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ABSTRACT

The Abraharn-Lorentz equation of mation for charged point parti-
cles is beset by well-known problems which are only partly eliminated in
the 1Orentz-Dirac theory. Using a consistent nonrelativistic hamiltonian
treatment of the radiating point particle, we obtain an expression for
the self-force which can be interpreted in terms of an effective struc-
ture acquired by the particle via the radiation field. A simplifying ap-
proximation af this expression leads to a modified Abraham-Lorentz equa-
tion, exempt of the classical difficulties. One is thus led to conclude
that the usual difficulties are introduced by the appraximations and are
not an integral part of the theory.

RESl.I>1EN

La ecuación de Abraham-Lorentz para partículas puntuales con
carga está plagada de dificultades bien conocidas, que s610 en parte pue-
den ser resueltas con la teoría de 1Orentz-Dirac. A partir de un trata-
miento harniltoniano no relativista para la partícula puntual que radía,
obtenemos una expresión para la autofuerza que puede ser interpretada en
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términos de una estructura efectiva adquirida por la partícula a través
del campode radiación. Una simplificación aproximada de esta expresión
conduce a una ecuación modificada de Abraham-Lorentz, exenta de las difi-
cultades clásicas. De ello se puede concluir que las dificultades usua-
les son producidas por las aproximaciones, y que no constituyen parte in-
tegral de la teoría.

l. l1JE ABIWiA'l- LOREi'.TZ EQJA TI ON

(1 = 2e'/3mc')

The classical motian of a charged particle is commonly de-
scribcd by the Abraham-Lorentz (AL) equation:

.~ " :;:mx=r+mTX (1)

Eq. (1) presents
minatcd by performing more
the effects preduced by it.

which takes aceDunt oí the self-interaction oí the particle in two ways,
namely: i) the inelusion of the electromagnetic contribution to the ~1SS
in m, and ii) the addition of the radiatían reaction force filio

There exist numerous alternative derivations oí Eq. (1). The
simplest and best known one is usually performed(l), followin~ Lorentz(2) ,
by representing the retardcd potentials of the radiated field as a power
series of the relaxation time t - x/e and eomputing the mechanieal force
of the eorresponding field on the partiele. We recall that the first
terms of this cxpansion are: a) the so-ealled inertial reaetion of the
partiele, whieh givcs rise to the mass eorrection 6m = meT/a; b) the re-
aetion force m;i; e) higher derivative terms of the forro m(a/c)2t: etc.,
",tlichare assLDTled small in order for the series to converge. In Eq. (1)
they have been neglected.

Bere ale is the time rcquired by the light to traverse the ra-
dius of the particIe; for an electron with classical radius, this time
would be of the order of 1.

several difficulties, sorne of which can he eli-
careful derivations of the self-field or of

Brief1y stated:
i) The [irst tenm in thc Lorentz expansion diverges for point particles,
giving rise to an infinite electromagnetic mass; this is a well-known,
persistent problem of classical electrodynamics. For extended particles,
&m is finite but still has a WTong value. This problem can be eliminated
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only by carrying out a non-orthodox relativistic treatment(l ,3).
ii) Eq. (1) dces no! aceDun! far the radiation oí a particle moving with
constan! acceleration, in contras! with Larmor1s law oí radiation. ~~re-
over, the appearance oí the term IDTi implies the need oí an additional
initial condition which is due to the approximation procedure, no! to
the dynamics.
iii) Eq. (1) implies non-causality by allowing far preacceleration ef-
fects and run-away solutions. Either ane oí these problems --but no!
both- may be eliminated with a suitable choice oí the initia! ar the fi-
nal value oí i(4,S). The usual procedure is to eliminate the run-away
solution by a proper choice oí tet ~ ro); Eq. (1) leads then to

T
r dt'e-1t'-t)/T F(t')
t

which obviously implies a non-causal (advanced) relationship between
force and acceleration. By using an extended-particle model, however,
it is possible to recover causality under certain general restrictions(6-8).
For a survey of the various approaches to the subject, we refer the reader
to the literature(9).

