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Abstract. The parallelisms between the Cooper electron-pair problem
and the two-dimensional potential well problem, which is anomalous,
are highlighted. Their common signature is binding for arbitrarily weak
coupling accompanied by an essential-singularity, non-perturbative be-
havior of the binding energy as function of coupling strength. This sin-
gularity severely limits superconducting transition-temperature mag-
nitudes in Bcs theory. However, analysis of the Cooper problem in
both 1D and 3D shows that the singularity persists. Thus, contrary
to the conventional wisdom, the singularity cannot be related to the
two-dimensionality implied by the Bcs model interaction used.

PACS: 05.30.Fk; 74.20.Fg; 74.80.+n

1. Introduction

The two-dimensional (2D), quantum-mechanical, many-body electron gas problem
has again become the focus of intense research, both theoretical as well as exper-
imental, since the recent discovery of high-temperature superconductivity (1] in
certain ceramic copper-oxide compounds, with greatly enhanced current densities
being observed in these materials within planes composed of copper and oxygen
atoms.

Prior to this, the subject was already of prime importance due to: 1) observations
of a 2D electron gas on liquid helium surfaces, or on films deposited on solid dielectric
materials [2,3]; and 2) detection of localized electron states at interfaces between
GaAs and GaAlAs, or between a metal oxide and a semiconductor [4] displaying
integer as well as fractional quantum Hall effects. Furthermore, the occurrence of
electron localization in a random set of ionic potential wells, for arbitrarily small
disorder, in 1D or 2D bur not 3D, has recently been suggested [5,6] to be mathe-
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matically equivalent to the textbook problem of finding (or not) a bound state in
an arbitrarily shallow potential well in 1D, 2D or 3D, respectively.

The “standard theory™ of superconductivity goes back to Bardeen, Cooper and
Schrieffer (Bcs) [7], and may yet prove to be applicable, with extensions and modifi-
cations, to the novel high-transition temperature substances as successfully as in the
conventional low-temperature (< 23 K) elements and alloys, the first of which (Ilg)
was discovered in 1911. At the heart of this theory lies the Cooper electron-pair
problem which exhibits a strong resemblance to that of one particle in a simple
potential well in 2D. Both problems support a bound state for arbitrarily weak
attraction and display a non-analytic (non-perturbative) functional dependence on
the coupling strength. These connections and their significance are discussed and
clarified in this paper, in an elementary way. The inapplicability of perturbation
theory to the problem has often been cited [8,9] as the main stumbling block to
develop a viable theory of superconductivity, and why consequently it took almost
a half-century (from 1911 to 1957) for such a theory to emerge, though of course
quantum mechanics proved essential.

2. Uniqueness of two-dimensional potential wells

It is well known from elementary wave mechanics that for a 3D attractive potential
well to support at least one bound state a critical well depth and/or range is needed.
This is in marked contrast to 1D where a bound state always exists, no matter how
shallow and/or short-ranged the attractive well. This follows in cach case from
the solution of the Schrédinger equation for its negative energy cigenvalues E =
—|E|, which relies on selecting regular (i.e., finite-probability-density) wave-function
solutions both inside and outside the well, and then matching wave functions and
their first derivatives at the well boundary.

For the ground state energy E = —|E|, of a particle of mass m in a (1D or
3D) well of radius a from the origin and depth —Vp, with V; > 0, the matching
equations reduce to

2om(Vy — |E 2m(Vo — |E m
\/—-(-l;lz_ll).tan¢—‘(‘;lT|Da=\/2leEl (8 1)
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These trascendental equations for |E| are derived, and generally solved graphically,
in many standard textbooks [10]. Eq. (1) has a solution |E| > 0 for arbitrarily small
Vo (and consequently arbitrarily small |E| < Vp). Expanding the tangent for small

a
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z [tanz ~ r + O(z?)], and then squaring, permits us to find that

2ma?V?
B 00K
Vo—0 K

+0(Vg)  (1D) 3)

is a perturbative result. In other words, the bound state can in principle be found
in terms of successively smaller systematic corrections which are powers of the
perturbation well depth Vy. On the other hand, as a simple sketch of both sides of
Eq. (2) shows, a solution |F| > 0 exists only provided that

R

m

(3D). (4)

The 3D result is also perturbative since from Eq. (2) it follows that, if Voa? =
h*x2/8m + 1 with n > 0, then E = —mn?/2hn? 4 O(n?).
i

