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Abstract. The nonlinear equations describing the charging and dis-
charging electrical transients under controlled-current conditions across
a single-carrier semiconductor (or insulator) are analytically solved. Pla-
nar, cylindrical, and spherical geometries are studied, and the effect of
traps and diffusion is investigated. The inclusion of diffusion leads to
an extension of the Burgers equation, which can be solved in terms of
displaced Airy functions.
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1. Introduction

The mathematical modelling of electrical transients in semiconductors and insula-
tors involves many different problems, including: the effect of trapping and diffu-
sion [1-3], electrode-limited transients [1], photoelectronic processes (5-7], high field
conduction [8], numerical models [9,10], cylindrical and spherical geometries [11],
and two-carrier conduction processes [12-14]. All of these problems are described by
nonlinear partial differential equations (PDEs), with an appropriate set of initial and
boundary conditions. If these boundary-value problems are examined, an interesting
similarity can be found: in most of them a constant-voltage constraint is considered.
Inverse processes, in which the voltage changes with time while the current is held
constant, have been experimentally studied, but there are few mathematical models
which describe such processes precisely.

Recently it has been shown that interesting results can be analytically obtained
from the system of PDEs which describes the transient electrical conduction in
two-carrier semiconducting or insulating solids, if a constant-current condition is
considered [15]. In Ref. [15], however, the influence of traps and the diffusion of
carriers were not considered, and only the transport between planar electrodes was
studied.

In the present paper the electrical transients in a single-carrier semiconductor
(or insulator) under constant-current conditions will be studied. The paper starts
with the simplest problem of planar clectrodes without traps and without diffu-
sion (Sect. 2), then considers the problem with cylindrical and spherical geometries
(Sects. 3 and 4), and finally studies the effect of traps and diffusion (Sects. 5 and 6).
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In each of these five sections both, the charging and discharging transients, are
studied.

2. Electron flow without traps and without diffusion

2.1. Charging transient

The solution of the boundary-value problem considered in this section has been
presented elsewhere [15], but it is included here for the sake of completeness.

The equations describing the electron flow through a single-carrier semiconduc-
tor (or insulator) in the absence of trapping and diffusion are the total current
density equation, Poisson’s equation, and the equation of continuity. For planar
geometry, these equations are, respectively [1]

!
Jo = qun' (2, ) E' (', ') + E%—?—, (1)
oE'
e G| @
a on'
5 0 OB @, 0)] = o5, 3)

where g is the absolute value of the electronic charge, y the electron mobility, n’ the
free-electron density, nj, the free-electron density under thermal equilibrium, ¢ the
permittivity (or dielectric constant), E' the electric field, and Jj the total current
density. Using Eqs. (2) and (3) it can be proven that Ji is independent of z’. Once
this is known, it is unnecessary to consider Eq. (3) any further, as it becomes a
consequence of Eqs. (1) and (2).

If d' is the separation between the electrodes, and Jy is a characteristic (pos-
itive) value of the total current density, we can define the following dimensionless

quantities
1/2
r= 1'_' i I‘J:s / ¢
d’ ed' :
1/2 '
pd' J
n= SJ') qn‘v JOZJ—‘,?,
u u

Substituting these variables in Egs. (1) and (2), and neglecting nj, in comparison
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with n’, the following dimensionless equations are obtaincd

J =n(z,)E(z,t) + %—If,
oE
o —n(z,t).

This pair of equations can be transformed into a single first order quasilinear PDE
for the (dimensionless) electric field

—EE; + Ey = Ju. (4)

As initial and boundary conditions we shall consider the following
E(z,0)=0 (z>0), (5)
E0,t)=0 (t>0). (6)

Equation (5) implies that the free-electron density is zero at t = 0, and Eq. (6)
means that an ohmic contact is assumed at z = 0. Finally, as we are interested in
controlled-current transients, we have to specify the temporal variation of the total
current density. We shall consider the simplest condition: a step current excitation.
Therefore, we will consider that Jo is a negative constant for ¢ > 0.