Summarizing, we may say that there is no satisfactory equation
of motion for a radiating point charge subject to an arbitrary external
field. The usual practical solution to this problem consists in intro-
ducing a new approximation which happens to remove at once all these
drawbacks by a sort of compensation oí errors: deriving Eq. (1) written
to zero order in 1 one obtains t = tlm, which substituted back in Eq. (1)
gives a causal equation

''';' -+ .+
mx F + TF

"4 -+valid whenever mllxl«]FI. However, in this paper we are concerned with
a matter of principIe, namely, how it happens that an ariginally causal
hamiltonian -as is the hamiltonian of classical electrodynamics- can
lead to a non-causal equation of mation. Our purpose is to construct a
consistent classical (nonrelativistic) description of the dynamics oí
the point particle without the aboye mentioned drawbacks.
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2. E<;(JATION OF MOfION FOR A Q1ARGED POlt-If PARTICLE

Wc start with the hamiltonian treatment of a charged point par-
tiele subject to both an external ficId and its own radiation ficId. The
complete hamiltonian is

H = (p - ~ A) 2 12m + V +H
e r

where A is the vector potential of the total electromagnetic
is the hamiltonian of the radiation ficId, namely

(2)

ficId, H
r

11
r

(3)

and V is the total sC31ar potcntial.
Without 1055 of generality, we may assume that there are no

charges and currents prescnt other than those due to the chargcd ~~Tti-

ele. In this case the field is simply a radiation field, with V=Oaoo
VoA=O in the Coulomb gauge. The term V in Eq. (2) refers then to the ex-
tenk~l potcntial only, and A is the vector potential associated to the
(transversc) radiation ficId, which can be corweniently represented in
tcrms of pIane travelling waves. Assuming the field to be contained in
a cavity oí volume L3 with perfectly conducting walls (we shall eventual-
ly let L ..•.co). we write as usual(10)

~ _ fi!!-ne2,A - --¿
L3 na

;: (o eos k ox
na 'na n

sin k ox)
n

(4 )

wherc

k w le k = 2n(n,; " + n3k)/Ln n n + n2J

L E .E
naj

6 .. kik/k2 t tna ' 6aa'na' ') na
a

~k E O 0.0' 1,2
n na

(5)
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and in the free-space limit

1----r.- (2.e)3
feo dw w2

o
f d~
n

(6)

The field hamiltonian is then, by Eqs. (3) and (4),

H
r (7)

i.c. J it is the hamiltonian of an infinite
modes oí frequency wn and polarization o.
therefore, by Eqs. (2) and (7),

number oí independent fieId
The complete hamiltonian is

H = (p - p)'/2m + V + t r
no

(p' + w'q' )na n na (8)

By deriving ltunilton's equations in terms oí the pairs of canonical va-
riables (~,p)and (a ,p ) we obtain the set oí coupled dynamical equa-'na na
tioos:

"" ~ e ~mx p -Ae
(9),. ~ r (~• £ ) k (~ sin k ~ Pno k -+p F - e' x + -cos . x)na n (J n w nno n

and
sin k ~

""
x

+ e' £ n
qno Pno x no Wn

(10)

1\0 w'q
,.

k ~+ e' x £ eos xn no no n

""ere F = -w and e' = e ¡4./L3 .
In terms of the new (fieId) variable

Zno (11 )
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and its complex conjugate, Eqs. (10) can be Tewritten in the form

Zna iw Zn na
~

+ e' x
~ ~

.•. ik. x
£ e n
na

(12)

and it5 complex conjuga te. The first integral oí this equation i5

Zna
iw t
e n [Z (O)

na
+ e'

~ ~
i(k .x'-wt')i' . £ e n n ]

na '
(13)

~where x' ~xCt'), and t o is chosen as the starting tllne oí the parti-
cle-field inter3ction.

On the other hand, by combining Eqs. (9) and using (13) we have

~ ~ ~
- ik (x - x')

e e n + CoC. ]na
t

+ e' J dt' ~I

o

~
+ x •

k
n

• e
na)

w
n

~~-ik x
[z (O)e n

na
+

(14 )

wherek ;. = k ;. - w t. This equation shows that the Lorentz force
n n n

consists oí two parts: a free-ficld force --which we may either ignore
or ahsorb into the external force F, since its effccts are irrelevant
for OUT purposes-- and an additional contribution arising from the parti-
ele itseIf. Denoting the latter by F ,a

~.2 ~ k. e ft.
F = _ !.- L ce + x)( n no) dt 'x'
a 2 no w

na n o

(15 )

we have

~ ~
F + Fa

~~ich is an exact equation oí motion fOT the self-interacting charged
point particle acted on by the external force F.
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3. CALOJLATIONOF 1HE SELF-FORCE