The two-dimensional case is qualitatively different. It is much less familiar in
the textbook literature, probably because of the cumbersome need for two kinds of
Bessel equations —one for inside, the other for outside the (cylindrically-symmetric)
well of radius a and depth —Vj. For the ground state, the respective radial Schrod-
inger equations (upper sign = “inside”; lower sign = “outside”) are

p*R'(p) + pR'(p) £ p*R(p) = 0, (5)

where the dimensionless real distance variables

p =/ 2m(Vp - |E)/hr (inside)

= \/2m(Vy — |E|)/h*r (outside)

have been introduced. Eq. (5) is just the zeroeth-order Bessel equation, with solu-
tions which are a) regular at r = 0: given by the Bessel functions Jo(p) (inside well,
upper sign) and b) regular at r = oo: given by the “hyperbolic’ (or “modified”)
Bessel function Ko(z) (outside well, lower sign). For excited states, an extra term
with a rotational quantum number n = 1,2,... appears in Eq. (5) and gives rise to
the higher-order Bessel functions [11] Ju(z) and Ka(z). This general case is discussed
by Boas [12). Using the identities [11] Jy(z) = —Ji(z) and Kj(zr) = —Ki(z), the
continuity of R'(r)/R(r) at r = a immediately gives:

Vam(vo — 1ED/ 1 (Ve - ED/#a) [ (v - [B1)/#7a)
= \/2m|E|/R? K, (\/2m|E|/h20) /Ko (\/2m|E|/hza). (2D) (7)

(6)
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The limit |E| < Vj — 0 can now easily be performed by recalling the asymptotic
results [11]:

< -1
Jn(z o Kl(:r)r—_.(;:r , (8)
Ko(z) —[»]—]nz, (9)

and solving for |E| again by exponentiation. One quickly arrives at

2
P wmet (g (10)
Vo—0 2ma?
which because of the minus sign means the existence of a bound state, and for
arbitrarily shallow well depth as in 1D. What is new and different in 2D, as op-
posed to 1D where (3) holds, is the essential singularity (10) in Vj which precludes
a perturbative expansion in powers of Vj to obtain the eigenvalue, since the nth
Maclaurin expansion coefficient E, of Eq. (10) expressed as

E=E+ E\Vo+ EVE+---, (11)

would be

R 1 [d" e—zﬁ’/mvg]

* = 2maln! dvgt

(12)
Vo=0
which clearly vanishes for all n = 0,1,2, .. ..

The outcome (10) in fact holds for any central well V(r), not necessarily of rect-
angular cross section, if Vya? is replaced by %l j;]w drrV(r)|. This is proved very ele-
gantly by Landau and Lifshitz [13] (though their result omits a divisor of 2). Finally,
a variational trial function consisting of a shifted and “stretched” exponential estab-
lishes [14] the fact that binding occurs in 2D for any negative definite well V(r, ¢)
whatsoever, central or not, no matter how shallow, with the characteristic exponen-
tial term e—lconst.l/Voa® persisting, if Vya? is replaced by 2%, :t dé [ drr|V(r, 4)|.

It is interesting to recall that this particular behavior also occurs in a many-body
context in solid-state physics: the 2D perfect (i.e., noninteracting) Fermi gas at
low temperatures. Its chemical potential # as a function of temperature cannot be

expressed as the so-called Sommerfeld expansion in powers of T, very familiar in
the 3D case, namely

W(T) = Br+ paT? + T+ - (13)

where EF is the Fermi energy and H2,jtq, ... are certain constants. The reason is
that, because g(€) = const., the exact expression [15] for u(T) is found to be

#(T) = Ep — kT'In(1 4 e~ #/*T)
(14)

1
= FEp — kT |e—#/*T _ 2 —2u/kT | |
Tt T [e 2° *
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which therefore, by Eq. (12), cannot be written in the form (13) either, except for
the trivial case T = 0.

3. Cooper pairs and superconductivity

The most striking aspect of the Cooper [16] pair problem is that it can form a bound
state for an arbitrarily weak (but attractive) effective interaction. This happens in
either 1, or 2 or 3D because of the Pauli principle imposed on the N electron system,
which manifests itself in terms of a constant-energy (so-called Fermi) surface, on
top of but very near which the net effective electron-electron interaction is different
from zero.