Even though the Eq. (4) is not a linear one, the boundary-value problem (4)-(6)
can be exactly solved by the method of characteristics [16] due to the simplicity of
the initial and boundary conditions. Applying this method, the solution is found to
be

—(=2Jo2)?, z < -Jot?/2,
E(z,t) = (7)
Jot, x> —Jot?[2

and from this expression we can obtain the free-electron density:

‘ 1/2
(—ﬂ) , =< —=Jot?/2,
n(z,f)={ \ 20 ®)

0, z > —Jot?/2.
This equation shows that the characteristic curve,
= —%Jotz, (9)

is the advancing front of the electrons. Therefore, the first electrons arrive at the
anode (located at z = 1) at the instant
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and this is also the time at which the steady state is established.
If desired, the time-variation of the voltage could be obtained calculating the
integral

1
V(t) = —/ﬂ E(z,t)dz.

2.2. Discharging transient

In Subsection 2.1 we found that a steady state is reached at the instant ty given
by Eq. (10). Now, in this part, we shall investigate what happens if the current is
suddenly interrupted at an instant ¢; > ty. The boundary-value problem describing
this decaying transient is the following

—-EE, + E, =0, (11)
E(z,t)) = —(=2Jp2)'? (2 >0), (12)
E0,t)=0 (> 1) (13)

Again, this problem can be solved by the method of characteristics. The solution is
found to be

1/2
E(z,) = —Jft = ;) — [- 2or + Jt—11)?] . (14)

To visualize the shape of this surface it is useful to observe that the constant-field
trajectories in the plane z — ¢

E(z,t) = Ey (Fo = constant).

t= —i)xé- t—&)
“\ E " on)

Therefore, the electric-field surface E(z,t) stretches along these lines, which are
precisely the characteristic curves corresponding to the problem (11)~(13). Figure 1
shows some of these characteristic lines.

If desired, the free-electron density, n(z, t), and the transient voltage, V(t), could
be easily found from Eq. (14).

are just the straight lines

3. Coaxial cylindrical electrodes

3.1. Charging transient

Consider now a single-carrier semiconductor without traps and without diffusion,
placed between two coaxial cylindrical electrodes of radii ry and 74 (r] < r}), and
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FIGURE 1. Level curves of the surface E(z,t) in the absence of traps and diffusion, for Jo = -1.
The dotted parabola corresponds to the front of the advancing electrons.

length L'. In this case the equations describing the electron flow are the following

0 el gt 3E'
m=q#n(r,t)E(r,t)+55—[,-, (15)
l_Q_ rpty 9 et gt
140 i)
e [qpr‘n’(r',t')E’(r',t')] _ q'ét_rn'(r,’t‘)‘ (17)

From these equations it can be proven that Ij is independent of r'. Once this is
known it is unnecessary to consider Eq. (17) any further, as it becomes a consequence
of Egs. (15) and (16).

If & is the separation between the electrodes, and I, is a characteristic (positive)
value of the total current, we can define the following dimensionless quantities

r! ul, W ;
r= -d—lr ti= (Ed'3) t i

1/2 ,
_ (md? , _h
=) b
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14
;E(VE) = —n.

From these equations we can obtain a single nonlinear PDE for the (dimensionless)
electric field:

a a Iy
E'a—r(TE) - E(TE) = —2_?[:. (]8)
Then, if we define
u=rkE, (19)
Equation (18) takes the form
u _ Io
;Ur — U = —m. (20)
If we consider the initial and boundary conditions
u(r,0)=0 (r<r<ry), (21)
u(r,) =0 (0<), (22)

and we assume that Iy has a constant negative value, the boundary-value problem
(20)-(22) can be solved by the method of characteristics, and the solution is found
to be

IO 5 8 1/2
= |==(*-r%) t> f(r)
o= [ 2rL 1]
Iy

where
1/2
)= [Her -]
The function u(r,t) implies that E(r, t) and n(r,t) have the form
Io 1'2 — 1"2 12
= [-m (‘TI)J v 2 f(r),
E(r,t)= (23)

Io t
LT t< f(r),

)3 I ig % -1/2
WL | 2L (r*=r) v 82 f(r),
n(r,t) =

0, t< f(r),
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From Eq. (24) we can see that the curve t = f(r) describes the front of the advancing
electrons. The first electrons arrive at the anode located at r; = r;+1 at the instant

= 1/2
fg(r'l) = f(rl + 1) = [—?KL(?"I + 1)] 5 {25)

and at this moment a steady state is established.
The time variation of the voltage can be obtained calculating the integral

V(t)=- jnﬂ E(r,t)dr.