Eq. (16) is exact, but it cannot be solved exactly. It is

therefore reasonable to analyze the self-force F and try to rewrite it
a

in a more convenient, though approximatc fonn. As a first step we SlUTl

ayer the polarizatían index a and take the limit L-+oo; we then have

where

+ e.c. (17 )

(1 -
,. ,
x' )k (18 )

After performing the angular integratían we are IcEt with*

where

+
Fa

4e' Joo-- dw
ne3

o

t

w2 f dt I i'
o

k eos w(t - t') (19)

k cos ws
77

sin ws
~ s (20)

+It is evident that Fa cannot be calculated cxactly, since both
"x and k depend on the trajectory DE the particle. i.c., on the solution
of Eq. (16). This is -though somewhat rephrased- the old problem of

classical electrodynamics, which gives rise to the LaTentz approximation
and other similar treatments oí the self-action oE the charged partiele.
In faet, the usual AL equatían can be derived by negleeting the retarda-
tion in 5 = Ix - xII/e, i.e., taking s= Oand hcnee k = -1/3 in Eq. (19).

* In writing Eq. (19) we have neglected a srnallextra force that depends
on the changes in the instantaneous direction of the velocity that oc-
cur in the time interval 0< t' < t. Therefore, Eq. (19) is exact only
for one-dimensional problerns. It is always possible to add this extra
term if required, but since we are here concerned with a matter of
principIe, we havepreferred to omit it for the sake of simplicity.
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The result thus obtained (after an integratían by parts):

2e'(_2'.-
k' ;x fdw

o

:+
• x (21)

contains both the (infinite) electromagnetic contribution to the mass:

and the (acausal) Lorentz radiatían reaction force:

(23)

The system of Eqs. (16) and (19) is, however, causal, with Fa
finite; we see then that the usual problems connected with the AL equa-
tion can be traced back to the approximation made above, i.e., to the 35-

sumption that the spatial structure oí the fieId can be neglected, which
is a reasonable 3ssumption fay the low-frequency modes, rot not far every

w.
We therefore propase an approximation which stil1 allows liS to

handle Eq. (19), but avoids the problems created by the (too rough) di-
pole approxirnation. Considering that k is a complicated funetían oí w

and t, which staTts at k(O) = -1/3 and oscillates with an amplitude de-

creasing as (wS)-2 for large values of ws, we propase to use instead a
sDnpler function given by

(24)

where A is a positive parameter measured in units of time, and which may
be estimated by introducing sorne appropriate additional requirement (see
Sect. 5). Since kA does not depend on s, Eq. (19) may be integrated by
parts:

~
Fa

4e' foo
-, dw wk,
TIC o 1\

[~o sin wt + itdt' 'i' sin w(t - ti) ] . (25)
o
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Explicit calculation gives
t

+ J dt' '; •• e-(t- t'l/A ]
o

(26)

which can be once more integrated by parts to give
"-Fa = mAT[(i

o
- XAo)e-t/A - '; + (dt' 'j'. e-(t-t'l/A J, (27)

o

=.. + =+ .~where X ,x denote the initial values oí xCt). xCt).
o o

4. MODIFIED ABRAHA'1-LOREm'2E~ATION

By Eq. (26). the equation of motion (16) takes the form of a

modified AL equation:

t
[¡oe-t/A + J dt' .~, • e-(t- t'l/A ]

o
(28)

which can be written alternatively as a third-order equation by combining
Eq. (27) and its time derivative. to eliminate the integral term; orre

tlIDs obtains

"+ -+ =.. '-+
m(l + T/A)X = F + AF - Amx (29)

One mus! Tecall, however, that no additional integration constan! is rc-
quired, since the physical solutions oí Eq. (29) mus! a150 satisfy Eq.
(28). As Eq. (29) shows, the electromagnetic contribution to the mass
is nowfini te:

6m = (T/A)m

and the radiation reaction force is
-+ :.¡. '';:
Fr=A(F-mx)

(30)

(31)

'"instead of rnTX. Notice that this express ion fey the radiation reaction
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depends not on1y implicitly, but a150 explicitly on the externa} force.
Eq. (28) shows that the introduction oí the self-force does

not violate causality, since on1y retarded effects are presento To see
this more clearly, cne can perfonn ene more integration by parts to ab-
tain from Eq. (28):

t

! f dt'~' e-It-t');,]
A o

Thi5 result shows that the acceleration depends on the force and on the
vclocity cvaluated at times t' ~ t anly.