Two conduction electrons of opposite spins orbit around each other with a
center-of-mass momentum AK = h(k; + kz). They are submersed in the “Fermi
sea” of N — 2 passive (or background) electrons, and all N electrons obey the Pauli
exclusion principle. The partners of the chosen pair repel each other through the
usual Coulomb electrostatic force, but also attract in a very particular way thought
to be characteristic of all metals. Namely, a conduction electron can absorb or emit
“phonons” created by the vibrations of the underlying ionic lattice, produced in turn
by the distorting motion of the two electrons themselves. If the net combined effect
of the Coulomb repulsion plus phononic attraction is repulsive we have a “normal”
metal, of which, for example, there are at least 85 of the 106 or so elements of
the periodic table. On the other hand, if the phononic attraction overwhelms the
Coulomb repulsion we have a “superconductor”, of which there are at least 28 of
those 85 elemental metals at atmospheric pressure (plus a few more under higher
pressures or in the form of thin films).

Let this net effective interaction V(r), wherer = rj—rz is the relative coordinate
of the two electrons, be represented by the schematic model interaction of BCs. This
model captures the essential physical features of the combined effect of the electron-
electron coulombic repulsion and the electron-phonon collision process whereby an
electron pair is scattered from a pair state (k!, —k!) to another pair state (KT, —K'Y).
It is very simply written as

) . -V ifEF(Ck,fkr*(E[-‘-{-th
?11_ / dPre N TV (r)e*T = Vo g = (15)

0 - otherwise,

where D is the dimensionality and © the D-dimensional “volume” of the sample,
V > 0 is a positive constant coupling parameter for a net, effective attractive
interaction, € the single-electron energy, and hwp is the maximum (Debye) energy
that an ionic crystal phonon can possess to transfer to a scattering electron. The
resulting Schrodinger equation in momentum space for the two electrons in a Fermi
sea is then straightforward [17,18] to reduce to the relation

D
- 16
1 Vzk: r— (16)
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where the “prime” over summation sign reminds us to restrict the sum to those
k values associated with a single-electron energy ex within the limits specified by
Eq. (15). This is the fundamental equation for the possible energy eigenvalues E
of the Cooper electron pair. The sum can be converted to an integral over the
single-particle energies € if we introduce the degeneracy (or “density of states™)
g(ex), so that Eq. (16) becomes

Erp+hwp

g(¢)
= fiad E .
1=V . de 5~ =~ Vg(Er) . %_F

Ep+hwp de

(17)

The last step is ensured if g(¢) is reasonably smooth over the integration interval of
width hwp, and if this interval is sufficiently small compared with Ef. The former
condition holds since g(¢) o €!/2 or const, or e 1/2 (for v = 3, or 2, or 1 dimensions,
respectively) (see Appendix) as shown in elementary solid-state physics texts such as
Burns [19]. The latter condition, namely hwp < EF, holds because the characteristic
Fermi temperature Tp = Ep/kp = h*(3r2n)/3 [2mkp, (where kp is Boltzmann’s
constant and n the concentration of conduction electrons) is typically 10? to 10° K
for most conductors, whereas the characteristic Debye temperature Ty = hwp [ kp
(proportional to an averaged crystal lattice sound speed) is typically only hundreds
of degrees K. Consequently, the BCS interaction (8) operates only very near the
Fermi surface, within an energy shell of thickness 10~2 to 10~3 times the value
of the Fermi energy Ef itself. It is claimed in the textbook literataure [17] that
to the empirical extent that hwp < Ef, Cooper pairing will essentially be a two-
dimensional phenomenon. Qualitatiavely, this is clear since “things look planar very
near a spherical surface”. Quantitatively, the last step of Eq. (17) is justified either
if hwp/Ep < 1 or if g(e) is constant as occurs in two dimensions. The integral left
in Eq. (17) is now elementary, and equal to

ll[wEF~Ey+mwn

2 | (2Er-E) (18)

Inserting this into Eq. (17) and solving by exponentiation for the pair-energy eigen-
value E, we obtain

- 2ka

As expected, for V =0, E = 2EF, the energy of two electrons at the Fermi surface.