a1

3.2. Discharging Transient (eylindrical electrodes)

Let us consider the discharging transient in the limit ry — 0. From Eqgs. (18) and (23)
we can see that this transient is described by the equations

a o
EB—I:(TE) L E(T‘E) = 0,

1/2
E(r,t) = - (—%) (r>0),
E(0,t)=0 (t=>1ty),

where t; is any value greater than t3(0). In terms of the variable u, defined by
Eq. (19), this boundary-value problem takes the form

§u, —uy=0, (26)

1/2
u(r,ty) = —r (_-2_1:_L) (r>0), (27)
u(0,8)=0  (t>t). (28)

This problem can be solved by the method of characteristics. The solution, in terms
of the function E(r,t), is

1/2

E(r,t) = E? (‘““)+E, [Ef(t:h)2+l] (r>0), (29

r

where E, is the steady state value of the electric field, that is

B L\
E, == (—m) 5
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FIGURE 2. Radial dependence of the electric field with coaxial cylindrical electrodes, at different
moments during the decaying transient, for [ = —27L and r; = 0.

In Fig. 2 we can observe the spatial behavior of the function E(r,t) for different

values of ¢. To visualize the surface E(r,) it is also useful to look at the constant-field
trajectories

E(r,t)=Ey  (E = constant).

From Eq. (29) it follows that these trajectories are the straight lines

o | b Y i
“\2E? T 2R, )" T

Therefore, the surface E(r,t) stretehes following these lines.
If desired, the transient voltage can be found evaluating the integral

1
V(t) = - ]0 E(r, 1) dr.

4. Concentric spherical electrodes

4.1. Charging transient

Next let us consider the problem with spherical symmetry. The equations describing
the electron flow across a semiconductor without traps and without diffusion, placed
between two concentric spherical electrodes of radii rj and r}, = r{ + d' are

Iy N T OE'
dnr'? = qpn"(r E' (¢, ') + E"é?‘v (30)
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]. 6 1] !

T\ B)= ~2n(r, 1), (31)
1 @ npt 9 ! g
gy [P (OB, O] = ggpn'(r, ) -

As in the preceding section, from these equations it can be proven that Ip does
not depend on r'. Once this is known, it is not necessary to consider Eq. (32) any
further, as it becomes a consequence of Eq. (30) and (31).

If I', is a characteristic (positive) value of the total current we can introduce the
following dimensionless variables

r—r_‘ t_(#la)llgtf
T d ~ \ed?
1/2 i
pd® I
n=(eli) o IO:I'%’
1/2
_ (epd ’
=(%)
In terms of these variables the Eqs. (30) and (31) take the form
Ip 0E
e R AT
18,,
s r“E) = —n.

These equations can be combined into a single equation for the electric field

Ip Ea aE
yre Rl U R i (33
which, with the change of variables
= rzE', (34)
becomes
u I
U —u = —ﬁ. (35)

The initial and boundary conditions for this equation will be
u(r,0)=0 (rn<r<n), (36)
u(ry,t) =0 (0<t). (37)
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FIGURE 3. Steady state distribution of the electric field with concentric spherical electrodes, for
Iy = —67 and different values of the inner radius r;.

Considering that Iy is a (negative) constant, the boundary-value problem (35)-(37)
can be solved by the method of characteristics. The solution of this problem, in
terms of the function E(r,t), is

3_ . 3\11/2
A" o
E(r,t) = 1 (38)
I
25 t< 1),

where

=[5 (-5) -] " (39)

The spatial behavior of the function E(r,t), for t > f(r) and different values of 1,
is shown in Fig. 3.

The curve t = f(r) is the advancing front of the electrons. The first electrons
arrive at the anode, located at r; = ry + 1, at the instant

alrn) = S+ 1) = [3 (<3 @t +3m + 1)]1’2, (10)

and at this moment a steady state is established.
The voltage transient

V(t) = - / " E(r,t)dr

1
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cannot be expressed in terms of elementary functions, as this equation leads to
elliptic integrals. Ilowever, in the limit r;y — 0 this integral can be evaluated without
problems.

4.2. Discharging transient (spherical electrodes)

As in the preceding section, we shall consider the discharging transient in the limit
r1 — 0. From Eqs. (33) and (38) we can see that this transient is described by the
equations

OF
e 2 i i

r? E)r(r ) ot 0;

) I \2

E(r,ty) = - (—6?) (r>0),

EQ0,)=0 (t>t),

where 1) is any value greater than t5(0). In terms of the variable u, defined by
Eq. (34), this boundary-value problem becomes

%u,-u,:l), (41)

1/2
u(r,t)) = — (—é%) r3/2 (r>0), (42)
u(0,t)=0  (t2t). . (43)

This problem can be solved by the method of characteristics, and the solution, in
terms of the function E(r,t), is

1/3
B NP | 31— P i-HY* 1
reo=-(-g) i+ [G) (5 5] e

(44)

The spatial variation of this function, for different values of ¢, is shown in Fig. 4.
The voltage transient cannot be expressed in terms of elementary functions in
this case, because the integration of the function E(r,t) involves an elliptic integral.

