) turns out to work,
after all. Within classical electrodynamics this is discussed by Kaup
(1966), Moniz and Sharp (1977), Franga, Marques and da Silva (1978), de
la Pefia, Jiménez and Montemayor (1982), and others quoted in these papers.
For SED the equation of motion now takes the form

. t
miT(t) = £(r,t) + eE(r,t) -mnj glt-tHE(ENdt' , (5.11)

-

where
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o

g(t) = fkdk|i(k)|2sin ket (5.12)

o

and normally falls off very rapidly with t. It is derived from the form
factor (k) of the charge density, the details of which turn out to be
unimportant provided its radius is larger than tc = %—ro, where T is the
classical electron radius. The factor n is given by

n o= 16muc? (5.13)

1 + 16m21c J g(t")de! (5.14)
o

=
n

provides the (finite) electromagnetic mass correction.

Unfortunately (5.11), with its extended memory term, is even
less easy to work with than (4.13). So far suitable techniques have been
developed only for the case when the external force f depends on nothing
but t. Thus a consistent description of the free particle has been given,
and for a square-well potential results have been obtained that are in
entire agreement with quantum mechanics; this is, indeed, the first strong-
ly non-linear problem for which satisfactory answers have been found in
SED, suggesting that this approach is along the right lines.

The form of (5.11) presupposes that the particle has spherical
symmetry and is completely rigid; the approach described here can in prin-
ciple be extended to remove these rather unphysical restrictions, by
writing the charge distribution as

»

¥ = N T Baesd (5.15)

so as to make it depend on the instantaneous conditions of the motion. No
explicit dependence on t should appear, unless the particle's motion is
already fixed for all time. Of course, the resulting equations are even

less tractable.

Multi-component systems

The result obtained by Blanco and Santos, though disconcerting
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at first sight, can be¢ shown to be due to the special assumptions made in
setting up (5.1), and in particular due to the dipole approximation. If
we write M,Q for the total mass and charge of the n-particle system, F
for the external force and R,p for the position vectors of the centre of
mass and the centre of charge, the sum of all the equations (5.1) is

i 2

= Er5 Q%5+ M), (5.16)

and subtracting this from (5.1) we have

e. e.
.- 1 vy 3 .

mE ==2ME = f === (i=2,..0) , (5.17
Q- Q=7 )

L= S
where one equation is redundant. Thus only the motion of the centre of
mass has a stochastic component, while the individual variables
MEi
.Y = T =—R
Iy Lo o
miQ
are purely classical in nature. Clearly the dipole approximation, in
making the radiation reaction identical for all particles, has removed an
essential part of the problem; but a more satisfactory formulation remains
to be worked out. Note, by the way, that the need for both R and p here

is an indication that we are dealing with an open system, which may ac-
quire a global angular momentum from the random background.

The hydrogen atom

The failure of SED in predicting no stable bound state for the
hydrogen atom is in a sense inverse to that of the Schrddinger equation,
which —lacking any radiative interaction— predicts an infinite number
of stable states. This comparison suggests that the nature of stability
in SED (and also in quantum mechanics!) requires reexamination. All the
methods employed so far are in some sense equivalent to solving the
Fokker-Planck equation under the condition that the time derivative of
the probability density vanishes. This yields the equilibrium distribu-
tion provided the system is ergodic; indeed, even stronger ergodic sup-
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positions are tacitly made, in that the system is judged to reach this
equilibrium in a very short time, of the order of 10"%% for the electron.
(The pre-equilibrium evolution of a system in SED is not expected to agree
in any sense with quantum theory, and may even in the future provide the
opportunity for experimental validation of the theory). But for an iso-
lated hydrogen atom a simple handwaving argument serves to show that this
cannot hold. If the electron in a ground-state orbit, presumably near

- 13.6 eV, is subject to the background field of SED, there is a small

but non-zero probability that it will suffer a fluctuation of positive
energy that allows it to escape. This is true for any potential for which

Lim V(r) <« . (5.18)
o

And since astrophysical arguments show that for any lifetime much longer
than about 20 years the autoionization of neutral cold monoatomic hydro-
gen would be unobservable, we may conclude that the SED prediction,
though apparently grossly mistaken, could well be the physically correct
one. The normally observed stability would then be due to the nearby
presence of other atoms. Note that for T>0 quantum mechanics already
predicts spontaneous ionization, as was first shown by Brillouin (1930);
see also Fermi (1924), Farley and Wing (1981).

The usual hydrogen ground state is then a long-lived metastable
state which the present methods of SED do not allow us to recognize. A
possible way out is suggested by the fact that, as we saw above, the sto-
chastic process involved is strongly non-Markovian. Now if, from a Marko-
vian process in several dimensions, we project out a lower-dimensional
one, this is not in general Markovian any longer. The inverse is not
necessarily true, of course; but a hint that it might help arises when
attempting to derive a Fokker-Planck equation from (5.11): this is best
done, not in the usual phase space, but in an extended one with I}i»i as
coordinates. This suggest that a higher-dimensional space, perhaps
(r,f,T), perhaps an even larger one, is appropriate even when better ap-
proximations than (5.11) are used. C(lassical mechanics in such a space
will have new integrals of motion, and a suitable choice of their values
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could provide just the restriction which avoids the escape to infinity.
The metastable ground state would then become stable in the higher-dimen-
sional phase space so restricted, since now the electron motion recovers
ergodicity; the usual methods would now apply to give appropriate solu-
tions. This is entirely analogous to what is currently done in statisti-
cal mechanics, where the Hamiltonian flows, non-ergodic over the usual
phase space, become ergodic when restricted to the hypersurface of con-
stant energy. An additional advantage of such a procedure is that the
process is probably more nearly Markovian in the (r,t,T) space.

