
/'U'f'.,tigtJciÓJl RCl'ista .\lexicana de Fí.Qica37 No. J (/991) 581-610

Nonlinear equations describing controlled-current
transients in semiconductors and insulators

J. Fujioka and H. Riveros

Instituto dc Fi,~ica, Unil'crsidad Nacional AutótlOma de .\Iéxico
Apartado postal 20-36., 01000 México D,F., ,\léxico

(Recibido el 8 de novi('mhre de 1990; a('('ptado el 29 di' m<\yo de 1991)

Abstract. The nonlin('ar equations descrihing lh(' charging and dis-
charging el('ctrical transi('nts under conlrolh.d-current ronditions a.cross
a single-carri('r semiconductor (or insu1ator) are analytically s01v('d.Pla-
nar, cylindrical. and spherical gcometries are studi('d, and the c[ecl oC
traps and difTusioIJis investigated. The inc1usioTloC difTusionleads to
an extension oC t1le Burgers equation. whi<'hraTlbe solv('d in terms of
displar('d Air)' fUTlctions,

PACS: 02.90.+p; 72.20.-;; 03.40.Kf

1. Introduction

Thc mathematical modclling oC c1cdrical transients in sernicondllclors and insula.
lors involves many dilTerenl problems, including: lhe elTecl oCtrapping anu dilTu-
sion [1-3J, electrode.limiteo transients [41, photoelectronic processe. [5-7], high field
conduclion (8), numerical modcls (9,10}. cylindrical anu spherical geometries [11},
and two-carrier condudion processcs ¡I2-14]. AHof these problems are described by
nonlinear partial dilTerential equalions (roEs), with an appropriate set of initial and
boundary condilions. If thcse boundary.value problems are examincd, an intercsting
similarity can he found: in most of thcm a constant-vollage conslraint is eonsidcrcd.
Inverse processcs, in which the \'oltage changcs with time ''''hile lhe currcnt is hcld
eonslant, have been experimentally studied, hul therc are fe\\' malhematieal modcls
which describe su eh proeesses prcciscly.

Rccently it has been shown that inleresting rcsults can he analylically oblaincd
froro the systcm of rOEs which describes the transient clectrical conduction in
two-carrier semiconducting or insulating solids, if a constant.current condition is
con.ioer",\ [151. In ReL [15], however, the infiuence oC trap. ano lhe dilTusion oC
carriers W{'fenot eonsidercU, and only the lransporl belwcclI planar clcctrodes was
stu(licd,

In the prescnt papcr lhe clcclrical transients in a sillglc-carricr semiconductor
(or insulator) un<ler conslant.currenl conditions w¡JI be sludicd. The papcr slarts
with the silOplcst problcm oC "lanar clcclroJcs withoul traps ami without d¡lIu-
sioo (Sed, 2), lhen consi<icrs the prohlcm with eylilldrici\l antl spherical grometrics
(Sccts. 3 ami 4), and finally studics lile cff('d oCtraps ami difTusioll (Scds. 5 and 6),



588 J. F1Jjiota and H. Rú'eros

In each oC these five sections both, the charging and discharging transients, are
sludied.

2. Electron flow without traps and without diffusion

f.l. Charging transient

The 8OIution oC the boundary-value problem considered in this section has becn
presented elsewhere 115], but it is included here Corthe sake oC completeness.

The equations describing lhe electron flow through a single-carrier semiconduc-
tor (or insulalor) in the absence of lrapping and diffusion are lhe lolal currenl
density equation, Poisson 's equation, and the equation oC continuity. For planar
geometry, thesc equations are, respeclivcly [1)

I I I I I / ') DE'
Jo = q¡m (x • t lE (x • t +<Di"

DE' q [, " ,]
Dx' = -e n (x ,t ) - no ,

D [ '" '/ I 'l] Dn'Dx' qpn (x • t )E (x ,t = q7it',

(1 )

(2)

(3)

where q is the absolute value oC the electronic charge, Ji thc e1ectron mobility, n' thc
Cree-electron density, n~ the free-electron density under thermal equilibrium, é the
permittivity (or dieleclric constant), E' the eicctric ficld, and J~lhe 10tal curren1
densily. Using Eqs. (2) and (3) il can be proven lhal J¿ is independenl of x'. Once
this is known, it is unnecessary to consider Eq. (3) any further, as it becomes a
consequence of Eqs. (1) and (2).