5. Planar geometry with traps

5.1. Charging Transient

In this section we will consider a one-carrier semiconductor, with traps situated at
a single energy level, and uniformly distributed in space. For planar geometry, the
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FIGURE 4. Radial dependence of the electric field with concentric spherical electrodes, at different
moments during the decaying transient, in the limit with r, = 0.

equations describing the electron flow are the following

!
Jy = aun' (& VB 1) 4 O (45)
OE'
5 = 2 [W( ) =+ () — ] (46)
am' Lz b il ' Vpood GH N, Ey - E. fri g
W—-—C{ﬂ(xyt)[N—m(m,t) _?exp[ kT m(z,t) ) (47)

3% [qyn'(z’, t')E'(z',t’)] = qg—, [n’(:c’, t') + m'(x’,t')] ; (48)

where Jy, ¢, €, g1, n', ng, and E’ have the same meaning as in Section 2, and m' is the
trapped electron density, m{ the trapped electron density in thermal equilibrium,
C the electron capture coefficient, N’ the density of electron traps, E; the trapping
energy level, E. the energy level at the edge of the conduction band, N, the effective
density of states in the conduction band, and g is the degeneracy factor of trap
states. From the Egs. (45), (46) and (48) it can be proven that J§ does not depend
on z'. Once this is known, it is unnecessary to consider Eq. (48) any further, as it
becomes a consequence of Eqs. (45) and (46).

Following Batra and Seki [5], we will neglect the values ny and mj, in Eq. (46),
and introduce the approximation

N! . ml ~ Nl
in Eq. (47). With these assumptions, the Eqs. (46) and (47) take the form

OE'

. 9 Wsl 3 R
B_I'-_ é’,[ ( !t)+ ( 1t)], (49)
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!
%—?;— = CN'7'(z',t') - Cn'\m'(2', 1), (50)

where we have defined

n'——N—cex B - B
17y S b

Now, if we define the dimensionless variables z, t, n, Jo, and E exactly as in Sect. 2,
and introduce the additional dimensionless quantities

1y 1/2 ¢ N 1/2
m= (:j,) qm’, N = (%) CN',

ed 1/2
m= () on

Equations (45), (49) and (50) take the form

Jo=nE+ E,, (51)
Ey; = —-n—-m, (52)
my= Nn—njm. (53)

Solving Eq. (52) for n, and substituting the resulting expression into Eqs. (51) and
(53), the following equations are obtained

E—FE, +0—(Em+ Jy) =0, (5
my+ NE; +0+4 (N 4+ ny)m = 0. (55)

This system can be written in the matrix form
U, + AU, +B =0, (56)

where U and B are the column vectors

U= [f;] (57)
—(Em + J,
B = [§Fmm), ()

and A is the matrix
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First order quasilinear systems of the form (56) can be classified as elliptic, parabolic,
hyperbolic, strictly hyperbolic, or ultrahyperbolic systems [17], depending on the
eigenvalues of the matrix A. In the present case, the two eigenvalues of the matrix
A given by Eq. (59) are

A1 =0, Ay = —E.

The fact that the two eigenvalues are real and distinct implies that the quasilin-
ear system (54)-(55) is a strictly hyperbolic system, and therefore there exist two
families of characteristic curves, given by the solutions of the equations

dr

F=N =12 (60)

For i = 1 the characteristics are just the straight lines z = const., but for i = 2 the
characteristics cannot be found until the form of the function E(z,1) is known.