We might add here that such considerations could become even
more relevant if we take into account that the random background field is
often, perhaps usually, not in full equilibrium, even if it is close to
it; what effect this will have on quantum-like behaviour as described by
SED remains an open question.

Neutnal parnticles

From the point of view of SED, neutral particles fall into two
categories: those with rest mass greater than zero, and those with zero
(or almost zero) rest mass. The first present little problem; they are
considered to be composite, and their components have charges; they have,
in general, a non-zero magnetic moment; they have extension and are there-
fore polarizable. These are various ways of stating that they interact
with the electromagnetic zero-point field much as charged particles do,
and their quantum-like behaviour is therefore explained. Particles with
no rest mass, on the other hand, cannot at present be described by SED,
which almost everywherc makes the assumption that perticle speeds are
well below the extreme relativistic limit.

Quite a number of speculative suggestions relevant in this con-
nection have been made; but only one, it seems to the present author, mer-
its serious attention. It is due to Santos (1975b, 1979). For every
field known at present, elementary particles exist that both interact
with it and possess electric charges. Santos argues that thrcugh the me-
diation of such particles all fields acquire a background of random fluc-
tuations. If, furthermore, these fluctuations reach (or at least approach)
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thermodynamical equilibrium, their statistical characteristics, and in
particular, their energy amplitudes, will be shared. Hence we can under-
stand why Planck's constant, which describes this amplitude (see Egs.
(4.1) and (4.2)), is a universal constant. Santos' universal stochastic
theory would explain why particles show the typical quantum fluctuations
even when they do not interact with the electromagnetic field.

Santos' theory is also relevant to another matter which has not
received much discussion. Many of the arguments used above to establish
the reality of the random component in the electromagnetic field could,
and indeed have been, applied to the gravitational field, and conceptions
such as random fluctuations in the metric tensor or in space-time have
been proposed (see, e.g., March 1934, 1937; Yukawa 1966; Blokhintsev 1975;
Frederick 1976; Namsrai 1980a, 1980b, 1981; Vigier 1982). If we accept
Santos' view, any discussion of the relative merits of such theories and
SED would be wide of the mark: they do not exclude each other. The great
advantage of SED is then simply that a non-relativistic version is pos-
sible, on the basis of a well understood classical theory, and with consi-
derable experimental evidence available for the behaviour of the random
fluctuations.

6. CONCLUSIONS

In order to assess the value of what has so far been achieved,
it must be stressed that the aims of SED —in this unlike the formal sto-
chastic theories— are not simply to reproduce the results of standard
quantum mectanics, and even less to reproduce them exactly. SED arose out
of the need to provide a physically plausible theory that should complete
the picture offered by the ensemble interpretation of quantum mechanics;
its aim must therefore be that of fitting experiment at least as well as
quantum mechanics does, and to offer a basis for going beyond the present
limits of this theory.

SED has certainly achieved a clarity and simplicity of concep-
tual structure quite out of reach of quantum mechanics (in its Copenhagen
version, at least). It has established that systems showing quantum-like
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behaviour must be treated as open systems, with a stochastic interaction
with the rest of the universe. It has also shown that this interaction
may be treated as an electromagnetic zero-point field with well established
statistical properties. It is, furthermore, a theory completely devoid of
the conceptual paradoxes we associate with quantum theory. Finally, it
contains (as does quantum mechanics) only one undetermined quantity, name-
ly Planck's constant; with, however, an entirely different physical mean-
ing.

SED has also given adequate and detailed accounts of a large
number of phenomena, ranging from the van der Waals forces through the
Planck distribution for cavity radiation to the level structure of the
quantum harmonic oscillator. It has also given partial accounts of sev-
eral other problems. The series of difficulties discussed above that it
still faces show, however, that it is in no sense yet a finished theory.

Indeed, what is perhaps most striking is the variety of approxi-
mations that must be made before any specific problem can be tackled. Oc-
casionally, these approximations may even be excessive, as in the case of
the coupled harmonic oscillators. Moreover, even when the approximations
seem appropriate, the mathematical apparatus is complicated, sometimes
clumsy, rarely transparent. Thus SED offers a striking contrast to quan-
tum mechanics: a clear and physically plausible conceptual structure com-
bined with an unduly approximate and somewhat unclear mathematical formal-
ism on the one hand, and obscure and contradictory conceptual background
together with a highly developed, indeed elegant, formalism on the other.

This is not to suggest, of course, that some sort of compromise
could be effected to take advantage of what each side has to offer. It
is intended, rather, to underline the direction that, in the author's view,
future efforts could usefully take. For it is evident from the many sug-
gestions for further work commented upon in the preceding section that
ample possibilities for development and for new ideas in SED remain open.
But, whatever improvements these may bring with them in the mathematical
methods used, there is every reason to believe that all this will be
achieved without any major shift in the basic conceptions of the theory.
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