If ti is the separation between the electrodes, and J~is a characteristic (pos-
itive) value oC the total current density, we can define the following dimensionless
quantities

(
Pd')1/2 ,

n = -JI qn,
< •

( )

1/2<p ,
E= d'J~ E

(
,J' )1/2t = L..!.. t'
<el' '

J'J - o0- ji'
•

Substituting thcse variables in Eqs. (1) and (2), and neglecting n~ in comparison
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with n', the rollowing dimcnsionlcss cquations are obtaill(,<\

BE
J; n(x,t)E(x,t) + ¡¡¡'

BEBx ; -n(x, t).

This pair or equations can be transrormed into a single first order c¡uasilinear rOE
for the (dimensionlC5s) electric field

-EE, + El ; Jo.

As initial and boundary conditions wc shall considcr the rollowing

E(x,O); O (x> O),

E(O, t) ; O (t > O).

(4 )

(5)

(6)

Equ.tion (5) implics th.t lhc free-elcctron density is zero .t t ; O, .nd Eq. (6)
mcans that 3n ohmic contact is assumed at x = O. Finally, as we are intercsted in
controlled-current transients, we have to speciry the temporal \'ariation or the total
current density. \Ve shall consider the simplest condilion: a stcp currcnl excilation.
Thererore, .....e will consider lhat Jo is a negative conslalll ror t > O.

Even though the Eq. (4) is not • linear one, the boundary.valuc prohlcm (4)-(6)
can be exactly sol ved by lhe melhod or characlerislics It 6] duc lo lhe simplicily or
lhe inilial and boundary conditions. Applying lhis melhod, the solulion i! found to
be

{

-(-2Jox)I/', x ~ -Jot'/2,
E(x, t) ;

Jot, x ?: -Jot' /2

and rrom lhis expression we can oblain lhe free-electron density:

n(x, t) ; ¡(~~:)"',x ~ -Jet' /2,

O, x ?: -Jot' /2.

This equation shows that lhe characleristic curve,

x = _~Jot2,

(7)

(8)

(9)

(10)

is lhe advancing frool of lhe elcdrons. Therefore, the first electrons arri\'e at lhe
ano de (Ioc.ted at x ; 1) .t thc in,tant

to; (- JJ/
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and this is also the time al which lhe steady state is f'StablishN:i.
Ir dcsired, the time-variation of the voltage could he obtaincd calculating the

integral

V(I) = - lo' E(x, t) dx.
2.2. Dischmying /ron ..•ient

In Subsection 2.1 we found that a stcady state is rcachcd at the instant to gi\'cn
by Eq. (10). Now, in this part, we shall invcstigatc what happens if lhe current is
suddenly inlcrruptN:i at an instant t) > too The boundary-value problcm describing
tilis decaying transicnt is the following

-EEr +E, = O,

E(x,t,) = -(-21ox)'/'

E(O,I) = O (t > t,)

(x > O),

(ll )

(12)

(13)

Again, this problcm can be solved by the method of characleristics. The solution is
found to be

[ , ,]1/'E(x,l) = -Jo(t - t,) - - 210x + Jo(t - 1,) . (14 )

To visualize tile shape of this surface it is uscful to observe that the constanl.field
lrajectories in lhe plane x - t

E(x, 1) = Eo
are just lhe straight Iines

(Eo = constant).

I= (-~) x + (tI - ~) .Eo 210

Therefore, lhe clcclric-field surface E(x, t) stretchcs along these lines, which are
precisely the characleristic curves corresponding to the problcm (11)-(13). Figure 1
shows sorne of lbese characleristic lines.

If dcsircd, the frre-clcdron density, n( x, t), and the transicnt voltage, V( t), could
be easily found from Eq. (14).

3. Coaxial cylindrical e/eetrodes

:U. Charying lrans;,nl

ConsiJer now a single-carrier semiconductor without traps and ••••.ithout diffusion,
placcd bctwC'Cn t••••.o coaxial cylindrical electrodes of radii r~ and r~ (r~ < r~), and
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FIGUREl. Level curves of the surface E(z, t) in the absence of traps and diffusion, ~or Jo = -1.
The dotted parabola corresponds to the front of the advancing electrons.

length L'. In this case the equations dcscribing the eleetron flow are thc íollowing

l~ '(' ')E'(") aE'211"r'L' = q¡m r, t r , t + f-¡¡¡;-,

1 a (") q,(,,)'-a' rE = --n r,t ,
r r £

1 a [ "" '(' ,] 8, I ,-;;ar' q¡.¡rn (r,I)E r,l) = q8t,n (r,I).

(15)

(16)

(17)

From these equations it can be proven that I~is independent oí T'. Once this is
known it is unnccessary to consider Eq. (17) any íurther, as it becomes a consequence
of Eqs. (15) and (16).