To solve the quasilinear hyperbolic system (54)-(55) it is convenient to trans-
form it into a single equation for the electric field. This is possible because we can
obtain an expression for m(z, t) in terms of the function E(z,t), solving the Eq. (55)
by the method of variation of parameters. In this manner we obtain

t
m(r,t) = [k(z)_-/’ NEIC(N-Fnl)f'dtr e_(N.H.])“
0

where k(z) is an arbitrary function. If we consider the initial condition
m(z,0) =0,

the function k(z) must be identically zero, and therefore
t
m(z,t) = —Nc'(N"'"‘)'/ EgeN+m)t gy
0
Substituting this expression into Eq. (54) the following nonlinear integro-differential
equation is obtained

i
Ey—EE, ~Jy~ Ne—(N+":)‘E[ EgelNtn)t gy — o, (61)
0

We are interested in the particular solution of this equation consistent with the
initial and boundary conditions

E(z,00=0 (z>0), (62)
E0,t)=0 (t>0). (63)
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To solve this boundary-value problem notice that in the absence of traps the fol-
lowing equality holds

t t
/ E‘C(N-l-nﬂt'dtl =E, / E(N+n1}l'dt'.
0 0

In the presence of traps this equation is not exactly satisfied, but it remains a
reasonable approximation which enables us to transform Eq. (61) into the following
equation

__m N _(Ntnm)t _
E, Nt [1 + ﬂlc EE. = J. (64)

For typical values of the parameters N and nj, and any positive value of ¢, the
second term in the square brackets appearing in this equation is much smaller than
unity. Therefore we can neglect this term, thus obtaining

EE, - AE, = — A, (65)

where we have defined

HesT iy, (66)

ny

Equation (65), with the initial and boundary conditions (62) and (63), can be
solved by the method of characteristics, and the solution is found to be

~(-24J02)'%, z < -Jhitf2A,
E(z,t)= (67)
Jot, z > —Jot?[2A.

This expression shows that a stationary state is established at the instant

w=(-22)". )

Comparing this equation with Eq. (10) of Section 2 we can see that the presence
of traps delays the establishment of a steady state, as one could have expected
intuitively.
If desired, the transient voltage can be obtained from Eq. (67).
5.2. Discharging transient (with traps)
The discharging transient is described by the equations
Ei—EE:+04+0-mE =0, (69)

04+ NE; +my+0+ (N +n;)m=0, (70)
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which is a system of the form

AiEi+ BiE; + Cimi+ Dim; + K =0 (i =

Courant and Friedrichs [18] show that a system of this type can be transformed into

the following system of characteristic equations
To = (4la =0,
zg—(-tg =0,
TEq + (a4 = S)mqa + (K4 — H)tq =0,
TEg + (al- — S)mg + (K¢~ — H)tg =0,
where (4 and (_ are the solutions of the equation
a(? — 26 +c =0,
with
a=[AC], 2b=[AD]+[BC], c=[BD),
with the abbreviation
[XY] = X1Y2 - Xo¥y

and

T =[AB], $=[BC), K =[AF), H=|[BF).

If we approximate

N+na=n

in the last term of Eq. (70), which is a reasonable approximation because typically
the value of N is much smaller than the value of ny, the four characteristic equations

for the system (69)-(70) become
X = 05
X'+ Eiﬂ =if),
NEy + Emg + nymFEty =0,
NE,B = 0.

(1)
(72)
(73)
(74)



Nonlinear equations describing controlled-current transients. . . 603

Of these equations, the more interesting are Eqs. (72) and (74). Equation (74) shows
that the electric field does not depend on 3. Therefore

E = E(a)

and consequently the electric field is constant along the curves a = constant. To
find out the shape of the curves a(z,t) = const. we can employ the identity.

..~ (@)
at) \98), \98/,
to rewrite Eq. (72) in the form
(at) _
), E(a)

This equation shows that a curve t(z,a = const.) has a constant slope equal
to —1/E(a). Therefore, the curves a(z,t) = const. are straight lines with slope
—1/E(a). This information is sufficient to calculate the evolution of the electric
field during the decaying transient, starting from any initial condition E(z,t;). In
particular, if #o is the time given in Eq. (68), t; > o, and we take as initial condition
the steady state electric field

E(z,t;) = —(-2AJo2)'* (2 20),
the electric field during the decaying transient is
E(z,t) = E(z - §,1,) (@20, 1=2#);

where the value of § can be obtained from the equation

t—1t 1

F ~ Bo-th)

that is
1/2
§=AJo(t —t1)* + [(—AJD)Q(t — ;)4 = 2AJox(t - 31)2] :

From the last three equations it follows that the electric field during the discharging
transient is

212 2 1/2
B(z,t) = —Ad(t—t1) - [ - 24doz + A2 —t)*] (@ 20,t21), (19)

and from this expression the transient voltage can be obtained.
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6. Planar geometry including diffusion

6.1. Charging transient

Finally we shall consider the equations describing the electron flow in a semicon-
ductor (or insulator), including the contribution due to the diffusion of the charge
carriers. Using the same dimensionless variables introduced in Section 2, and defin-
ing a dimensionless diffusion coefficient

n 1/2
!
o= () »

these equations are

on  OE
Jo = n(z,t)E(z,t) + D% dees
O
a‘ = —n(z,t).

