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Abstract. \Vedescribe sorne of the fundarn('ntal physirallaws tllat w('
encounter in textbooks in arhitrary spatial dimensions in order to study
the dimensionality depend('nc('s in these physical laws. \Ve also r('view
the r('(('nt studies on the possibility tllat our worll! has nonilllegcr
spatiaJ dimensions slightly deviatrd from 3.
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1. Introduction

Physical laws are generally described in threc spatial dimcnsions and the numbcr
of dimensions does not appear in these laws explicitly. How would the fundamental
laws be modified if the world had other dimcnsions? Thc i<1caof gencralizing physical
law(s) to other or arbitrary dimensions is by no mean s lIew. For instancc, Ehrcnfcst
(and independently Whilrow) [1] solved lhe Keplerian problcm in arhilrary dimen-
sions. Kaluza and Klein proposed 5 dimensional space-time to \lnif)' c1cclromagnctic
force and gravity (2). In recent years, various models, which are bascd on the original
suggestion of Kaluza and Klein, have becn developro with the aim of unifying all the
known interaetions in a higher dimensional space-time. According to these modcls,
the four dimensions of our space-time emerge as the result of compactification of
multi-dirnensional space-time at a certain moment during the carl)' c\'olution of
the universe. Arbitrary dimensionality (induding fradal dimellsions [3D has been
widely used as well in the throry of phase transition, rcnormalizatioll throry and
various lattice rnodels (4). Nowadays 00 the (ronticrs of physics, it has becorne rather
common to study the phenomena and UlHlerlying physics in arbitrary dimcllsions.
Neverthcless thc dimensionality dependenccs in the fundamental laws of physics
which we encounter in textbooks are not ncccssarily familiar. ~fulti-dim{'nsional
description of thcse physical laws would hclp liS to undcrstand thcir nature more
profoundly and, when combined with the so-callcd anthropic principie [5), can gi\'e
an answcr to why our universe possesses thrcc dimensions and not otil('r dimPllsions.
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The main purpose oC thc paper is to colleel and review the fundamental physics
laws Crom the dimensional point oC view. We organize the paper a..<¡follows. \Ve
firsl describe thc fundamental physics laws and cquations 5uch as the Planck ra-
diation law, Stefan.Boltzmann law, \Vien law, Maxwcll N}uations, Lorcntz force,
Coulomb law, SchrOdinger equation and Newton law of universal gravitation, in
any, d, spatial dirnensions. Although sorne of these results are known in literature,
we do nol indicate all the original references, since most of thern can be derived
rathcr straightforwardly (a..'i an exercise) by generalizing d = :J formulas to any
spatial dirncnsions. In Seel. 3 we review the rceent stuuies on the uppcr bound
on thc valuc of £ which charaelcrizes the possible nonintcger dimcnsions 3 + e of
our space. The eoncluding section contains a summary and discussion frorn the
standpoint of physics cducation. Throughout the papcr we adopt standard notation
for the physical quantities.

2. Typicallaws of physics in arbitrary spatial dimensions

2.1. The Planck radiation la1O, 5Iefan-Bolt::mann lato and lVien law

In thrf'C spatial dirncnsions, the energy density oC blaek.body radiation u(w, T) per
unit angular freqncncy w at absolule lemperature T is describcd by

ghw' 1
u(w, T) = h'c' exp(hw/kT) _ l' (1)

wherc 9 is the number of photon polarizations (g = 2).
In d spatiai dimensions, one can derive the corrcsponding cqualion by following

closcly lhe derivalion of Ec¡. (1) [6J,

u(w, T) = g(w)e(w, T),

where g(w) is the dcnsily oC states oC photon in lInit volume,

e(w, T) is the average ~hoton energy,

hw
e(w, T) = exp(hw/kT) _ l'

and Od is thc solid angle oC d dimensional sphere,

d~d/'
nd = r(l +d/2)'

(2)

(3)

(4 )

(5)



714 Masaki Jlayashi d al.

Using Eqs. (3) and (4), we obtain Planck radiation law in d dimcnsions as

gh,.lfld 1
u(w, T) = (2u)d exp(hw/kT) _ l' (6)

which reprC'durC's Eq. (1), when d = 3. ¡nlegrating Eq. (6) over w, we get tllC'overall
energy densily U(T)

wherc

U(T) = J u(w, T) dw

= fl d!((d + 1)(kT)d+! ex Td+!
9 d (eh)d '

00 1
(d) = ¿: nd'

n=l

(7)

(8)

Equation (7) is the Stdan.Boltzmann law in d spatial dimcnsions [7]. In the case
of d = 3, wc reproduce the familiar (thrcc dimensional) Stdan.fioltzmann law by
substiluting (4) = x'/90 inlo E'I. (7)

U(T) = ~(kT)'.
15(eh).1 (9)

Using Eq. (6), we find the wavelength .\ma.x at l,','hich thc ('nergy dCllsity per l,','ave-
lenglh u(A, T) (= u(w, T) cL/d~) takes ils maximum va¡ue

This is the \V¡en lal,','in d dimensions. b is a solutioll of transc('n<!ctlt ('<¡uation

b
exp(-b) + -d- - 1 = o.+2

( 10)

(11 )

When d = 3 we ohtain b = 4.965 as a solution of Eq. (11), hcoee Eq. (10) reproduces
the thrce dimensional \Vien law.