If' is the separation between the e1eclrodes, and I~is a characleristic (positive)
value oí the total current, we can define the following dimensionless quantities

r'
r = d! (,1')'/2t.= G t'

e:d'3 '

n= (Iuf') '/2 ,
El' qn,
•

l'
lo = I~'

•

E = (£I"f) '/2 E'
l' ,•

L'
L = Ji'

In lerms of lhese quanlilies, Eqs. (15) and (16) lake lhe form

lo aE
-- =IlE+-2~rL al'
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1 a
~8r (rE) = -no

From these equa.tions we can obta.in a single nonlinear rDE ror the (dimensionlcss)
eleclr;c fieJd:

a a JoE-(rE) - -(rE) = --oar 8t hL
Then, if we define

Equalion (18) lakes lhe form

u Jo
-Ur-U,::; --o
r hL

Ir we consider the in¡tial and boundary conditions

(18)

(19)

(20)

"(r,O) = O

"(r"I) = O

(r1 ~ r ~ r2),

(O ~ 1),

(21 )

(22)
and we assume that lo has a constant ne-gative value, the boundary-value problem
(20)-(22) can be solved by lhe melhod of characlerislics, and lhe solulion is found
lo be

¡ [1 ] 1/2
- -2~oL(r2-rn 12: I(r)

"(r,I) =
Jo
2~LI 1 ~ I(r)

where

E(r, t) =

[
2 L

]
1/2~ 2 2I(r) = -¡;(r - r¡}

The function "(r,I) implies lhal E(r,l) and n(r, 1) have lhe form

[
J

(
22)]1/2o r - rI- -2~L -r-2- , 12:I(r),

t ~ I(r),

¡-~[-~(r2_ rn] -1/2, 12: I(r),
() 2~L 2~L

n r,t =

O, 1 ~ I(r),

(23)

(24)
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From Eq. (24) we can scc lhallhe curve t = /( r) describes lhe fronl of lhe advancing
electrons. The first eledrons arrive at the anode locate<!at r2 = rl + 1 at the instant

[
2 L ] 1/2

lo(r¡) = /(rl + 1) = - ;0 (2rl + 1)

and at this moment a steady state is established.
The time variation oC lhe voltage can be obtained calculating the int('gral

1'1+1
V(I) = - E(r,l) dr.'.

(25)

3.f!. Diseh.rging Transient (ey/indrie.! electrodes)

Lel us eonsider lhe diseharging lransienl in lhe limil rl -+ O.From Eqs. (18) and (23)
we can see that this transient is described by the equations

a a
E ar(rE) - at(rE) = o,

(
1 ) 1/2

E(r,t¡J = - -2~oL (r > O),

E(O,t) = O (t ~ I¡J,

where tI is any value grealer lhan to(O). In lerms of lhe variable u, defincd by
Eq. (19), lhis boundary-value problem lakes lhe form

U
-u, - u, = O,
r

(
1 ) 1/2u(r tI) = -r __ o

, 2~L (r > O),

(26)

(27)

u(O,t) = O (1 ~ 11). (28)

This problem can be solved by the method oCcharaderistics. The solution, in terms
of lhe fundion E(r,I), i.

[
2] 1/2

E(r, t) = E; e~I1 ) + E. E; e~t,) + 1

where E. is the steady state value of the electric field, that is

E = _ (_~)'/2
• 27fL

(r > O), (29)
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FIGURE 2. Radial dt"pendente oC the eJedric field with coaxial cylindrical eledrodes, at ditrerent
mornents during the decaying transient, ror lo;;;; -21CL and rl = O.

In Fig. 2 we can observe the spatial behavior of the fundion E(r,/) for dilTerent
values of t. To visualize lhe surface E(r, t) il is also usefu] lo look al lhe conslanl.field
trajectories

E(r,t)=Eo (E = conslanl).

From Eq. (29) it follows thal lhese lrajectories are lhe slraighl lines

Therefore, lhe surface E(r, t) slrelclJes following these lines.
If desired, the transient vollage can be found evaluating the integral

V(/) = - [ E(r, t) dr.

