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ABSTRACT

The Abraham-Lorentz equation of motion for charged point parti-
cles is beset by well-known problems which are only partly eliminated in
the Lorentz-Dirac theory. Using a consistent nonrelativistic hamiltonian
treatment of the radiating point particle, we obtain an expression for
the self-force which can be interpreted in terms of an effective struc-
ture acquired by the particle via the radiation field. A simplifying ap-
proximation of this expression leads to a modified Abraham-Lorentz equa-
tion, exempt of the classical difficulties. One is thus led to conclude
that the usual difficulties are introduced by the approximations and are
not an integral part of the theory.

RESUMEN

La ecuacidn de Abraham-lorentz para particulas puntuales con
carga estd plagada de dificultades bien conocidas, que sGlo en parte pue-
den ser resueltas con la teoria de Lorentz-Dirac. A partir de un trata-
miento hamiltoniano no relativista para la particula puntual que radfia,
obtenemos una expresidén para la autofuerza que puede ser interpretada en
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términos de una estructura efectiva adquirida por la partfcula a través
del campo de radiacifn. Una simplificacién aproximada de esta expresidn
conduce a una ecuacidn modificada de Abraham-Lorentz, exenta de las difi-
cultades cldsicas. De ello se puede concluir que las dificultades usua-
les son producidas por las aproximaciones, y que no constituyen parte in-
tegral de la teoria.

1. THE ABRAHAM-LORENTZ EQUATION

The classical motion of a charged particle is commonly de-
scribed by the Abraham-Lorentz (AL) equation:

m o= Fend  (r= 202503 )
which takes account of the self-interaction of the particle in two ways,
namely: 1) the inclusion of the electromagnetic contribution to the mass
in m, and ii) the addition of the radiation reaction force mff.

There exist numerous alternative derivations of Eq. (1). The
simplest and best known one is usually performed(1), following Lorentz(z),
by representing the retarded potentials of the radiated field as a power
series of the relaxation time t - x/c and computing the mechanical force
of the corresponding field on the particle. We recall that the first
terms of this expansion are: a) the so-called inertial reaction of the
particle, which gives rise to the mass correction ém = mct/a; b) the re-
action force m{i; c) higher derivative terms of the form m(a/c)2§; etc.,
which are assumed small in order for the series to converge. In Eq. (1)
they have been neglected.

Here a/c is the time required by the light to traverse the ra-
dius of the particle; for an electron with classical radius, this time
would be of the order of t.

Eq. (1) presents several difficulties, some of which can be eli-
minated by performing more careful derivations of the self-field or of
the effects produced by it. Briefly stated:

i) The first term in the Lorentz expansion diverges for point particles,
giving rise to an infinite electromagnetic mass; this is a well-known,
persistent problem of classical electrodynamics. For extended particles,
dm is finite but still has a wrong value. This problem can be eliminated
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only by carrying out a non-orthodox relativistic treatment(I’s).

1i) Eq. (1) does not account for the radiation of a particle moving with
constant acceleration, in contrast with Larmor's law of radiation. More-
over, the appearance of the term ¥k implies the need of an additional
initial condition which is due to the approximation procedure, not to

the dynamics.

iii) Eq. (1) implies non-causality by allowing for preacceleration ef-
fects and run-away solutions. Either one of these problems —but not
both— may be eliminated with a suitable choice of the initial or the fi-
nal value of §(4’5). The usual procedure is to eliminate the run-away
solution by a proper choice of %(t + )3 Eq. (1) leads then to

m = l_ J derem IS EMT figry
t

which obviously implies a non-causal (advanced) relationship between
force and acceleration. By using an extended-particle model, however,
it is possible to recover causality under certain general restrictions(ﬁ_g).
For a survey of the various approaches to the subject, we refer the reader
to the 1iterature(9).