In arder to further analyze the implications oE this modified
self-force, let liS 'nTite the first integral of Eq. (28):

"(m + óm)x T -í1t ~(1+-e )mxA o

t

+ f dt' [1 +f e-Dlt- t') ]F(t')
o

(32)

where n = (1 + TIA) lA. In the radiationless 1 imi t (1 -+ O) as well as for

large A, Eq. (32) goes to the newtonian equation

t

~ = ~o + i dt'F(t')
o

whilc in the "structureless-field" limit (dipole approximation) we recov-
er the usual AL results, as a Taylor series development shows. With
both T and A di££erent from zero, the r.h.s. of Eg. (32) contains (be-
sides the newtonian terms) a transient contribution and an additional
force, both of whieh refleet the existenee oí memory.

5. DISQJSSION AND CONCWSIONS

The finite result for ¿m and the presenee of memory may both
be interpreted as non-local effeets having their origin in the space-
dependenec of the interaetion oí the partiele with its own radiation
field. This in its turn amounts to aseribing to the partiele an effee-
tive (induced) strueture. A being a measure oE the eorresponding radius.
To see this more elearly. let us compare Eq. (25) with the express ion
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for the self-force of an extended particle with a fixed, spherically sym-
metrical charge distribution characterized by the form factor f(w/c).
Following Bohm and Weinstein(11), ane obtains in the dipale (long-wav~
length) approximation:

F' = - 4e2 f~dw wlf(~)12[i sin wt
a 3nc 3 e o

o
f
t ..•

+ dt' x' sin w(t - t') ]
o

. (33)

Adirect comparison \ooüUld lead us to conclude that OUT point particle
has acquired an effective structure such that

(34 )

as a Tesult of its interaction with the (space-dependent) self-field.
We should be, however, more cautious with this interpretation.

The self-force expressed in Eq. (25) is due to the action oí the fieId
emitted by an original1y poiot particle, upoo the particle itself. The
fonn factor should therefore appear only once -not twice, as in Eq.
(34)- to take account of the effective structure acguired by the parti-
cle via the field. To further motivate our argument, we recall that the
fonm factor of a uniform charge distribution of radius a is(ll)

f (~)a e
-3 [eos wa/e _ sin wa/e ]

(wa/e) " (wale)3
(35)

which coincides in its functional form with the exact expression for k
given in Eq. (20). Hence, our express ion for F , Eq. (19), can be reada
as the force acting on a particle of uniform charge distribution of (va-
riable) radius Ix - x' 1 = cs due to the action of the radiation field
taken in its long-wavelength l~it. In other words, the particle has
acquired an effective structure of radius cs as a result of the action
of the self-field.

The transition from Eq. (20) to (24) implies then taking a time-
averaged, rigid (Yukawa(8)) charge distribution. the size of which is of
the order of AC. For the electron we would expect this size to be not
smaller than the classical radius and not larger than Gompton's wavelength,
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whence

h/rnc2 > A> e2/me3 '\, T

i.e., A may be oí the arder oí 1 or larger, and can therefore not be neg-
lected in Eqs. (28) - (32). It should be remarked that at present-day
energies, quantum electrodynamics seems to be compatible with an electron
radius smaller than lO-160m, which is several orders oE magnitude smaller
than the classical radius, e2/mc2(12). However, the effective radius
here discussed is obviously velocity-dependent and hence, no real contra-
dictian arises within the nonrelativistic theory.

The specific choice oí the function k\(w) is actual1y arbitrary;
we have here selected a morlel which is mathematically slinple and has the
convenience oE adjusting quite wel1 to the exact function k(ws) , with only
ane free parameter. A different choice wauld no! have altered the quali-
tative results --such as the causal behaviour--, though the details of
the dynamics would differ, especially at very short times.

Finally it should be pointed out that for practica! purposes,
Eq. (28) or (29) serves to describe classical radiation damping as well
as does the AL equation after renormalization and elimination of the run-
away solutions. From a conceptual point oí view, however, our derivation
has the advantage oí explaining the origin of the classical diffieulties
and showing how these can be avoided with a careful treatment of the
self-force that does not artificially remove causality.
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