4. Concentnc spherical eleetrodes

¡.J. Charying tmnsient

Next let us consider the problem with spherical syrnmctry. The equations describing
the electron fl.owacross a semiconductor withoul traps and withoul d¡fTusion, placed
between two concenlric spherical eledrodes oC radii r~ and r~ = ri + r1 are

I~ '(' ') '(") BE'--'-2=Qlln r,t E r,i +e-B"
4~r l

(30)
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1 a "') q '(' ,""a(T E = --n T ,t),
T T <

1 a ['2 ", , , , J a '(' ,T" aT' T qlm (T ,t)E (T ,t) = qat,n T ,t)

595

(31)

(32)

As in the precediog seetioo, from these equations it can be proveo that lo docs
not depend 00 r'. Once this is known, it is not necessary to considcr Eq. (32) any
furlher, as it becomes a consequence of Eq. (30) and (31).

If l~is a charaderistic (positive) value oí the total currcnt wc can introduce the
fol1owing dimensionJess variables

T'
r= -

d'

(/,,/3) '/' ,
n= - qn

él~

(
d') '/'E = <~~ E'.

(J')'/'t =!:...!. t'
t:d'3

l'
Jo = .Ji.JI'•

In terms of these variables the Eqs. (30) and (31) take lhe form

Jo aE
41fT' = nE + at'

2-~(r'E) = -n.
r28r

These equations can be combincd ioto a single equation for the electric field

(33)

which, with the change of variables

becomes

u Jo
-U,-Ur = --o
r2 471'

The ioitial and boundary conditions for this equation will be

(34)

(35)

U(T,O)=O

U(r"t)=0 (O ::; t).

(36)

(37)
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FIGURE3. Sleady slate dilltribution oC the elec1rie field with concentrie spherical electrodes, Cor
10 = -6 •. &fld ditrerent V&)ue8 ofthe ¡nner radiu8 rl.

Considering that lo is a (negative) constant, the boundary-value problem (35)-(37)
can be solved by the method oí characteristics. The solution oí this problern, in
terms oí the function E(r, t), is

where

E(r,l) = ¡-[-:~(r
3

~ r
l
) r t ~ f(r),

lo 1
4~r' t $ f(r),

[
2 ( 4 ) ] 1/'f(r) = :1 - 1: (r3 - rl)

(38)

(39)

The spatial behavior o[ the [unction E(r, 1), [or 1 ~ f(r) and different values o[ r"
is shown in Fig. 3.

The curve 1 = f(r) is the advancing [ront o[ the electrons. The first electrons
arrive at the anode, located at r2 = rI + 1, at the instant

[2 ( 4~) ] '/'10(rJ) = f(r, + 1) = :1 -lo (3rl + 3r, + 1) ,

and at this moment a steady 5tate is estabJished.
The voltage transient

f"V(t) = - E(r,l)dr
"

(40)
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cannol he cxprC'Ssrd in lerms oC c1em('nlary Cunctions, as this cqualion Icads to
elliplic integrals. lIowe\'er, in lhe limil TI - Olhis inlegral can be e\'alualed without
problerns.

4.2. Discharying !mnsirn! (."phcrical eleclrodes)

As in lhe prcc('ding sC'Ction,wc shall consider the discharging transient in the limit
r, ~ o. Frolll E~s. 01) ami (18) we can S('C lhal lhis lransienl is dcscribed by lhe
equations

E iJ, iJE
--(r E) - - = O,
r' iJr iJI

(
lo )1/'

E(r,ld=- --
6Kr

E(O,I) = O

wherc t) is any \'aluc greatcr than to(O). In tcrms oC the variable ", defincd by
Ec¡. (3-1), this boundary-value problem becomes

u,u, - u,= O, (41)
r

( 1) 1/'
u(r, Id = - - 6: r3/2 (r> O), (.12)

u(O,I)=O (43)

This problem can be sol\'ed by the method oC characteristics, ano the solution, in
lerms of lhe fundion E(r,I), is

(44)
'file spalial variation of this fundion, for different values oC t, is shown in Fig. 4.

The voltagc transicnt cannot be expressed in terms oC e1ementary functions in
this case, becausc the inlegration oC the function E(r,t) involvcs an elliptic integral.

(
1 )1/' { 31 1 f(3)' (1 1\' 'JI/'}E(r, 1)= - - 6: -2 ~,1 + l 2. .~,1J +;: (r > O).