Summarizing, we may say that there is no satisfactory equation
of motion for a radiating point charge subject to an arbitrary external
field. The usual practical solution to this problem consists in intro-
ducing a new approximation which happens to remove at once all these
drawbacks by a sort of compensation of errors: deriving Eq. (1) written
to zero order in T one obtains % = %/m, which substituted back in Eq. (1)

gives a causal equation

valid whenever mT|¥|<<E?1. However, in this paper we are concerned with
a matter of principle, namely, how it happens that an originally causal
hamiltonian —as is the hamiltonian of classical electrodynamics— can
lead to a non-causal equation of motion. Our purpose is to construct a
consistent classical (nonrelativistic) description of the dynamics of
the point particle without the above mentioned drawbacks.
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2. EQUATION OF MOTION FOR A CHARGED POINT PARTICLE

We start with the hamiltonian treatment of a charged point par-
ticle subject to both an external field and its own radiation field. The
complete hamiltonian is

Ho= G-SRhmevaen )

where X is the vector potential of the total electromagnetic field, H
is the hamiltonian of the radiation field, namely

H = 8‘? J (@2 + B2 (3)

and V is the total scalar potential.

Without loss of generality, we may assume that there are no
charges and currents present other than those due to the charged parti-
cle. In this case the field is simply a radiation field, with V=0 and
v-R=0 in the Coulomb gauge. The term V in Eq. (2) refers then to the ex-
ternal potential only, and A is the vector potential associated to the
(transverse) radiation field, which can be conveniently represented in
terms of plane travelling waves. Assuming the field to be contained in
a cavity of volume L?® with perfectly conducting walls (we shall eventual-
ly let L+=), we write as usual(1®)

A = 4nc? ¥ qn cos i X -2 sink -;) s 4)
L3 no “n "
where
k,o=w/c , in = Zn(nli + nzf + nsﬁ)/L ,
g €noifnos = 813 ~ Kiky/KE By > Bogr = Sgge 5 ()
i < E. =1 5 o,0' = 1,2 :
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and in the free-space limit

1
_g z
n

J dw w? J o, . (6)
o

The field hamiltonian is then, by Eqs. (3) and (4),

1
By = 71 (f +efa2) 7
ng
i.e., it is the hamiltonian of an infinite number of independent field
modes of frequency w, and polarization o. The complete hamiltonian is
therefore, by Eqs. (2) and (7),

H = (E——A)Z/Zm+v+72 (P2, + w2a2) . (8)

By deriving Hamilton's equations in terms of the pairs of canonical va-
riables {Sc’,_ﬁ) and {qm, Pnc) we obtain the set of coupled dynamical equa-

tions:
Y -+ e T
m = anA 3
(9)
S - : > oA . =
P F-e nzo (x em)in (q,, sin fn x+—cosi
and
5 smin-x
& = ! IA —_—
qno Py i E:ncx W ?
(10)
. R o) j = .
P wq  *+e' x-e cos 4 X

where F=-W and e' = e V4n/L3 .
In terms of the new (field) variable

Zna = pnc = imnqm:r LEE
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and its complex conjugate, Eqs. (10) can be rewritten in the form

: * A ik -+ x
= ' -
» 1mn2nU +e'Xe+€_e'n . (12)

and its complex conjugate. The first integral of this equation is

in t £ . ik - %' -w ')

. 1 ] e B

z =€ [ z,,(0) +e J de' X'« £ e ] & 113
o

LY
where ;' = x(t'), and t = 0 is chosen as the starting time of the parti-
cle-field interaction.
On the other hand, by combining Eqs. (9) and using (13) we have

. £ ik x
*: i e! > n * “ng n
mx = F = o ) (€, * X * et ] [ 2,,(0e .
no n
£ ik (x-x") (a4
+e' [ dt' x' -6 e " 08 |
no

where ini = in e X - wnt. This equation shows that the Lorentz force
consists of two parts: a free-field force —which we may either ignore
or absorb into the external force %, since its effects are irrelevant

for our purposes— and an additional contribution arising from the parti-
cle itself. Denoting the latter by ﬁa,

kxe t -ik_(x-x")

2 .
'1? =_e_'__): (& +;x—n-—-—l-l-qv)[dt’§'-€ e D + 16Ch
a 2 ol ng mn ng
(15)
we have
L4 -+ >
mx = F+F .

which is an exact equation of motion for the self-interacting charged
-+
point particle acted on by the external force F.
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3. CALCULATION OF THE SELF-FORCE

