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ABSTRACT

The classical collision of two particles has been studied in the
case of arbitrar y kinematical initial conditions for them. Because the
angle (01+02) between the final velocities of the particles is not a
Galilean invariant the process was studied directly in the laboratory
system.

An express ion is given for (01+02) as a function of n, which i5
the angle that carries the dynamical information.

The special case of equal masses, also has bcen analyzed and a
pictorical representation of the process, related with the Landau
collision diagrams is given.

La colisión clásica de dos partículas ha sido
caso de condiciones iniciales cinemáticas arbitrarias.
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gula (Ul+a2) entre las velocidades finales de las partículas no es inva-
riante ga1i1eaoo. el proceso fue estudiado directamente en el sistema del
laboratorio.

Se da una expresión para (Ul+a2) como función de n, que es el
angulo que contiene la información dinámica.

El caso particular de masas iguales, también ha sido analizado
y se da una representación gráfica del proceso, relacionada con los dia-
gramas de colisión de Landau.

I1'HROruCfION

ror a bctter visualizatian of the kincmatical 5tate new diagrams
have been introduced for which rcason this analysis offers a pictorical
representation of pcdagogical valuc.

lne general express ion for (al+02) has been obtained and the
particular case of two equal mass particlc5 is later discusscd, to make
an cstimate of the departure of (01+a2) from ~/2.

This angle bet~een trajectories in the final state (01+02) is
a flUlction of anather angle n ",,"hichi5 rclatcd to the scattering angle as
expccted.

A general analysis of the classical elastic collision of two
particlcs has been carried out starting from Landau diagrams(l) far the
dcscription of kinctic energy and momcntumconservation. In this paper
both particles have been considered to be initially n~ving in the labara-
tary systcm. By means of a Galilean transfonlmtion this case can be
rcJuced to the very ~ell kn~n collision description with the target par-
ticle at rest in the initial statc.

~evertheless, if the general case with arbitra!)' kinematical
initial state in the laboratory system in studied knowing n, the dynamical
parameter of the collision process and the total angular momentum vector,
it is possible to extract conclusions concerning the angle between
trajectories in the final state as a function of n parametcr.

The angles of emergence al anu a2 of each particle are given
relativc to the direction of the total momentum lineal vector of the
systcm, which is privileged for calculation purposes in the laboratory
systcm.
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TIlE LAl\IlAlJ DESCRI PT ION

If the force of intcraction is along the line of ccnter, or the
interaction potential U(r) depends cnl)" on the distanee bcn.-een the t""o

partieles, the angular momcntum vector of the t~o partieles system is
concerved during the cncountcr, and it is orthogonal to theplane of collision.

In the following the scattering angle X will be takcn as a
parameter(2) thus al1~'ing to salve completely the classical coIlision.

In the laborato!)' s}'stem the finalIlDITlCnta(7) (primed vcctors) of
each partiele are given by

and

+ J!. P
Tm, (1)

(2)-~Ivl~o + ~l 1\.
where ~ is the reduced mass, PT the total mornentum of the two body system.
no is the dircction in \oIhich the relativc velocity has turned(4), and

ITll,ITl2 are respective!y the masscs of particles 1 and 2.
Let us represent the collision process geometrically through

thc Landau diagram ~hcre PI' P2 are respectively the initial momenta of
each particle in the laborator}' system (Fig. 1).

As PT is a constant of motion , it defines a direction in the
1aboratory system ~hich wc will use to define the ang1es of cmergence al

and Cll of the final IOOmcnta PI and p~I respective1y.
Angle n is dcfined between the direction of thc total mornentum

anJ that of the final relative velocity, that is

(3 )

The problcm is thcn rcduccd to finding thc relation bctwccn
(ClI+()2). n and X •
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A

Iv'I=lv:-v.1 =Ivl

Fig. 1. Graphical representation of conservation of linear momentum in an
elastic collision due to Landau.

TRIGONCNETRIC RELATlON FOR 1HE ANCLE BETWEEN TRAJECfORIES IN

'filE FINAL STATE (01+0,)

For example, it will be supposed that IVll> IV21; this imposes

no restriction to thc problem.
~ In arder to simplify notation let liS define a new variable

It can be secn from Fig. I that

IP I sin n
tan al= R

lJ/m2 IP I + IPRlcos n
T

and (4.a)

tan 0.2=

[PR[sin n

\l/mI [PT! - [PRlcos n

To find the Telution between (Ul+U2) and n, the well known
rclation of thc addition oí the tangents can be employed, this Telation
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give

(4.b)
IP l'R

can be seen that Eq. (4.b) yields theO, it

I~TI

It is interesting to check this expression with sorne known
resul t. A very well knownone is that in which two equal mass particles
col1ideJone oí thero being at rest in the laboratory system, in which
case(al+a2) is Tr/Z. -+

lf ml :;: ro2 and Vz
espected resul! (in this case

RELATlON BE1WEEN n ANlJ 11IE SCATTERING ANGLE X

Before considering the functional expression far the relation
between n and X it is convenient to review their definitions.

n is the angle between the final relative velocity vector and
the total mo~nttunlineal, that is an angle measuredin the laboratory
system.