5. Planar g~m~try with traps

5.1. Charging Transient

In this scction wc will consider a one-carricr semiconductor, with traps situatcd al
a single energy level, and uniformly distribulcd in space. For planar gcornetry, the
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FIGURE 4. Radial dependence orthe elec:trie field with concentrie spherical eledrodes, at different
moments during the decaying transient, in the I¡mit with r¡ ;;;;O.

equations describing the electron flow are the following

J' '( , ') '( ") aE'O = q¡m x, t E x, t + E:-¡¡i!'

aE' q [ '( , ') , '( ") ']-a ' = -- n x, t - no +m x, t - mo ,x ,

am' e { '( , ')[' '(' ')J N, [E, - E,] , , ')}at' = n x, t N - m x, t - 9 exp kT m (x , t ,

a~'[q/m'(x', 1')E'(x', t')] = q~, [n'(x', t') + m'(x', t')J '

(45)

(46)

(47)

(48)

where J~,q, é, J~,n', nti, and E' have the same meaning as in Scction 2, and m' is the
trapped electron density, mti the trapped electron density in thermal equilibrium,
e the electron capture coefficient, N' the density oC electron traps, E, the trapping
energy Jevel, E, lhe energy Jevel allhe edge of lhe conduclion band, N, lhe efreel;ve
den~ity of states in the conduction band, and 9 is the degeneracy factor oC trap
slales. From lhe Eqs. (45), (46) and (48) il can be proven lhal J; does nol depend
on x'. Once this is known, it is unnecessary to consider Eq. (48) any further, as it
beeomes a consequence of Eqs. (45) and (46).

Following Batra and Seki [5], we will neglect the values n~ and m~ in Eq. (46),
and introduce the approximation

N' - m' R: N'

in Eq. (47). Wilh lhese assumplions, lhe Eqs. (46) and (47) lake lhe form

aE' q [ '( ") '(" 1-a' =-- n x,i +m x,t),x , (49)
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am' c \" '( ") C' '(' ')al':;::: 1 n x, t - ni m x, 1 ,

whcre we have ddined

599

Now, ir we define the dimensionlcss variahl('Sx, t, n, Jo. and F: eXilctly as in Sed. 2,
ami introduce the additional dimensionl('ss quantities

( d')'/2
m:;::: :J~ qm',

(
Ed' ) '/2

nI = Jd~ en'¡,

(
d')1/2V:;::: _E_ cV', J' '.
l' •

Equalions (-15), (.19) and (50) lake lhe form

Jo = uE + E"

Ex = -u -111,

mj:;::: No - TlIJn.

(.í 1 )

(52)

Solving Eq. (52) for n, and slIbstituting the reslllting exprcssion iulo Eqs. (51) and
(53), the following eqllations are ohtaincd

E, - EE, + O - (Em + Jo) = O,

m, + N E, + O+ (N + u,)m = O.

This system can be wrilten in the matrix form

U,+AU,+D=O,

where U and B are the column vectors

B _ [-(Em + Jo)]
- (N + u,)rn '

and A is the matrix

[-E O]A = N O .

(51)

(5í)

(56)

(57)

(58)

(59)
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First order quasilinear systems of the form (56) can be c1assified as eHiptic, parabolic,
hyperbolic, strictly hyperbolic, or ultrahyperbolic systems (17), depending on the
eigenvalues oC thc malrix A. In the presenl case, the two eigE"nvaluesol the matrix
A given by Eq. (59) are

Al = O, A, = -E.

The Cact that the two eigenvalues are real and distinct implies that the qnasilin-
ear system (54)-(55) is a strictly hyperbolic system, and therefore there exist two
families oC characteristic curves, given by the solutions oC the equations

dx = AO
di ' (60)

For i = 1 the characteristics are jusl the slraight lines x = const., bul ror i = 2 the
characleristics cannol be found unlil the form ol the fundion E( x 1 t) is known.

To solve the quasilinear hyperbolic system (54)-(55) it is convenient to trans-
form it ioto a single equation Corthe electrie field. This is possible because we can
obtain an expression [or m(x, 1) in terms o[ the [unction E(x, 1), solving the Eq. (55)
by the method oC variation oC parameters. In this manner we obtain

m(x, 1) = [k(x) - J.' N E.e(N+n¡)( di'] e-(N+n¡)',

where k(x) is ao arbitrary fundion. If we consider the ¡n¡tial condition

m(x,O) = O,

the function k(x) must be identicaJly zero, and thererore

Substituting this cxpression into Eq. (54) the roJlowing nonlincar integro-differential
equation is obtained

(61)

We are interested in the particular solution oí this equation consistent with the
¡nitial and boundary conditions

E(x,O) = O

E(O,I) = O

(x ~ O),

(1 ~ O).

(62)

(63)
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To salve this boundary-value problem notice that in the absence of lraps the fol-
lowing equality holds

J.' E,e(N+n'¡"dl': E, J.' e(N+nl)"dl'.

