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Thermodynamic properties of sticky electrolytes
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Abstract. We study an approximation for a model which combines the
sticky potential of Baxter and charged hard spheres. In the hypernetted
chain (HNC)/mean spherical approximation (MsA), simple expressions
for the thermodynamic functions are obtained. These cquations should
be useful in representing the properties of real electrolytes. Approximate
expressions that are similar to those of the primitive model are obtained,
for low densities (concentrations) of the electrolyte.

PACS: 61.20.Gy

1. Introduction

In the theory of electrolytes the HNC approximation [1] has played a key role. It
is very accurate in representing the properties of model solution, in particular for
the primitive model, in which the solvent is a continuum of dielectric constant e.
However, it is a difficult theory to handle numerically.

The MSA [2,3], on the contrary, is not as accurate but completely analytic. One
way of correcting the shortcomings of the MSA is to combine it with the ideas of
Bronsted [4]. This has been done for the first time by Ebeling [5] and Renon [6], and
recently studied by Soulahia and Turq [7]. The agreement with the experimental
activity and osmotic coefficient is very good.

We like to introduce a model which shares the principle with the above model,
but which is analytical and simple. This is the sticky electrolyte model (SEM) which
was studied in another context by Lee and co-workers [8].

In Sec. 2 we compute the Baxter function [9] for the model and a scaling param-
eter I'; Sec. 3 contains the analytic expressions of the thermodynamic properties.

2. The distribution function and the sticky electrolyte model (SEM) in the hypernetted
chain (HNC)/mean spherical approximation (MSA)

The integral equation approximation for the radial distribution function gi;(r) [10]
(proportional to the probability density of finding ions i and j separated by a distance
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rij = r), and the direct correlation function ¢;j(r), is derived from the Ornstein-
Zernike (0Z) equation [11] for mixtures of m species:

hij(r) = cij(r) + Y ijcik(S)hkj(If — s|) ds, (1)

k=1

with h;;(r) = gij(r) — 1, where p; is the total number density of species k ions. The
HNC approximation [2,3] is given by

cij(r) = —=Beij(r) + hij(r) — In[gi;(r)]; (2)
while the MSA for system with hard core potentials is given by [12]
hij(r) = -1 (r < aij) (3a)

and

cij(r) = Béij(r) (r > aij), (30)

where o;; is the diameter for the hard core interaction between species ¢ and j
ions and # = 1/kgT (in this case o;; = o). For our model, we propose a hybrid
approximation obtained by using the HNC approximation inside the core (r < o)
and the MSA outside the core (r > o). Thus

cij(r) = =B¢ij(r) + hij(r) = In[l + hy;(r)] (r<o) (4a)
and
cij(r) = —Béi;(r) (r> o), (4b)

which we refer to as the hypernetted-chain/mean spherical approximation (HNC/
MSA). A similar approximation called the SMSA (soft MSA) was discussed previously
by Blum and Narten [13].

The potential for the sticky electrolyte model (SEM) is

’
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€ is the dielectric constant of the continuum solvent and ez is the magnitude of
charge over the ions. The parameters in this potential are chosen so that r is a
dimensionless temperature, which is zero at zero temperature and large at high
temperatures; the factor 6 is introduced purely for convenience in the latter equa-
tions.

Equations (4a) and (5) imply that h,;(r) contains a singularity at r = o, so
that

hij(r) = -1+ MT_él-"jé(r —-07) (0<r <o), (6)

where

b
jdzf(z)&(z—a):f(a) if a<o<b

The mathematical problem to be solved consist of the mixture 0z equation for
m = 2 species subject to the closure (4b) and (6). We follow Baxter [9] and define
the Mayer f-function:

a
fij(r)=-1+ 6_1-6"‘3'6(’- - o) 0<r<o). (7)
The parameter A which measures the extent of association between oppositely
charged ions is related to the parameter r (a dimensionless measure of the tem-
perature T').

Equations (1) can be rewritten as

hin k| _|en ez _ 5 hiy hiz |, e en 8)
har ko e 2 hor  hay e e’
where (*) denotes the convolution integral and p1g = pag = p/2.
Equations (8) can be simplified, in the restricted primitive model, where we
have the symmetries

h11 = hyz, hiz=hy and e =¢p2, c12=e. (9)

We now define

ol hia(r) ;‘ hll("), i) = hia(r) ; hia(r) (10a)
and
- c1a(r) + Cu(?')1 eo(r) = c1z2(r) — c”(r). (108)

2 2
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The 0z equation for the mixture becomes the set of uncoupled equations

ba(r) = ex(r) + [ ex(hallr = sl s (11)
and

hp(r) = ep(r) — pf ep(8)hp(|r — s|) ds, (12)
subject to the closures

Ao~

hs(r)=—l+ﬁr§(r—a'_) (Qrico); (13)

cs(r) =0 (r>0) (14)
and

hp(r) = ’\f—z-&(r —07) O<rae ), (15)

eolr) = 22 (->0) (16)

where 8 = (KpT)™ .