For V > 0, E < 2Ef so that the pair is (quasi) bound, and has a binding energy
Ay given by

2hWD s Qﬁwbe—zlg(EF)V, (20)

2Ep = FE = =
P=E=4, e2/9(Er)V _ { v_p

with the latter expression holding for weak coupling. As in Eq. (10), the binding
energy Ay is not an analytic function of V.
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If the first integral in Eq. (17) is carried out without approximation by taking
g(€) o €/2 (in 3D) and o e~ 1/2 (in 1D), somewhat harder integrals result than the
ones which lead to Eq. (18). However, these can also be performed analytically (see
Appendix) and lead to longer expressions than before, but E — 0~ and hwy, < Ef,
the 3D and 1D cases result in precisely the same asymptotic limit given by the last
expression in Eq. (20), regardless of dimensionality. This means that the essential
singularity is independent of dimensionality.

Historically, it was not an easy matter to embed the Cooper pair idea into a
truly many-electron theory. This BCS did in 1957 by a tour-de-force construction, for
the same schematic interaction model (15), of an antisymmetrized N-electron vari-
ational wave function depicting a “charged macromolecule” of N superconducting
electrons, of which those near the Fermi surface form Cooper pairs highly correlated
among themselves. This electronic macromolecule extends over the entire sample
volume and constitutes the “supercurrent” that flows (when an external electric field
is applied) resistanceless throughout the material, indefinitely in time. Indeed, the
BCS theory is one of the most elegant, seminal and successful applications of quan-
tum many-body physics known to date. It leads [20] to a temperature-dependent
“energy gap” order parameter A(T'), which for T = 0 is found to be

th
e ok e aER)V
sinh[1/g(Er)V] V_—o:12 “e (21)

A(0) =
Only the very last expression is reliable since the BCS theory is restricted to weak
coupling, in which limit the zero-temperature gap parameter is seen to be similar
to the weak-coupling Cooper pair binding energy (20) valid in 1, 2 or 3D.

The “normal metal™-to-“superconductor” transition temperature T¢ is then de-
termined in the BCS theory by the vanishing of the function A(T'), namely A(T¢) =
0, and is found to be related to A(0) through the very simple result for the empiri-
cally observable energy gap:

E, = 2A(0) = 2re” kT, ~ 3.53kT., (22)

where 7 ~ 0.5772 is the Euler constant. This amount of energy “excites” the highly-
ordered electronic macromolecule out of its ground state, consequently destroying
the superconducting phase altogether. Note that Eqgs. (21) and (22) predict that T¢
can be arbitrarily small, a fact empirically illustrated in a striking way by the metal-
lic element rhodium (Rh), which apparently has the lowest transition temperature
(3.25 x 10~* K) measured to date. In a lucid tutorial review, Little [21] shows how
the weak-coupling BCS relation (22) is remarkably consistent with recent energy-gap
measurements even in the new, highest-T. copper-oxide materials. Unfortunately,
BCS-based formalisms [22] using the phonon mechanism presently appear unable to
predict values of T, greater than about 40 K in solids; this limitation has come to
be known as the “phonon barrier”. So, it is still not clear whether these formalisms
may eventually provide clues for material scientists on how to actually engineer the
long-sought room-temperature superconducting substance that some believe will
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rival the invention of the transistor. On the other hand, as Schrieffer [23] himself
argues, the inapplicability of the “pairing theory” in solids over a temperature range
between 10’s to 100’s of degrees Kelvin would seem highly unlikely in view of clear
successes of the theory to explain phenomena over 13 orders of magnitude in crit-
ical temperature —from 10™% K where liquid-*He becomes superfluid, to 100 K
where nuclei show clear-cut evidence of nucleonic pairing. The relevance in high-T,
superconductivity of the BCS pairing theory is thus one of the most hotly pursued
questions in present-day condensed-matter physics.

4. Conclusion

For the one-particle potential well problem in either one or two dimensions a bound
state exists no matter how shallow the well —in contrast with the three-dimensional
case requiring a critical well depth to bind a level. But whereas the ground-state
eigenvalue energy can be expressed as a perturbative power series in the well depth
strength in one dimension, such is not the case in two dimensions where an es-
sential (non-power-series) singularity emerges. This particular type of singularity
(which carries over into the many-electron, superconductivity treatment of BCS)
also appears in the Cooper two-electron problem in either 1, 2, or 3D and is thus
not related to the apparent two-dimensionality of the BCS interaction model.

Acknowledgement

One of us (M. de Ll.) thanks Professors Donald H. Kobe and Steven A. Moszkowski
for numerous discussions, and acknowledges a NATO research grant.