In the presence of traps this equation is not exadly satisfied, but it rCl1}ainsa
reasonable approximation which enables us lo transform Eq. (61) into the following
equation

E, __ 0_'_ [1 + N e-(N+nl)'] EE, : Jo.
N+o, 01

(61 )

For typical values of the paramcters N and nl, and any positivc value of t, the
second term in the sql1arebrackets appearing in this cqualion is much smallcr than
unity. Therefore we can neglcd this term, thus obtaining

where we have defincd

EE, - AE, : -Ajo,

N
A: 1+-.

°1

(6.'¡ )

(66)

Equation (65), with the initial and boundary conditions (62) and (63), can be
sol ved by the mcthod of charadcristics, and the solution is found lo be

{
-(-2AJoX)I/', x $ -Jol'/2A,

E(x, 1) :
Jol, x ~ -Jol' /2A.

This express ion shows that a stationary slale is established al the instan!

(67)

(68)

Comparing this equation with Eq. (10) of Scction 2 we can scc tha! the presence
oC traps delays the establishment oC a sleady state, as one couId have expcded
intuitively.

Ir desired, the trans;ent voltage can be obtained [rom Eq. (67).

5.!!. Discharying Imnsienl (wilh Imps)

The discharging transient is dcscribed by the equations

E, - EE, + O + O - mE : O,

0+ NE, +m, +0+ (N +nl)m: O,

(69)

(70)



602 J. Fujioka and /l. Rit'eros

whieh is a systcm of thc form

A,E, + B.E, + C.m, + D,m, + F, = O (i=1,2).

Courant and Fric.drichs [18] show that a system oC this type can be transformro into
the following systcm of characteristic equations

x~- (_t~ = O,

TEo + (a(+ - S)mo + (K(+ - ll)to = O.

TE~ + (a(_ - S)m~ + (1((_ - ll)t~ = O,

where (+ and (_ are thc solutions of thc cquation

a(2 - 21>( + e = O,

wilh

a = [AC). 2b = (ADJ + [BCJ, e = [EDJ,

with the abbreviation

and

T = [AB], S= [BCJ, 1( = [AF]. II = [BF].

If we approximate

in the last tcrrr oC Eq. (70), which is a reasonable approximation because typically
the value oC N is much sma.ller than the value oC nl, the four charactcristic equations
ror lhe syslem (69)-(70) berome

Xn = O,

x~+ Et~ = O,

NEo + Emo + n,mEto = O,

NE~= o.

(71 )

(72)

(73)

(71)
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Of these equations, the more interesting are Eqs. (72) and (7.1). Equation (74) shows
that the dectrie ficld docs not dcpend on (J. Therefore .

E= E(o)

and consequently the electric field is constant along the curves o = constant. To
find out the shape of the curves o(x,t);;;; const. we can employ the idcntity.

to rewrite Eq. (72) in the form

(al) 1ax • = - E(o)'

This equation shows that a curve t(x,o ;;;; const.) has a constant slope equal
to -1/E(o). Therefore, the curves o(x,t) ;;;;const. are stra;ghl Iines with slope
-1/E(o). This information is sufficient to calculate the c\'olution of the eleclric
field during the dccaying transient, starting from any initial condition E(r,t¡). In
particular, if to is the time given in Eq. (68), ti > lo, and wc take as initial condition
the stcady state e¡cetrie fieJd

E(x, Id = -( -2AJox)'/2

the electric field during the decaying transient is

(x ~ O),

E(x, 1) = E(x - 6,t,) (x~O, t~td,

where the value of 6 can be obtained froro the equation

I - t, 1
-6- = - E(x - 6,t,)'

that is

2 [ 2' 2]1/26 = AJo(t - Id + (-AJo) (t - td - 2AJox(t - td .

From the last thrce equations it follows that the clectric ficlJ during the discharging
transient is

[
2 2 2] '/2E(x,/) = -AJo(t - 1,) - - 2AJox + A Jo(t - td (x ~ O,t ~ t,),

and from this expression the transient voltage can be obtaincd.

(75)
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6. Plana!' geometry including difTusion

6.1. Charying lrans;,nt

FinalIy we shall consider the equations clescribing the e1ectron flow in a semicon-
ductor (or insulator), including the contribution due to the diffusion of the charge
carriers. Using the samc dimensionless variables introduced in Section 2, and defin-
ing a dimensionless d¡[usion coefficient

( )

1/2D- _,,_ I

- J~l-ld'3 D,

these equations are

8n 8E
Jo ~ n(x, t)E(x, t) + D 8x + 7ft'
8E
8x ~ -n(x, 1).

