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Abstract. We describe some of the fundamental physical laws that we
encounter in textbooks in arbitrary spatial dimensions in order to study
the dimensionality dependences in these physical laws. We also review
the recent studies on the possibility that our world has noninteger
spatial dimensions slightly deviated from 3.
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1. Introduction

Physical laws are generally described in three spatial dimensions and the number
of dimensions does not appear in these laws explicitly. How would the fundamental
laws be modified if the world had other dimensions? The idea of generalizing physical
law(s) to other or arbitrary dimensions is by no means new. For instance, Ehrenfest
(and independently Whitrow) [1] solved the Keplerian problem in arbitrary dimen-
sions. Kaluza and Klein proposed 5 dimensional space-time to unify clectromagnetic
force and gravity [2]. In recent years, various models, which are based on the original
suggestion of Kaluza and Klein, have been developed with the aim of unifying all the
known interactions in a higher dimensional space-time. According to these models,
the four dimensions of our space-time emerge as the result of compactification of
multi-dimensional space-time at a certain moment during the early evolution of
the universe. Arbitrary dimensionality (including fractal dimensions [3]) has been
widely used as well in the theory of phase transition, renormalization theory and
various lattice models [4]. Nowadays on the frontiers of physics, it has become rather
common to study the phenomena and underlying physics in arbitrary dimensions.
Nevertheless the dimensionality dependences in the fundamental laws of physics
which we encounter in textbooks are not necessarily familiar. Multi-dimensional
description of these physical laws would help us to understand their nature more
profoundly and, when combined with the so-called anthropic principle [5], can give
an answer to why our universe possesses three dimensions and not other dimensions.
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The main purpose of the paper is to collect and review the fundamental physics
laws from the dimensional point of view. We organize the paper as follows. We
first describe the fundamental physics laws and equations such as the Planck ra-
diation law, Stefan-Boltzmann law, Wien law, Maxwell equations, Lorentz force,
Coulomb law, Schrédinger equation and Newton law of universal gravitation, in
any, d, spatial dimensions. Although some of these results are known in literature,
we do not indicate all the original references, since most of them can be derived
rather straightforwardly (as an exercise) by generalizing d = 3 formulas to any
spatial dimensions. In Sect. 3 we review the recent studies on the upper bound
on the value of ¢ which characterizes the possible noninteger dimensions 3 + ¢ of
our space. The concluding section contains a summary and discussion from the
standpoint of physics education. Throughout the paper we adopt standard notation
for the physical quantities.

2. Typical laws of physics in arbitrary spatial dimensions

2.1. The Planck radiation law, Stefan-Boltzmann law and Wien law

In three spatial dimensions, the energy density of black-body radiation u(w,T') per
unit angular frequency w at absolute temperature T is described by

_ ghuw® 1 (1)
~ 2r2c3 exp(hw/kT) - 1°

u(w,T)

where g is the number of photon polarizations (g = 2).
In d spatial dimensions, one can derive the corresponding equation by following
closely the derivation of Eq. (1) [6],
u(w,T) = g(w)e(w,T), (2)

where g(w) is the density of states of photon in unit volume,

g9(w) = 9‘:;;%, (3)
£(w, T) is the average photon energy,
e(nT) = e )
and (1 is the solid angle of d dimensional sphere,
pm g (5)

TT(+d2)
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Using Eqs. (3) and (4), we obtain Planck radiation law in d dimensions as

_ ghwify 1
" (27c)d exp(hw/kT) —1"

w(w, T) (6)

which repreduces Eq. (1), when d = 3. Integrating Eq. (6) over w, we get the overall
energy density U(T)

U(T)= /u(w,T)dw

C(d+1)

- gﬂdd!——(ch)d (KT i, (7)
where
= 1
((d) = ; ot (8)

Equation (7) is the Stefan-Boltzmann law in d spatial dimensions [7]. In the case
of d = 3, we reproduce the familiar (three dimensional) Stefan-Boltzmann law by
substituting (1) = /90 into Eq. (7)

73
() = g T )

Using Eq. (6), we find the wavelength Apax at which the energy density per wave-
length u(A, T') (= u(w, T)dw/d)) takes its maximum value

AaxkT = % (10)

This is the Wien law in d dimensions. b is a solution of transcendent equation

b
exp(—b)+m—l=0. (11)

When d = 3 we obtain b = 4.965 as a solution of Eq. (11), hence Eq. (10) reproduces
the three dimensional Wien law.

2.2. Mazwell equations and Lorentz force

The Maxwell equations expressed in the tensorial form [8] can be immediately gen-
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eralized to d dimensions as follows

aFHv 3,
5o = # 1" (121)

asmmﬂd-szFl’p
St & 0, (12.2)

d) . i o
where ,u((, ) is the magnetic permeability of vacuum. Electric and magnetic fields in

d dimensions are expressed in terms of the antisymmetric tensor by the following
relations

Ey=Fy (=i, (13.1)
Bisis.das= Yeiis.ipanF. (13.2)

Then the d dimensional Lorentz force is derived by taking into account that the
force acting on a point charge at rest is

F; = eE;, (14)
and by Lorentz transforming the system to the one moving with velocity v as
Fi = e{E; + (v x B);}, (15)

where

1

(’U b4 B); = M—_z')'!"siijszmjd-zvkBj]jzmjd_z' (16)

2.8. Coulomb law

In this section we present the formulas both in the MKSA and in the Gauss unit
system. The results expressed in Gauss units are put in parentheses.

The electric potential created by a point charge e in d spatial dimensions is
obtained by solving the d dimensional Poisson equation,

A = ——59(r) (17)
@
0
(A = —amer§36(r)), (17.1)
where €{?) is the dielectric constant of vacuum having a dimension [J=1C?m?~4].