2.2. Mazwell ,qua/ions and Lorentz forc,

The Maxl,','dl equations exprcssed in the tensorial form [8] can he immediatcly g('n-
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eralizcd lo d dirncnsions as follows

8F"" (d).
-- -" J"8.ril - rO , (12.1 )

(12.2)

1 (d). lh . b'l' .w Jere 1'0 IS e magnetlc permea I Jty of vacuum. Electnc and m"gnetic fields in
d dimensions ore expresscd in terms of the antisyrnmetric t('nsor hy the following
relations

8, , = I<, 'Fjl
1¡12 .. Id_2 i'"'tJI2 ... ld_2Jl •

E¡ = FOi (i= 1,2, ...• d). (13.1 )

(13.2)

Then the d dimensional Lorentz force is derivoo by taking inlo (\('(ount lbat the
force acting 00 él poinl charge at rest is

F, = eE" (1-1)

and by Lorcnlz transforrning lhe systcm to the one moving with velocity v as

F; = elE; + (v x 8);).

whcre

1 1 ., ,
(V x8)' = ---e'l" , v 8'112"'1'-'

1 (d _ 2)! I JJ}2 •..1d-2 •

2.3. Coulomb law

(15)

( 16)

In this scction we prcscnl the formulas both in the MKSA and in the Gauss unit
system. The rcsults expresscd in Gauss uoits are put in parcnthcses.

The c1cclric potcntial crealed by a poinl charge e in d spatial dimellsions is
obtaincd by solving lhe d dimensional Poisson equation,

M = __ e_¡;(d)(r)
(d)eo

(17)

(17.1 )

whcrc é~d) is the dicleclric constanl of vacuum having a dimension [J-ICZm2-dj.
Its value is dclcrmincd by the definition of charge in d dimensions. rO, appearing
in Eq. (17.1), has the dirncnsion of length and is related lo tlle ddillition of charge
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in d dimensions. é(d) is the d dimensional é.fundion. LC't us express the Laplace
operator in tbe polar coordinate system

[la , I aL']ó" = --r - - - - "rd-18r iJr r2

(18)

.•...hcre L is a gencralized angular momentum operator .•...hich contains otIly angular
variables. In the case .•...hen d;f 2, a sphericaUy symmetric solution of tbe Poisson
equation (17) with bOllndary condition ,,(oc) = O for d > 2. ,,(O) = O for d < 2
reads as

e 1,,=----
£~')(d - 2)11, r'-'

( he (ro)'-31)
Ó = (d _ 2)11, -;:- ~.

Putting d ;;;;3 onc can reproduce the usual Coulomb la .•...by using f~3)

113 = .I~. Tbo sollltion of Eq. (17) for d = 2 is

( 19)

(19.1 )

= €o and

(20)

(20.1 )

where O2 ;;;; 2r., and rJ is a referencc point of the potential which satisfi<:>sÓ(rJ) ;;;; O.

I!.{ The Schrodinger <qua/ion

The Schrodinger equation for a d dimensional hydrogetl atom is wrillen as [9]

1ft/>= (-~'V' + c.¡,) ,¡,
2m

= (_~ [i!:... + (d - I)..'!.. _ f{t + 1+ (d - 3)}] + có) ,¡,
2m or2 r {)r r2

= E'¡', (21)

where neither rdativistic nor spin.orbit corrcetions are takrn into ('onsideration. In



On spatial dimensions in phys;rtlJ lau's 717

Eq. (21), the clTc'Clsof dimcnsionality appear in the s('('ondand third tcrms of the
generalizcd angular momentum. Note lhat t1le third term in Eq. (21) contains lhe
coeflicienl eu + I+ d - 3) inslead of e(e + 1) in lhe 3 dimensional case. Assuming
lhal lhe COlllomb pOlenliallakes lhe form 4i = -e/(hE.r) we oblain lhe encrgy
eigenvalue (9) of Eq. (21) as

E.
[n + (d - 3)/2)"

for n ~ l + 1. £0 is lhe ground stale energy of lhe hy(lrogrn alom,
El' ,
0= 20 me ,

wilh o bcing a fine slruclurc conslanl,

e'
0= --- in MKSA unils

411'"éohe

( o = ~: in Causs unils).