From these equations an interesting nonlinear equation for the electrie field can be
obtained o

E, ~ DE" + EE, + Jo. (76)

In the following we shall obtain the particular solution oC tltis equation consistent
with the in¡tial and boundary conditions

E(x,O) ~ O.

E(O,I)~O

(x 2: O),

(1 2: O)'.

(77)

(78)

Equation (76) is an extension oC the Burgers equation, and lhis suggests the appli-
cation of the 1I0pf-Cole transformation

which implies that

",E~ 2D-,
11

lI(X,t) ~ lI(O,I)exp [2~[ E(x',I)dx'j.

(79)

(80)

With the change of variable (79), Eq. (76) is transforrncd into the linear equation

(81)
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and lhe inilial and boundary condilion, (77)-(78) lran,form inlo

u(x,O) = uo (uo = con,t.) (x 2: O),

u,(O, t) = O (t 2: O).

Furlhermore, from Eq. (80) il follow, lhal

60S

(82)

(83)

Iim u(x, t) = O
'-00

(t > O). (84)

To oblain lhe solulion of lhe boundary-value problem (81)-(81) lel us begin
Iooking for lhe separable solulions of Eq. (81) eonsislenl wilh lhe boundary eondi-
lion. (83)-(84)_ Subsliluling

u(x, t) = /(X)9(t)

inlo Eq. (81), il follows lhal /(x) and 9(t) musl be lhe solulions of lhe equalion,

9' +"9 = O,

/n + (s - rx)/ = O,

where v is a constant, and r and s are define<!as

Jo
r = -2D2'

"s = V-

Equalion (85) can be immedialely solved, and ils solulion is

9(t) = 9(0)<-"_

(85)

(86)

(87)

(88)

(89)

To obtain the solution of Eq. (86) it is convenient to introduce the change of variable

z = r-'/3(rx - s),

whieh lransforms Eq_ (86) inlo lhe Airy equalion

/,,-z/=O,

whose general solution is a linear combination of the Airy functions

(90)

(91 )

/(z) = e. Ai(z) + e¡ Di(z) (Ca an(i c" consL). (92)
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Therefore, the solution of Eq. (86) is

¡(x) = c, Ai (rl/Jx - D;'/J) + c¡ Bi (rl/Jx - D;'/J)' (93)

For this expression to be consistent with the eondition (8.1), it is nccessary that q
be equal to lero. Therefore, ¡(x) reduces to

¡(x) = c, Ai (rl/Jx - D;'/J)'

If we now impose the eondition (83L the following equation must be satisficd

(94)

(95)

where Ai'(z) is the dcrivative of the Airy function Ai(z). Thercforc, the para meter
v can only take diserete values V'H sueh that

Vn
- Dr2/3 = An, (96)

where An is the nth zero of the function Ai'(z). The solutions of Eq. (81) eonsistent
with the boundary eonditions (83)-(84) have, therdore, the form

and these functions enable liS to express the general solution oC Eq. (81), satisfying
the conditions (83)-(84), in the form

00

u(x, t) = ¿::en exp(.\nDr'/Jt) Ai(rl/J x + .In).
n=1

(98)

The coefficients en are dctermined froro the initial eondition (82), whieh implies
that

00

Uo = L Cn Ai(rl/Jx + .In)'
n=1

(99)

From this equation we can obtain the values of the cocfFicients en using the
orthogonal property of the displaced Airy funetions [19)

1.00

Ai(x + .IR) Ai(x + .1m) dx = -.1m Ai'(.\m)5nm. (100)
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In this way we obtain

e" = (101 )

From Eqs. (79), (98), and (101) we can write the ,olulion of lhe boundary.value
problem (76)-{78) as follows

00L an exp(AnDr2/Jt) Ai'(rI/Jx + An)
E(x, t) = 2Dr1/Jn:,1 (l02)

L an eXPPnDr2/Jt) Ai{rl/Jx + An)
,,=1

where

(103)

To appreciate the behavior of the eleclric field as t -+ 00 it is convenient to
rewrite Eq. (102) in the form

00

al Ai'(rI/Jx + Ad +L an exp [Pn - AdDr2/Jt] ¡\i'{rI/Jx + An)
E(x, t) = 2Drl/J n;,2

al Ai(rl/Jx + Ad +L an exp [(An - AdDr2/Jt 1 Ai{rl/Jx + An)
,,=2

(I04)
As ..\" - ..\1 is a negative number (for n ~ 2), aH the exponf'ntials lend to zero as
t -+ O.Therefore, if we define

we can sce thal

lim E(x, t) = Eo{x),
'_00

E ( ) -2D l/JAi'(rI/3x+Al)
....ox- r I .