From these equations an interesting nonlinear equation for the electric field can be
obtained

Ey = DE,, + EE, + J,. (76)

In the following we shall obtain the particular solution of this equation consistent
with the initial and boundary conditions

E(z,0)=0. (z>0), (77)
E(0,t)=0 (t>0). (78)

Equation (76) is an extension of the Burgers equation, and this suggests the appli-
cation of the Hopf-Cole transformation

—opl
E=2D%, (19)
which implies that
” X J i )
u(z,t) = u(0,t)exp [20 v/; E(<',1) dm} ‘ (80)

With the change of variable (79), Eq. (76) is transformed into the linear equation

Jo

uy = Dug, + @mu,

(81)
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and the initial and boundary conditions (77)-(78) transform into
u(z,0) =ug (ug = const.) (z >0), (82)
u(0,t) =0 (t>0). (83)
Furthermore, from Eq. (80) it follows that

zIi.r{.llou(:xr,t) =0 it 540k (84)

To obtain the solution of the boundary-value problem (81)-(81) let us begin
looking for the separable solutions of Eq. (81) consistent with the boundary condi-
tions (83)-(84). Substituting

u(z,t) = f(z)g(t)
into Eq. (81), it follows that f(z) and g(t) must be the solutions of the equations
gt+rg=0, (85)
Jez + (s —rz)f =0, (86)
where v is a constant, and r and s are defined as

J
r=-5p5 (87)

8 = -5 (88)

Equation (85) can be immediately solved, and its solution is
g(t) = g(0)e™". (89)
To obtain the solution of Eq. (86) it is convenient to introduce the change of variable
z=r"M(rz —3), (90)
which transforms Eq. (86) into the Airy equation
fez—2f =0, (91)
whose general solution is a linear combination of the Airy functions

f(z) = cq Ai(2) + ¢ Bi(z) (ca and ¢, const.). (92)
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Therefore, the solution of Eq. (86) is

: v . v
f(z) = ca Ai (r”ax - Dr2/3) + B (r'”:r - Dr2/3) : (93)

For this expression to be consistent with the condition (84), it is necessary that c;
be equal to zero. Therefore, f(z) reduces to

f(z) = cq Ai (rll3x - D:;”) < (94)

If we now impose the condition (83), the following equation must be satisfied

Ail (_Ep?ﬁ) =i (95)

where Ai'(z) is the derivative of the Airy function Ai(z). Thercfore, the parameter
v can only take discrete values vy, such that

Un

— 535 = (96)

where A, is the n*h zero of the function Ai’(z). The solutions of Eq. (81) consistent
with the boundary conditions (83)-(84) have, therefore, the form

tip (@i 1) =2 exp(A“Dr2/3t) Ai(rll:‘x + X)) (e = const.), (97)

and these functions enable us to express the general solution of Eq. (81), satisfying
the conditions (83)-(84), in the form

u(z,t) = Z e exp(Aa Dri/3t) Ai(r' Pz + M), (98)

n=1

The coefficients ¢, are determined from the initial condition (82), which implies
that

g = i cn Ai(r3z 4 Ay). (99)

n=1

From this equation we can obtain the values of the coefficients ¢, using the
orthogonal property of the displaced Airy functions [19]

/m Ai(z + Aa) Ai(z 4 Am) dz = —Am AiZ(Am)bnm- (100)
0
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In this way we obtain

= A 1/3! ) 10]
o AA; A,.)/ o el it

From Egs. (79), (98), and (101) we can write the solution of the boundary-value
problem (76)-(78) as follows

o0
Z an exp(An Dr/3t) Ai'(rlisa: + Aa)

E(z,t) = 2Dr'/322L . (102)
z an exp(An Dr¥/3t) Ai(r' Pz + \,)
n=1
where
- Ai(r' 32" + 2, de'. 103
ol LA 109