Its value is determined by the definition of charge in d dimensions. ry, appearing
in Eq. (17.1), has the dimension of length and is related to the definition of charge
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in d dimensions. §(4) is the d dimensional é-function. Let us express the Laplace
operator in the polar coordinate system

| @d-nae I?
—['5:2* ; E‘r_zJé’ U8)

where L is a generalized angular momentum operator which contains only angular
variables. In the case when d # 2, a spherically symmetric solution of the Poisson
equation (17) with boundary condition ¢(oc) = 0 for d > 2, ¢(0) = 0 for d < 2
reads as

e 1

" (d-2), 7

(¢=wom ()77) -

Putting d = 3 one can reproduce the usual Coulomb law by using 5((]3) = g and
13 = 4x. The solution of Eq. (17) ford =2 is

p e (r) (20)
=——In|[— 2
e, \r

ENE)!

where 3 = 27, and r, is a reference point of the potential which satisfies ¢(r,) = 0.

¢ (19)

2.4. The Schrédinger equation

The Schrodinger equation for a d dimensional hydrogen atom is written as [9]

B .

o B[  (d=1)0 {41+ (d-23)}
_(_ﬁ ar? ror r2 ]+e¢ v

= Ey, (21)

where neither relativistic nor spin-orbit corrections are taken into consideration. In
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Eq. (21), the effects of dimensionality appear in the second and third terms of the
generalized angular momentum. Note that the third term in Eq. (21) contains the
coefficient €(¢ + 1 + d — 3) instead of £(¢ + 1) in the 3 dimensional case. Assuming
that the Coulomb potential takes the form ¢ = —e/(4regr) we obtain the energy
eigenvalue [9] of Eq. (21) as

E
En=- [+ (d—[J 3)/2]2 (22)

for n > £ + 1. Ey is the ground state energy of the hydrogen atom,
Ey = %azmcz, (23)

with a being a fine structure constant,

et .
a= revere: in MKSA units
e2
(a =5 in Gauss units). (24)

It would be interesting to try to derive Eq. (22) from the Bohr-Sommerfeld quantum
conditions. Gurevich and Mostepanenko [10] and Tangherlini [11] have shown, by
solving the Schrodinger equation for the generalized hydrogen atom in d dimensions
(i.e. by using Eq. (19) as the Coulomb potential), that there are no stable bound
orbits for d > 3. Thus we see that the dimensionality of the world is a reason for
the existence of the stable atoms, chemistry and therefore of life.

2.5. Newton law of universal gravitation

One can derive the gravitation law in d dimensions from the d dimensional Poisson
equation in a similar manner as in Sec. 2.3. Here we derive the Poisson equation

using the Einstein field equation in d dimensions which reads as (in the unit of
c=1) [8]

R, = 8xG@ [T,“, = 3“_“?;] . (25)

G is a constant with the dimension [Jkg=2m?=2], the value of which is related to
the definition of a mass in d dimensions. As is well known, the Newton gravitation
law is obtained from the Einstein field, Eq. (25), by assuming that the gravitational
field is very weak and static. This corresponds to putting

Guv = Mpp t+ h.um (26)

and to ignoring quadratic terms of hy, as well as dh,, /dt = 0.
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Substitution of
Too=p and T, =0 (exceptfor p=v=0), (27)

into Eq. (25) leads to the following Poisson equation

d-2
-ﬂamo_a¢ grg@ 4 =2 )p (28)
(d—1)
Solving this equation we obtain the Newton gravitational potential in d dimensions
8rGDm l
—_— 2).
"= (d>2) (29)

With d = 3, Eq. (29) is reduced to the ordinary Newton gravitation potential

" i) (30)

3. 3 + € dimensions

As mentioned in the Introduction, generalization of a theory to arbitrary dimension-
ality is widely used in various fields of physics, such as elementary particle physics,
theory of phase transitions and renormalization theory. Also analyses of physical
phenomena in terms of the noninteger (fractal) dimensions are being carried out
frequently using lattice models. From such point of view, it is not a priori obvious
whether the space-time dimensions of our world are exactly four or are deviated,
even if very slightly, from four. From the data of perihelion shift, Jarlskog and
Yndurdin [12] have estimated the bound on ¢, characterizing the deviation of the
space-time dimensions from four, as ¢ < 1.5 x 107, Miiller and Schafer [13] have
also obtained the bound on ¢ both from the analyses of the similar planetary motion
and the Lamb shift in hydrogen atoms as 10~* and 3.6 x 10~!1, respectively.

4. Summary

We have described some of the familiar physical laws (Planck radiation law, the
Stefan-Boltzmann law, Maxwell equations, the Lorentz force, Coulomb law, the
Schrédinger equation and Newton law of universal gravitation) in d spatial dimen-
sions. From the equations presented in the text which contain the number of spatial
dimensions, d, explicitly one can recognize how the dimensionality of the world is
reflected in these equations and laws. Therefore consideration on the dimensionality
in the physical laws allows us to understand these laws more profoundly. From
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e standpoint of physics education one can formulate various suitable problems

on higher dimensional physics (for example, effects of the dimensionality on the
planetary motion, atomic spectral series, stability of atoms and so on) which may
stimulate the students’ curiosity and imagination. Multi-dimensional description of

th

e physical laws, when supplemented with the so-called anthropic principle [5], can

provide a possible resolution to the fundamental question “why do we observe the
world as possessing three dimensions?”.
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Resumen. Describimos algunas de las leyes fundamentales de la fisica
que encontramos en los libros de texto, en dimensiones espaciales
arbitrarias, para estudiar la dependencia en la dimensionalidad de las
mismas. También revisamos los estudios recientes sobre la posibilidad
de que nuestro mundo tenga dimensiones espaciales no enteras un poco
diferentes de 3.