X is defined as the scattering angle measured in the C.M.
system. Nevertheless, as this angle measures the amount that the
relative velocity vector has turned it can a150 be determined in the
laboratory system(6), that is , according to their definitions:

A A
COS r¡ = V' • PT

A Acos X = VI • V (5)

In what follows, a graphical representation oí these angles
measured in the laboratory system will be given. For the special case oí
having ~2 = 0, it is possible to campare the magnitudes oí these angles,
in which case V = ~l and PT = ~l' which implies n=x ' then when target
is at rest the Eq. (4.a) give the very well known relation:

2a2 + n = TT

tanCX1=
sin n

cos r¡ + ml/m2
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The relation sought bctween n and X adopts a simple express ion
as it is seen in Hg. 2 :

x + n = TI - B if X < n - B.
1 1

and (6)

X - n n - B. if X > TI - 8.
1 1

wherc Si has the following expression:
-PR' PT

cos B. (7)
1 IPRIIPTI

(
;

,
i

(
i radiums

case

-.
R=

Fig. 2. Relation between X and n angles,
the angle 8. is comple\ely given
relations l~, = u/rnl Ivlño+ R
always satisfled.

for the general case. As we see
by the initial conditions. The
and ~~ :: -u/m2IVlfto+ R are
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It is possible to see that two simple configurations can oe
obtained when:

A) v2 = O, which implies cos B. = -1, that is, B. = n, and then X = n.
1 1

B) ~hen mI = ffizand [v11 = Iv21 , which implies cos B, = O, that iSJ
1

Si ./2 and then

and

x + n = ./2

x-n = ./2

if

if

x < ./2

x > ./2

Taking mI = ffizin Eq. (4.b) a very simple expression is obtained
fer the angle between trajectories in the final state (Ol+a2):

(8)

2 sin n
IVl + v212-1\\ . v212

in which a great difference is evident with respect to the case cornmonly
studied where the target particle is supossed to be at rest in the initial
state, being (01+02) equal to n/2 the difference here found is that the
angle (01+02) appears as a function oí the dynamics oí the system.

~hen '" = O, Eq. (8) trivially leads to (",+",) =./2.
It is now desidered to evaluate to what extent the angle (01+°2)

departs írem the value n/2. It is qualitatively possible to see that this
discrepancy turns appreciable when Ivll approaches Iv21 ' being strongly
dependent upon the initial orientation oí these vectors.

Nevertheless, when IVII» IV21, the difference between
IV1 - v21 and IV1 + ~21 turns negligiblc and (UI+U2) can be taken as n/2.
The approximate amOlmt oí the correction to the value n/2 will be found
in the following particular case.

Supposing the order oí the quotient oí the moduli oí the
initial velocities to be: Iv21/lvll = £; then it is possible to estimate
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the angle (Ctl+a2) whcn £ « 1.
Within an error of the same arder E, the quantities IV 1 - v 21

and 1~1 + V 21 can be taken simply as the difference and swn of the moduli
of the initial velocities, .andthen

IV1 - v,l ~ Iv,1 (1 -£1
and

IV1 + v,l ~ Iv,1 (1 +£1

(9)

so, the express ion tan(al+a2) is given by the fol1owing expression as a
function of the arder £-1 neglecting tenns of arder £2:

Itan(a,+a,) I ~ JE Isin ni • (10)

Within an error of the same arder £, '( can be taken as n and
suppossing sin n to assume the largest value, it is possible to estimate
Itan(a,+a,) I .

\\11cn quotient of the moduli of the initial velocities are 0.01
ay 0.1, thc discrepancy of the angle (al+a2) relative to the value n/2
is approxilnatcly 2% and 13% respectively.

DlSOJSSION

The general stuuy carried out concerning the classical collision
with arbitral)' kinematical initial conditions for beth partic1es is useful
fer classroom discussion of the kincmatical aspects oí the collision
process.

Although the equation found for the angle between trajectories
in the final state has a rather complicated expression, it is easy to
check with the cornmonly studied case v2 = O. Nevertheless, the equatien
assurncs a simple form for ml = ffi2, for which reason the analysis oí this
particular case was carried out.

The bcnefits obtained in this complete analysis case of
arbitrary kinematical initial conditions fer two particles are just
pcdagogic, and in the sarncmaner the graphical representatíon takes a simple
fonm oE didactic valuc.
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L.D. Landau & E.M. Lifshitz. Course of Theoretieal Physies, Vol. 1
Meehanies, Add;son Wesley Pub. Co. (1960) Ch. 4.
It can be seen that the relation between the scattering angle, X. and
the ;nteraet;on potential ;s g;ven by Eq. 182 (Landau & Lifsh;tz):

X =ln-2hl; ~,=r
fmin

In an e1aslic co11;5;on. the final relat;ve veloc;ty vector is given
by V' = IV 1ft, .
Or the direction in which particle 1 has turned in the center of masssystem.
It can be secn that it is perfectly valid to redefine the target
particle and the projectile not invalidating the equation.
Bearing in mind that this angle, instead. ;s a Galilean invariant.
From naw on. al1 primed vectors will belong te final states in theLaboratory System.