To appreciate the behavior of the electric field as t — oo it is convenient to

rewrite Eq. (102) in the form

o0
aj Ai'(rllssr + A1)+ Za" exp [(/\,, - /\1)Dr2/3i] Ai"(r”a: + An)
E(z,t) = 2Dr'/ n=t .
a Ai(r Bz + M) + Y anexp [(,\,. - A.)Dr:’”t] A3z 4 A,)
n=2
(104)

As A, — )} is a negative number (for n > 2), all the exponentials tend to zero as
t — 0. Therefore, if we define

tl_i.r(t)lo}:','(.z',t) = Ep(z), (105)

we can see that

1A (rPz 4+ M)

E, =2Dr' P —
o(z) " Ai(r13z 4 ))

(106)

To visualize the shape of this function we can introduce the asymptotic forms
of the Airy function and its derivative [20]

Ai'(z) = —-;-z”‘ exp (-%:3/2) (0.564190) (z > 10),

Ai(z) = %2—1/‘ exp (-%z”ﬂ) (0.564190) (z > 10).
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Substituting these expressions into Eq. (106), we obtain

1/2
E(z) = --2Dr1/3(r1/3.r + )\1) . (z > 10r_1/3),

which, with the aid of Eq. (87), can also be written as

1/2 2y 1/3
B(z) = ~ |~2Joz + Mi(~4DJo)!"] (“10 (‘?) .

0

If desired, expressions for the {ree-electron density and the transient voltage can be
casily obtained from Eq. (102).

6.2. Discharging transient (with diffusion)
The discharging transient is described by the Burgers equation

E, = DE,, + EE,. (107)

As initial condition we can consider the stationary form of the electric field given
by Eq. (106)

E(z,tp) = QDQ,i In Ai(r'/?z + A1) (z>20), (108)
x

where 1y is any value large enough for the exponentials in Eq. (101) to be negligible
(usually ¢ > 1 will suffice), and as boundary condition we shall consider the same
condition used in the preceding sections

E(0,t)=0 (t > tg). (109)
Introducing the Hopf-Cole transformation
a
E(z,t) =2D—Inu(z,t), (110)
dr

the boundary-value problem (107)-(109) is transformed into

sy 22 (111)
u(z,to) = ug(z) (z > 0), (112)
uz(0,8) =0 (t > ty), (113)

where we have defined

ug(z) = Ai(r'z + Ay). (114)
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The solution of the new boundary-value problem (111)-(113) is known to be [21]

(115)
and therefore the electric field is given by

E(z,t) = _ﬁj Io {(t —§)exp [—;‘5%—5%7] +(z 4 &) exp [—;g(%f%j] } up(£)d§
| S5 {exp [~ 1575%) + exp [~ a5y | } uo(e)de '

This expression is complicated, but it reduces to

(116)

T

Hlet] = C(t—t)

(117)

for times large enough to be licit to approximate

T 2
exp [~ 5 wafe) ~ wa(©

in the integrals appearing in Eq. (116).

7. Summary

The electrical transients originated by the sudden application, or the sudden in-
terruption, of constant currents across single-carrier semiconductors (or insulators)
were mathematically analyzed. Planar, cylindrical, and spherical geometries were
considered. For each of these geometries there exist a single, first-order, quasilinear
PDE which describes the charging transient in the absence of traps and diffusion,
and a similar equation which describes the discharging transient. Assuming an ohmic
contact at the cathode, these quasilinear equations were solved by the method of
characteristics.

In the presence of traps the charging transient is described by a quasilinear
hyperbolic system, which can be transformed into an integro-differential equation
for the electric field. An approximate solution of this equation was obtained using
the method of characteristics. The discharging transient was also found using the
concept of characteristics.

The diffusion of the charge carriers was also considered. The charging transient
with diffusion is described by an extension of the Burgers equation, which could
be solved in terms of the displaced Airy functions. The discharging transient is de-
scribed by the normal Burgers equation, and therefore its solution could be obtained
by means of the Hopf-Cole transformation.
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Resumen. Se resuelven analiticamente las ecuaciones no lineales que
describen los transitorios eléctricos de carga y descarga bajo condiciones
de corriente controlada a través de semiconductores (o aislantes) con
un solo tipo de portadores de carga. Se consideran electrodos planos,
cilindricos y esféricos, y se investiga el efecto que producen la presencia
de trampas y la difusién de portadores. El término difusivo conduce a
una extensién de la ecuacién de Burgers, la cual puede ser resuelta en
términos de funciones de Airy desplazadas.