Eq. (16) is exact, but it cannot be solved exactly. It is
therefore reasonable to analyze the self-force fa and try to rewrite it
in a more convenient, though approximate form. As a first step we sum
over the polarization index ¢ and take the limit L+e; we then have

t

-+ - e2 c 2 Fig —iﬁ(
Fa pr= I dw w £1dﬂk ( dt'ue

R &y , an
o

where

5 > oy - & .
=(1-§;X)§'+(%-k-x'}k; k=%x . (8

After performing the angular integration we are left with*

o £
2 3
F = ﬂﬁg J dw w? J dt' x' k cos w(t - t') (19)
a e
[s] (o]
where
k = Cos ws sin ws ]§'- }'l 20
T wis? wisd 7 = c ) (20)

It is evident that F cannot be calculated exactly, since both
X and k depend on the traJectory of the particle, i.e., on the solution
of Eq. (16). This is —though somewhat rephrased — the old problem of
classical electrodynamics, which gives rise to the Lorentz approximation
and other similar treatments of the self-action of the charged particle.
In fact, the usual AL equation can be derived by neglecting the retarda-
tion in s = |X - X'|/c, i.e., taking s=0 and hence k = -1/3 in Eq. (19).

* In writing Eg. (19) we have neglected a small extra force that depends
on the changes in the instantaneous direction of the velocity that oc-
cur in the time interval O< t'<t. Therefore, Eg. (19) is exact only
for one-dimensional problems. It is always possible to add this extra
term if required, but since we are here concerned with a matter of
principle, we havepreferred to omit it for the sake of simplicity.
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The result thus obtained (after an integration by parts):

L

o _ 2e? 27 ¥
Fa“s—é'g‘(—;Xde*x) n (21)

o

contains both the (infinite) electromagnetic contribution to the mass:

o

om’= EEI-I dw
(o]

and the (acausal) Lorentz radiation reaction force:

o W

Fr = mT ‘ (23)

The system of Eqs. (16) and (19) is, however, causal, with %a
finite; we see then that the usual problems connected with the AL equa-
tion can be traced back to the approximation made above, i.e., to the as-
sumption that the spatial structure of the field can be neglected, which
is a reasonable assumption for the low-frequency modes, but not for every
W

We therefore propose an approximation which still allows us to
handle Eq. (19), but avoids the problems created by the (too rough) di-
pole approximation. Considering that k is a complicated function of w
and t, which starts at k(0) = -1/3 and oscillates with an amplitude de-
creasing as (u:s)'2 for large values of ws, we propose to use instead a
simpler function given by

1

S R S
kW = -3 e

(24)
where )\ is a positive parameter measured in units of time, and which may
be estimated by introducing some appropriate additional requirement (see
Sect. 5). Since kl does not depend on s, Eq. (19) may be integrated by
parts:

ge2 [~ "

E = —_E-J dw wk, [ ; sin wt + J dt! ?' sin w(t-t') ] . (25)
- % iy 4 ° o

E
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Explicit calculation gives

t . .
L= -‘;—g[ine‘tfhfdtr o e =SB (26)
o]

which can be once more integrated by parts to give

e - t "y ¥
P REE [ R -§E+fdt' X et (a7
o

_— L
where X , X_denote the initial values of X(t), (0.
4. MODIFTED ABRAHAM-LORENTZ EQUATION

By Eq. (26), the equation of motion (16) takes the form of a
modified AL equation:

. t - 1
m="ﬁ—';‘—'2‘ Sc’oe't/’w[dt' TR L L (28)
(=]

which can be written alternatively as a third-order equation by combining
Eq. (27) and its time derivative, to eliminate the integral term; one
thus obtains

I‘& ., e
m{i /e =F +4F - Ak . (29)

One must recall, however, that no additional integration constant is re-
quired, since the physical solutions of Eq. (29) must also satisfy Eq.
(28). As Eq. (29) shows, the electromagnetic contribution to the mass
is now finite:

&m= (t/X)m (30)

and the radiation reaction force is

t =i - m) (31)

r

G4 i 4 s .
instead of mtx. Notice that this expression for the radiation reaction
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depends not only implicitly, but also explicitly on the external force.
Eq. (28) shows that the introduction of the self-force does
not violate causality, since only retarded effects are present. To see
this more clearly, one can perform one more integration by parts to ob-
tain from Eq. (28):
t .
[0 e-ean

(o}

=5 -
mx = F -

3

T [;(’_

e
N
b

This result shows that the acceleration depends on the force and on the
velocity evaluated at times t' <t only.