Ai(rl Jx + A¡)

(105)

(106)

To visualize the shape of this funelion we can introduce the asymptotic forms
of the Airy fundion and it, derivative [201

Ai'(z) = -~zl/'exp (_~zJ/2) (0.564190) (z> 10),

Ai(z) = ~z-l/'exp (_~z3/2) (0.564190) (z> 10).
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Substituting these cxpressions into Eq. (106), we obtain

which, with the aid oC Eq. (87), can also be written as

[ 2/'] 1/2E(x) = - -2Jox + ~1(-4DJo) ( ( 2D2) 1/')x> 10 -- .
Jo

Irdesired, exprcssions for the free-c!ectron density and the transient voltage can be
easily oblained from Eq. (102).

6.2. Discharg;ng imnsient (1l';ih diffusiOTl)

The discharging transicnt is dcscribcd by the Burgers cql1ation

(107)

As initial condition we can considcr the stationary form oC the eleclric field given
by Eq. (106)

d . /E(x, lo) = 2D dx In AI(rl 'x +~tl (x ::o: O), (108)

where to is any valuc large cnough Cor the exponcntials in Eq. (101) to be n('gligible
(usually t > 1 will suffice), and as boundary condition we shall consider the same
condition uscd in the preccding seclions

E(O,I) = O

Introducing the lIopf-Cole transCormation

(1 ::o: lo). (109)

a
E(x,l) = 2D ax In u(x, 1),

lhe boundary.value problem (107)-(109) is lransformed inlo

u(x, lo) = uo(x) (x ::o: O),

ur(O,I) = O (1::0: lo),

where we have dcfincd

(110)

(111 )

(112)

(113)

(114)
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The solutiou of the ucw bouudary-valuc problem (111 )-(Il~) is kuowu to be (21)

1 1"" { [ (x - o' ] [u(x,l) = -==== exp ------ +cxp
2J1rD(t - to) o 4D(1 - to)

and therefore the eleclrie field is given by

(x+o' ]} d4D(1 _ lo) uo(O~,

(115)

I r"" { [ .1'-=.0'] [ ~l}-¡¡::¡o¡ Jo (x - Oexp -w¡¡=¡o¡ + (x + Ocxp -w¡¡=¡o¡ uo(~)d~

E(x, 1) = {[' ] [J!.:ill'..]}Jo"" cxp - '~I~go)+ cxp -~ uo(Od~
(116)

This express ion is complicated, bul il reduces to

x
E(x,t) = --( -)

t - lo

for times large enough to be licit lo approximate

[
(x:!:~)2]

cxp 4D(t _ to) uo(O '" uo(~)

iu the iutegrals appeariug iu Eq. (116).

7.Summary

(117)

The eledrieal lransienls originated by the sud den application, or the sudden in-
terruption, oC eonstant eurrents aeross single-carrier scmiconduclors (or insulators)
were mathematieally analyzed. Planar, eylindrieal, and spherieal grometries were
eonsidered. For each of these geomelrics there exist a single, first-order, quasilincar
PDE which describes the charging lransicnt in the absence oC traps and dilfusion,
and a similar cqllalion which describes lhe discharging transicnl. Assuming an ohmic
contad at the eathodc, these quasilinear equations were sol ved by the mclhod of
characteristics.

In the presenee of lraps the charging transient is deseribed by a quasilinear
hyperbolie system, which can be lransCormed into an integr<rdiffercntial cqualion
for the eledrie field. An approximate solution of this cquation was obtaincd using
the method of charaderistics. The discharging transient wa.s also found using the
concept of characleristics.

The dilfusion of the charge carriers was also considere<!. The charging transient
with diffusion is deseribed by an extension oC lhe Burgers cquation, which could
be solvcd iu terms of the displaced Airy fundions_ The dischargiug trausieut is de-
scribed by the normal Burgers equation, and therefore its solution eould be obtained
by mean s of the 1I0pf-Cole transformation.
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Resumen. Se resuelven analíticament(' la.,; ecuaciones no lineales que
describen 10Ii transitorios eléctricos de carga y d('scarga bajo condiciones
de corriente controlada a través de semiconductores (o a.islantes) con
un solo tipo de portadores de carga. Se consideran electrodos planos,
cilíndricos y esféricos, y se investiga el ('({'cto que producen la presencia
de trampas y la difusión de portadores. El término difusivo conduce a
una extensión de la e£ua.ción de Burgers, la cual puede ser resuelta en
términos de funcion('s de Airy desplazadas.


