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AN EXTENSION OF
LANDAU DIAGRAMS FOR
CLASSICAL COLLISIONS

*o
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ABSTRACT

The classical collision of two particles has been studied in the
case of arbitrary kinematical initial conditions for them. Because the
angle (oj+a;) between the final velocities of the particles is not a
Galilean invariant the process was studied directly in the laboratory
system.

An expression is given for (a;+a,) as a function of n, which is
the angle that carries the dynamical information.

The special case of equal masses, also has been analyzed and a
pictorical representation of the process, related with the Landau
collision diagrams is given.

RESUMEN

La colisidn cldsica de dos particulas ha sido estudiada para el
caso de condiciones iniciales cinemdticas arbitrarias. Debido a que el &n
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gulo (x1+2p) entre las velocidades finales de las particulas no es inva-
riante galileano, el proceso fue estudiado directamente en el sistema del
laboratorio.

Se da una expresidn para (a;+0;) como funcidn de n, que es el
dngulo que contiene la informacidn dindmica.

El caso particular de masas iguales, también ha sido analizado
y se da una representacidn griafica del proceso, relacionada con los dia-
gramas de colisidn de Landau.

INTRODUCTION

A general analysis of the classical elastic collision of two
particles has been carried out starting from Landau diagramstl) for the
description of kinetic energy and momentum conservation. In this paper
both particles have been considered to be initially moving in the labora-
tory system. By means of a Galilean transformation this case can be
reduced to the very well known collision description with the target par-
ticle at rest in the initial state.

Nevertheless, if the general case with arbitrary kinematical
initial state in the laboratory system in studied knowing n, the dynamical
parameter of the collision process and the total angular momentum vector,
it is possible to extract conclusions concerning the angle between
trajectories in the final state as a function of n parameter.

The angles of emergence a; and a, of each particle are given
relative to the direction of the total momentum lineal vector of the
system, which is privileged for calculation purposes in the laboratory
system.

The general expression for (a1*a,) has been obtained and the
particular case of two equal mass particles is later discussed, to make
an estimate of the departure of (oi+a,) from L

This angle between trajectories in the final state (a;*a;) is
a function of another angle n which is related to the scattering angle as
expected.

For a better visualization of the kinematical state new diagrams
have been introduced for which reason this analysis offers a pictorical

representation of pedagogical value.
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THE LANDAU DESCRIPTION

If the force of interaction is along the line of center, or the
interaction potential U(r) depends only on the distance between the two
particles, the angular momentum vector of the two particles system is
concerved during the encounter, and it is orthogonal to the plane of collision.

In the following the scattering angle y will be taken as a
parameter(z) thus allowing to solve completely the classical collision.

In the laboratory system the finallmm%mla(7)(primed vectors) of
each particle are given by

Bl = ufUin, + Lo (1)

and

By = -u|VIn, v LB, (2)

T

where p is the reduced mass, ﬁT the total momentum of the two body system,
;n is the direction in which the relative velocity has turned(4), and
my,mp are respectively the masses of particles 1 and 2.

Let us represent the collision process geometrically through
the Landau diagram where Fl, ﬁz are respectively the initial momenta of
each particle in the laboratory system (Eig. 1))

As ﬁT is a constant of motion , it defines a direction in the
laboratory system which we will use to define the angles of emergence o,
and o, of the final momenta 51 and 55, respectively,

Angle n is defined between the direction of the total momentum
and that of the final relative velocity, that is

~ ~

cos n =mng ° PT. (3)

The problem is then reduced to finding the relation between
(¢1+az), n and X -
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oC=4v| A,
IV =[% - %] =]V

Graphical representation of conservation of linear momentum in an

Fig. 1.
elastic collision due to Landau.

TRIGONOMETRIC RELATION FOR THE ANGLE BETWEEN TRAJECTORIES IN
THE FINAL STATE (oi+a)

For example, it will be supposed that |V1] > |[V2|; this imposes

no restriction to the problem.
In order to simplify notation let us define a new variable

i
PR = UV.
It can be seen from Fig. 1 that
|P_| sin n
tan o, = =
u/m, |P.| + [Pplcos n
and (4.a)
B |PRlSin n
tan oz=
p/m, !PTk - |PR1c05 n

To [ind the relation between (ui+a,) and n, the well known
relation of the addition of the tangents can be employed, this relation
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give
|P.| |P.|sin n
tan (o +a,) = . : ; = , (4.b)
wt/mym, [P |2+ [P_|[P| [H:J&Tnf] cosn - [P |

It is interesting to check this expression with some known
result. A very well known one is that in which two equal mass particles
collide,one of them being at rest in the laboratory system, in which
case (a;+a,) is w/2. -

Ifmy =m, and v, = 0, it can be seen that Eq. (4.b) yields the

espected result (in this case EE‘ - |PR| X G
2

RELATION BETWEEN n AND THE SCATTERING ANGLE

Before considering the functional expression for the relation
between n and y it is convenient to review their definitions.

n is the angle between the final relative velocity vector and
the total momentum lineal, that is an angle measured in the laboratory
system.