Appendix: Cooper pairing in one-, two- and three- dimensions

We briefly sketch how the basic weak-coupling expression (20) for the Cooper pair
binding energy follows explicitly regardless of the value of D (space dimensionality),
whether 1, 2 or 3, provided only that 2v = hwp /Ep < 1.
For any D, the summation over k in Eq. (16) leads to an integral over
g

where L is the size length of the system. Since £ = h*k2/2m, this immediately
leads to

9(&) =&t (D=1
=C; (D=2) (A.2)
=CyE8 (D= 3);
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where the constants Cy = (m/2)"/2L/xh, C; = mL?/2xh and C3 = 2-1/2(m [K?)3/?
x L3[x%. For D = 2, the first integral in (17) was already carried out in the text.
For D =1, the first integral in (17) leads to

fs‘:”"“n 5112(2?_ Fo) 2\/1—5,:1” [(‘ﬁ%; ﬁ) (i s ﬁ)] . (A3)

where € = Eo/2EF. Putting € = 1 — § with § = A/2Fr, the rhs of (A.3) can be
expanded for v < 1 and § < 1 and, after a little algebra, leads to

§ = 2ue  HIERIV (A4)

where g(Ef) = ClEI:l/z, i.e., of the same form as the weak-coupling limit of
Eq. (20). Similarly, for D = 3 we have

Ep+hwp £1/2
/EF dEQE_E[J:\/EF 2(¢1+2u—1)

Ve e+ 1420 —2¢/¢(l 4 2v) e—1
+—2—ln ( e—1—2v )(6+1—2\/E)] - (43)

In the limit of v and § < 1, this again leads to the form (A.4), but with g(Eg) =

C';;El_l-n. We remark that both integrations (A.3) and (A.5) where done using tables,
and checked [24] via the computer-algebra package MATHEMATICA. Note, however,
that in either 1D or 3D the e~!/* essential singularity emerges before the “two-
dimensional” property of the BCS interaction v < 1 is imposed. Thus, the e~ 12
singularity is not a property of dimensionality, in spite of a tempting analogy with
the 2D quantum binding problem.

Finally, we wish to recover the well-known properties of the first bound state of
a particle in a 1-, 2- and 3- [Eq. (3) and below Eq. (4)] dimensional attractive well,
namely the features [13,10] that: a) in 1- and 2- dimensions a bound level is always
present, no matter how shallow the well, whereas in 3-dimensions a critical depth (4)
is required; and b) the binding energy is analytic in the well-depth, as the well-depth
vanishes, in 1- and 3- [Eq. (3) and below Eq. (4)] but not in 2-dimensions. To get
this from the Cooper pair problem, the “blocking effect” of the Fermi sea has to be
phased out appropriately, so that we deal with two particles (or one particle, with
a specific effective mass) interacting in the vacuum. The non-analyticity referred to
in (b) above in the 2D case immediately follows from the form of the first integral
in Eq. (17) since in this instance Ef does not appear in the rhs and can thus be
taken to be zero (the vacuum limit). For D = 1, let Eg = —|Eo| and take Ep = 0
in the lhs of (A.3). The first integral in Eq. (17) then becomes

L =ve j"“"’ . S— (46)
I Ve A '
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2 _1 [2hwp T
R — , (A7)
[Eol "\ TEol 1£ol~0 /2| Ey|

(A8)

which evaluates to

so that (A.6) yields

This can be satisfied for V arbitrarily small. By contrast, for D = 3 the lhs of (A.5)
with Ep = 0 gives

ﬁuD 81/2 |E0| 1 Qth
———— = /hwp — \/ — tan~ hwp. A9
fo U iE] =~ Vi~V TR ae Vi (49)

| Eg|—0

This together with the first equality in Eq. (17) means that a non-vanishing thresh-
old depth of magnitude

V=—--—e (A.10)
is needed to support a bound level, as expected.
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Resumen. En este trabajo se resefian los parelelismos entre el proble-
ma de Cooper para dos electrones y el problema de ligadura cuantica
en dos dimensiones. Ambos problemas manifiestan una singularidad
anomala esencial, es decir, un comportamiento no perturbativo, en el
parimetro de acoplamiento. Segin la teoria de BCs, una singularidad
similar limita severamente la magnitud de temperaturas de transicién
posibles en la superconductividad. Al analizar el problema de Cooper
en una y tres dimensiones se concluye que la singularidad anémala no
estd vinculada con la bidimensionalidad implicita en el modelo dinamico
electron-fondn de Bcs, contrario a lo que se pudiera sospechar.