The sum equations

Since from Eq.(10b) the sum direct correlation function es(r) is zero beyond r = o
the Baxter [14] factorization of the 02 equation for Eq. (11) is straightforward
yielding

k]

7

rhalr) = =glr) 43 /ﬂ " dtgs(t)(r — Ohs(yr — 1) (17a)

and
pog(r) = —dLlr) 4 2xp ] " dt gs()(t - 1) (1), (175)

where g5(r), the Baxter g-function, is zero for r < 0 and r > o and g4(r) is the
derivative of gs(r) with respect to r. Application of closure conditions (10a) on
0 < r < o results in the following integral equation for gs(r):

In the range 0 < r < o,

rhs(r)=r|-1+ -?%6(1‘ - a)] = —qq4(r) + 27p /: dtgs(r)(r — t)hs(r)
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or
. o o /\0‘2
gs(r)=r [1 - 27rp/ dtqs(t)] + 2ﬂ'pf dt gs(t) — E—&(r — o). (18)
0 0
We can dcfine
o
a=1- 2rp/ dt gs(t) (19)
0
and
1 a
g = _2”/ dt tgs(t). (20)
o 0
Then, Eq. (18) is
A 2
ge(r) = ra+ o — %é(r — o). (21)

Integrating Eq. (21) with respect to r, and using the condition ¢2(a) = 0, gives

a Ao?
gs(r) = =(r? — 0®) + Blo(r — o) + = (22)
2 12
for 0 < r < o. Substituting this form for ¢s(r) into the Eqs. (19) and (20) gives two
linear equations for a and 3, which can be solved to give

142 —p « 1-3n+p
a=———- [A=-——" 23
= 20— =
where 7 is the dimensionless density
3
Tpo
= 24
p= (24)
and
#=Anp(l —n). (25)

These are the results for neutral adhesive spheres of Baxter [9].

The difference equations

The Baxter factorization of Eq. (12) with ¢p(r) given by Eq. (16) is somewhat more
involved. Following the method of Blum [15,16] we have

e2z2B e k"

r

eo(r) = ep(r) + (26)
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We then consider the limit g — 0, and find in this case that in rcal space [17]
go(r)=-A for r 2o, (27)
where
Ap=« (28)
and x? = (47Pe?/€) Y, z2pi, & is the inverse Debye screening length for the elec-
trolyte, and ez; and p; are the charge and number density, respectively, of ion i.
Thus, defining ¢(r) by
w(r)=¢(r)—A  for r>0, (29)
so that ¢3(r) = 0 at r > o, and the boundary conditions on ¢}(r) are
go(0) =0 (30)
and
0/ _—
fo(07) = —- (31)
Following Baxter [14], the factorization
[1+ peo(k)] = go(K)ao(F)

can be written. Here

q(K)[1 + ph(k)] = [q(—k)]"", (32)
where

h(k) = 2x -m dre % J(|r]) (33)
and i

ORI T0) (34)

Considering the effect of multiplying both sides of (32) by exp(—ikr) and inte-
grating with respect to k from —oo to oo, we have

~alr) + J(r) = 270 [ dt a0 e =0 (35)

forr > 0, and ¢(r) =0 for r > 0.



654 J.N. Herrera and L. Blum

In our case

1) =3(r) = 5+ [ dnabr s =rl) = o [Cdndr =) (39)

Now, we take the Stillinger-Lovett zeroth moment (electroneutrality) condition [18]
Ji¢) = 27r[ ds sh(s) = by = const. (37)
r
Substituting Eq. (37) into Eq. (36), we obtain

b= abir) = 5 + by [ dr ) = potr (39)
and the derivative
a5 (r) = pAby.
Integrating between r and ¢ and taking the boundary conditions (Eq. (31)) we have

A 2
ab(r) = pABy(r o) + . (39)