x is defined as the scattering angle measured in the C.M.
system., Nevertheless, as this angle measures the amount that the
relative velocity vector has turned it can also be determined in the
laboratory system[ﬁ), that is , according to their definitions:

cosn=V'. PT . €o5 5 5 V'V Y (5)

In what follows,a graphical representation of these angles
measured in the laboratory system will be given. For the special case of
having V¥, = 0, it is possible to compare the magnitudes of these angles,
in which case V = v; and P_ = v., which implies n=y , then when target

T 1
is at rest the Eq. (4.a) give the very well known relation:

2o, *n=w |,

tan a;= O ...._L. W .

cos n + my /m,
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The relation sought between p and y adopts a simple expression

as it is seen in Fig. 2 :

s b - = 1
¥ = Bi if X < n’—Bi
and (6)
e g if _
¥ 5= RS Bi 1 X =0 Bi >
where Ri has the following expression:
B B
cos B, = ———
|Pg| [Py
ya F / radiums
! #/m, ! Abﬁn1 ’
case: < M-
-
_._ T : . A A
R— —rn‘__'_rn—z ; 60’3/:1.:.. V-Rr

Fig. 2. Relation between y and n angles, for the general case. As we see
the angle B lS completely given by the lnltlal condltloni. The
relations V! = p/my [ V] o+ and v' = —u/mz‘v}ﬂn+ R are

always satisfied.
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It is possible to see that two simple configurations can be
obtained when:

A) 32 = 0, which implies cos Bi = -1, that is, Bi =m, and then y = n.
B) Whenm; = m,and |V,| = |V,| , which implies cos 8 = 0, that is,
1
Bi = 71/2 and then
x +n=mn/2 if x < m/2
and

X = n=m/2 if X > m/2

Special Case, my = my .

Taking m; = m, in Eq. (4.b) a very simple expression is obtained
for the angle between trajectories in the final state (a +o,):

| Pl |PT| sin n

tan (oitop) = P
i7§ - |Pgl®
->

(8)

in which a great difference is evident with respect to the case commonly
studied where the target particle is supossed to be at rest in the initial
state, being (a;+a,) equal to /2 the difference here found is that the
angle (o,+o,) appears as a function of the dynamics of the system.

When V, = 0, Eq. (8) trivially leads to (a,*a,) =n/2.

It is now desidered to evaluate to what extent the angle (u,+q,)
departs from the value m/2. It is qualitatively possible to see that this
discrepancy turns appreciable when,ivl]approacheslvzl , being strongly
dependent upon the initial orientation of these vectors.

Nevertheless, when |V, |>> |V,|, the difference between
|V, - ¥,| and |V, + v, turns negligible and (u,*a,) can be taken as n/2.
The approximate amount of the correction to the value 7/2 will be found
in the following particular case.

Supposing the order of the quotient of the moduli of the
initial velocities to be: |V,|/|V;| = e; then it is possible to estimate
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the angle (ay+o,) when e << 1.

Within an error of the same order ¢, the quantities |Vg = ?él
and,{§l+ 921 can be taken simply as the difference and sum of the moduli
of the initial velocities, .and then

Wi = = [Fs| T -2
and (9)
131*'32i;|§1| A

so, the expression tan(a,*a,) is given by the following expression as a
function of the order ¢ neglecting terms of order g?:

|tan(as*ta,) | = 7= |sin n] - (10)

Within an error of the same order g, y can be taken as n and
suppossing sin n to assume the largest value, it is possible to estimate
|tan(ai*a,) | -

When quotient of the moduli of the initial velocities are 0.01
or 0.1, the discrepancy of the angle (a;*a,) relative to the value /2
is approximately 2% and 13% respectively.

DISCUSSION

The general study carried out concerning the classical collision
with arbitrary kinematical initial conditions for both particles is useful
for classroom discussion of the kinematical aspects of the collision
process.

Although the equation found for the angle between trajectories
in the final state has a rather complicated expression, it is easy to
check with the commonly studied case ¥, = 0. Nevertheless, the equation
assumes a simple form for m, = m,, for which reason the analysis of this
particular case was carried out.

The benefits obtained in this complete analysis case of
arbitrary kinematical initial conditions for two particles are just
pedagogic, and in the same maner the graphical representation takes a simple

form of didactic value.
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NOTES

L.D. Landau & E.M. Lifshitz. Course of Theoretical Physics, Vol. 1
Mechanics, Addison Wesley Pub. Co. ({1960) Ch. 4.

It can be seen that the relation between the scattering angle, y, and
the interaction potential is given by Eq. 18 2 (Landau & Lifshitz):

M/r? dr
X =|m-2¢0]; 2
b0 J /2 m (E-U(r) - M/r2
'min

In a3 elastic collision, the final relative velocity vector is given
by V' = |V |fA, .

Or the direction in which particle 1 has turned in the center of mass
system.

It can be seen that it is perfectly valid to redefine the target
particle and the projectile not invalidating the equation.

Bearing in mind that this angle, instead, is a Galilean invariant.
From now on, all primed vectors will belong to final states in the
Laboratory System.