In order to further analyze the implications of this modified
self-force, let us write the first integral of Eq. (28):

. - t 1
m+6m)x = (1 +% e ymx_ + J dt [1+% e E=E) 1 F ey (32)

where @ = (1 + 1/A)/A. In the radiationless limit (t+0) as well as for
large A, Eq. (32) goes to the newtonian equation

I ks S

mX = mx, + f de'E(E")

(o]

while in the "structureless-field'' limit (dipole approximation) we recov-
er the usual AL results, as a Taylor series development shows. With
both © and A different from zero, the r.h.s. of Eq. (32) contains (be-
sides the newtonian terms) a transient contribution and an additional
force, both of which reflect the existence of MEMoTy .

5. DISCUSSION AND CONCLUSIONS

The finite result for ém and the presence of memory may both
be interpreted as non-local effects having their origin in the space-
dependence of the interaction of the particle with its own radiation
field. This in its turn amounts to ascribing to the particle an effec-
tive (induced) structure, A being a measure of the corresponding radius.
To see this more clearly, let us compare Eq. (25) with the expression
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for the self-force of an extended particle with a fixed, spherically sym-
metrical charge distribution characterized by the form factor f(w/c).
Following Bohm and Weinstein(11), one obtains in the dipole (long-wave
length) approximation:

© t
3 ”

B m o J duw w}f[%J|2[:§o sin wt + [ dt' X' sin w(t - t') ] . (33)

o

a 3mc?
o
A direct comparison would lead us to conclude that our point particle
has acquired an effective structure such that

€)1 = -3k, () (34)

as a result of its interaction with the (space-dependent) self-field.

We should be, however, more cautious with this interpretation.
The self-force expressed in Eq. (25) is due to the action of the field
emitted by an originally point particle, upon the particle itself. The
form factor should therefore appear only once —not twice, as in Eq.
(34)— to take account of the effective structure acquired by the parti-
cle via the field. To further motivate our argument, we recall that the

an

form factor of a uniform charge distribution of radius a is

£ (L) 3 e wa/c _ sin wa/c ]

(wa/c)?  (wa/c)®

) (35)

which coincides in its functional form with the exact expression for k
given in Eq. (20). Hence, our expression for fa, Eq. (19), can be read
as the force acting on a particle of uniform charge distribution of (va-
riable) radius |X-X'| = cs due to the action of the radiation field
taken in its long-wavelength limit. In other words, the particle has
acquired an effective structure of radius cs as a result of the action
of the self-field.

The transition from Eq. (20) to (24) implies then taking a time-
averaged, rigid (Yukawa(g)) charge distribution, the size of which is of
the order of Ac. For the electron we would expect this size to be not
smaller than the classical radius and not larger than Compton's wavelength,
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whence
h/mc2>r>e2/mc3 ~ ¢

i.e., A may be of the order of T or larger, and can therefore not be neg-
lected in Egs. (28) - (32). It should be remarked that at present-day
energies, quantum electrodynamics seems to be compatible with an electron
radius smaller than 107 °cm, which is several orders of magnitude smaller
than the classical radius, ez/mc2(12). However, the effective radius
here discussed is obviously velocity-dependent and hence, no real contra-
diction arises within the nonrelativistic theory.

The specific choice of the function kA(w) is actually arbitrary;
we have here selected a model which is mathematically simple and has the
convenience of adjusting quite well to the exact function k(ws), with only
one free parameter. A different choice would not have altered the quali-
tative results —such as the causal behaviour—, though the details of
the dynamics would differ, especially at very short times.

Finally it should be pointed out that for practical purposes,
Eq. (28) or (29) serves to describe classical radiation damping as well
as does the AL equation after renormalization and elimination of the run-
away solutions. From a conceptual point of view, however, our derivation
has the advantage of explaining the origin of the classical difficulties
and showing how these can be avoided with a careful treatment of the
self-force that does not artificially remove causality.
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