Substituting the Eq. (39) into Eq. (38) at r = 0, we get

_ 2pab 2p)a3 /12
(14 Bypal? (1 + Hypa]’

pAo = (40)

we remember that pA = &. To make connection with the Debye-Hiickel [19] theory
(see Blum [15]) we define a new scaling length:

1

by = ————. 41
p ot D (41)

By substitution of this equation into (40) we obtain

A \ 2 1/2
glgm {1425 )4 [ [1:922) 42| |, (42)
27 2w

which for A — 0 goes to the correct limit.
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Determination of the parameter A

The solution of the former paragraph is given in terms of the parameters A, 7 and
n. These parameters can be related to each other if a closure is given. In fact from
(4a) we have, defining the function y;2(r),

g12(r) = exp[—B1a(r)y12(r) (43)
and using Eqs. (5) and (7), we find
AT = y12(0o). (44)
For the HNC closure (Eq. (2))
Inyia(a) = hiz(e) — c12(o). (45)
By the definition of hg(r) and y(r), we have
hia(r) = hs(r) + hp(r) and e12(r) = cs(r) + ep(r) (46)

and Eq. (45) can be written as

7A = explhs(o) — cs(o)] explhp(0) — eo(a)), (47)
where
hs(o) — es(0) = a + B* + Mngs(0) — 1 (48a)
and
pAb

ho(0) — ep(o) = + Angp(0), (48b)

a

which together yield

_3-n) r 1 = 5
i) = ' e [sq(r'a - 1)] _A{(l - T [W] } ' g

where 7 and I'o are defined by Egs. (24) and (42) respectively. x is the inverse
Debye screening length.

Thus, the analytic solution of the HNC/MSA for the sticky electrolyte reduces to
solution of a single nonlinear equation for the parameter .

One could argue that if the HNC/MS approximation is used, then in the limit
when A — 0, there is a residual effect of the sticky interaction in Fq. (49), which
however vanishes at 7 — 0. One would think that a more appropriate closure is

T[] ==y {(1—115 S— [F,—:%]} + % (49a)
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3. Thermodynamic properties

There are different routes to express the thermodynamic properties of a system
through its distribution functions [20-23]. The thermodynamic properties by Msa
are calculated from the excess internal energy with computer simulation [12,23].

The excess internal energy by the electrostatic part is calculated by means of
the relation [23]

AE; = 2x fo drr® 3" pinjaii(r)65(r), (50a)
i)

where ¢{;(r) is electrostatic potential and the contribution at the internal energy
by the stlcky potential is calculated with the expression [24,25]

1% © 5 Oexp[-p¢]])
AE? = _E g J—"lf:’.r‘/0 drr le(r) aﬂ . (50b)
The free energy
ABAA) _
8 - AE, (51)
where A A is the excess free energy, can be integrated by parts to yield
arE
= - P, 52
BAA =pBE /0- dl' 30 (52)
The excess osmotic coeffi ient is derived from the thermodynamic relation
BAp 8 (ﬂAA)
A 53
#= G 9%\ G )

here Ap is the excess pressure, and 3 is the Boltzmann thermal factor (1/kpT) and
(o = p. Finally, we get the activity coefficient from the thermodynamic formula

pa
o

which after a few manipulations gives the thermodynamic properties of a sticky
electrolyte system when we take as reference the sticky hard spheres.
The excess internal energy is

=-A¢+ Alnyy, (54)

13 ]
AR Ay pAT= DD 0 g JICT]
w3 ap

(35)

here N is the total number of particles.
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From Eq. (52) and taking AA = AA®™ — ASHS we have

3

r

and the osmotic coefficient is calculated using Eq. (53)

g

The activity coefficient is obtained by Eqs. (54), (56) and (57).

The thermodynamic properties are the same as those of MSA when A = 0.

The function d(In 7)/38, which appears in (55), can be calculated by different
routes, for example Lee and co-workers propose d(In7)/d8 = —ea, where €3 is the
depth of a deep attractive well; we give a set of trial functions, which are associated
with the experimental results [7].

Interesting extensions to include other effects such as localized adsorption can
be obtained using the beautiful work of Wertheim [26].
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Resumen. En este trabajo estudiamos una aproximacion para un
modelo que combina el potencial de pegado de Baxter y esferas duras
cargadas. En la aproximacion HNC/MSA, se obtienen expresiones sim-
ples para las funciones termodindmicas. Estas ecuaciones pueden ser
utilizadas para representar las propiedades de electrolitos reales. Obte-
nemos expresiones aproximadas que son similares a las ya conocidas
para el modelo primitivo, en el rango de bajas concentraciones.