(22)

(23)

(24)

11would be inleresling lo lry lo derive Eq. (22) from lhe 1J0hr-Sommerfcld qllanlum
condilions. Cllrevich and Moslepanenko [lO) and Tangherlini [111 have shown, by
solving lhc Schrodingcr cqttalion for lhe generalized hydrogcn alorn in d dirnensions
(i.e. by IIsing Eq. (19) as lhe Coulomb polenlial), lhallhere are no slable bound
orbils for d > 3. Thus we SC'e thal the dimensionality of the world is a reason for
the existence oC the slable aloms, chemistry and lhereforc of liCe.

2.5. NewJoll law o/ ulIiver.'lol gravitaJion

Qne can (Ieri\"clhe gravilation law in d dimensions from lhe d dimensional Poisson
equation in a similar manner as in See. 2.3. Here we derive lhe Poisson equalion
using lhe Einstein licld equation in d dimensions which reads as (in lhe unil oC
e = 1) [8]

CId) [T 9pvT]R#Jl' = 811" ¡Jl' - d _ l . (25)

C(d) is a conslant wilh lhe dimension [Jkg-2md-2), the value of whieh is related to
the definition oC a mass in d dimensions. As is well known, lhe Newton gravitation
law is oblaincd rrorot1lc Einslein ficld, Eq. (25), by assuming that the gravitational
field is \"crywcak and static. This eorresponds to putling

g¡Al' = 11#J1' + hJll"

and to ignoring quadratic terms oC h¡Jl' as well as 8h¡J1'¡8t = O.

(26)
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Subslilution of

Too= p and T." = O (excepl ror Jl = v = O),

inlo Eq. (25) Icad, lo Ihe rollowing Poi.,on equalion

1 (d)(d-2)--6hoo = 6¿, = 8xC --p.
2 (d-l)

(27)

(28)

Solving lhis ('quation wc ohlain lIJe Newton gravilaliona! potcntial in ti dimcnsions

8xC(d)m 1
(d-l)fldrd-2

(d > 2). (29)

\Vith d = 3, E(I. (29) is redueN to the ordinary Newlon gra\'itation potentiai

¿, = _Cm.
r

3. 3 + e dimensions

(30)

As mentioncd in lhe Intro(luction, gencralization of a thror)' lo arbitrary dimension-
alily is widdy used in various ficids o( physics, such as elementary particlc physics,
theory of pllase transitions and rcnormalization tllmry. Also analyses of physical
phenomcna in terms o( thc nonintegcr (fractal) dimensions are bcing carried out
Crequenlly using !attice modcls. From such point oC v¡ew, it is not a priori obvious
whelhcr the space-timc dimensions oC our world are exactly (our or arc deviatro,
even ir very slightly, Crom four. From lhe dala oC p('rihdion shifl, Jarlskog and
Ynduráin [l2J ha\'c estirnatcd lhe bound on e, charactcrizing lhe deviation oC the
space-time dimensions (rom four, as e < 1.5 x 10-8. Mlillcr and Schafcr [13] ha\'c
also obtained the bound on e bolh Crom the analyses oC the similar planelary motion
and lhe Lamb shift in hydrogen aloms as 10-8 and 3.6 x 10-11, resp('cti\'ciy.

4. Summ.lry

Wc have dcscribcd sorne of lhe familiar physical laws (Planck radiation law, the
Stcfan-Bollzmann law, Maxwell cqualions, lhe Lorentz force, Coulomb law, lhe
Schrodinger equation and Newton law oC universal gravitation) in d spatial dimen-
sions. From lhe cquations prcscnted in the lexl which conlain the numhcr oC spatial
dimcnsions, ti, explicitly one can recognize how the dimcnsionality oC the world is
refiected in lhese cquations and laws. ThereCorc consideration on thc dimensionality
in lhe physical laws allows us to undcrsland thcsc laws more profoundly. From
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the standpoint of ph)'sics education one can formulate various sllitable problcms
on higher dimensional physics (ror example, elfccts of the dimensionality on the
planetary motion, atomic spcctral series, stability of atoms and so on) which may
stimulate the studcnts' curiosity and imaginatíon. Multí-dimensional dcscription of
lhe physicallaws, when supplemenled wilh lhe so-ealled anlhropic principie [5J, ean
provide a possiblc resolution to the fundamental question Ilwhy do wc observe the
world as possessing t1nce dirnensions?".
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Resumen. Describimos algunas de las leyes fundamentales de la física
que encontramos en los libros de texto, en dimensiones espaciales
arbitrarias, para estudiar la dependencia en la dimensionaJidad de las
mismas. También revisamos los estudios red entes sobre la posibilidad
de que nuestro mundo tenga dimensiones espaciales no enteras un poco
diferentes de 3.


