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Abstract. The parallelislIls betw('pn the COOPf'r C'1('ctron-pair problem
and the two-dimensional potentiaJ well problem, •••..hich is anomalous,
are highlighted. Th('ir common signature is binding for arhitrarily weak
cOllpling accompanicd by an essential-singularity, non-pNturbalive be-
havior of lhe hinding energy as function of coupling strength. This sin-
gularity severely limits supercondllcting lransilion-tempcraturc mag-
nitudes in BCS theory. lIowever, analysis of tile COOIH'r probl('m in
both 1D and 3D shows that tlle singularilY persists_ Thus. contrary
to lhe conw'nlional wisdom, the singlllarily cannot he r('latel! to th('
two.dimensiona1ity implif'd by the HCS mod<'1 intf'raclion uscd.

PACS: 05.30.Fk; 74.20.Fg; 74.90.+n

1. Introduction

'fhe two-dimensionai (21)), quantum-mcchanical, many-hody e1cctron gas prohlem
has again h('Come the foclls of intense rescarch, hoth theoretical as wdl as expcr.
¡mental, since the rccent disco\'ery of high-tcmpcrature superconductivity (tI in
certain ceramic copper-oxide compounds, with greatly enhanccd current dcnsities
being ollscrv('d in thcse matcriais within planes composed of coprer and oxygcn
atoms.

Prior to this
l
tIJe subjf'Cl was alrcady of prime importan ce due to: 1) observations

of a 2D c1('Ctrongas OH liquicl helium surfa((~, or on films dcposited on solid dideclrie
materials [2,31; and 2) detection of localized clectron states at interfaces bctwecn
GaAs and GaAlAs, or betwccn a metal oxide and a semiconductor 1,1] displaying
integcr as wcll as fractional quantum Hall cffecls. Furthermorc, the oecurrcncc oC
c1cct.ron localization in a random set of ionie potcntial wells, for arbitrarily small
disorder, in 11) or 21) bur not 3D, has rccently 1>e('nsllggcsted [516] lo be malhe-
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matieally cquivalent lo lhe lcxtbook problcm of finding (or nol) a bOlllld slatc in
an arhilrarily shallow polcnlial well in ID, 2D or 3D, respectively.

Thc "'slandard thcory" of superconductivily goes back lo Bardecll, Cooper and
Schricffcr (Des) [7J, and may yel prove lo be applicable, with exlcm¡ions and modifi.
ealioos, to the novel high-transilion tempcrature substanccs as succcssful1y as in the
con\'entionallow.tcmperature (~23 K) clcmcnts and alloys, the r.rst of which (lIg)
was discovcrcd in 1911. At the hearl of lhis theory líes lhe Coopcr elcclron.pair
problem which cxhibits a slrong rcsemblance lo that of one particlc in a simple
potcntial weJl in 2D. Both problcms supporl a hound slale for arhitrarily wcak
attraction and display a non.analytic (non'pcrturbative) fUllctional dr¡wndencc on
the eoupling strength. Thcsc conneclions and their significance are disclIsse<1and
clarified in lhis paper, in an elemenlary way. The inapplicahility of pcrlurbalion
lhrory to lile problem has oflen bccn cited [8,9] as tI\{' main stumhling block to
develop a viable thear)' of superconduclivity, and why conse<¡lIently il took almost
a hal(.ccntury ((rom 1911 to 1957) (or such a tbeory lo emerge, though of course
qua.ntum mcchanics pro\'ed csscntial.

2. Uniqueness of two-dimensional potential wells

It is weJl known from elementary wave mechanics that for a 3D attractive pOlential
well to support at leasl one bound state a critical well J('pth and/or range is nceded.
This is in rnarked contrast to 1J) whcrc a bound state always exists, tlO mattcr how
shallow and/or short-ranged the attraclive wdl. This follows in ('arh case frorn
thc solution of tIJe Scilrodinger cqllalion for its negat.ive eflcrgy eigcllvalllC's B =:
-IE'I, which relics on scleding regular (i.e., finite-probahility.density) ••••.ave-function
solutions both insidc and outside thc well, and tiJen matching ••••.avc functions and
their first derivativcs at. the ••••.ell boundary.

For the ground state energy E =: -IEI, of a particle of mass m in a (1D or
3D) w('1Iof radius a from tiJe origin aod depth - Vo, with Vo > O, the matching
equations reduce to

(ID) (1)

(3D) (2)

These trascendental equations for IEI are dcri\'ed, and gcnerally sol\'",1 graphically,
In many standard textbooks [10J. Eq. (1) has a sollltion [El> Ofor arbitrarily small
Vo (and conseqllcntly arbilrarily small [El < Vo). Expancling the tangent for small
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x ¡tan T ::: :r + O(x3)j, and then sqllaring, permits us to f1nd that

(ID) (3)

is a lH'rturhatiw' rcslllt. In other words, lhe bound state can in principie be found
in lerllls of sllccessivdy smaller syslt'malic correclions which are powcrs of the
lH'rturh.dion wdl deptb \'0. Ou tlle other IJalld, as a simple sketch of both sidcs of
Eq. (2) shows, a SOllllioll 1/....'12. O ('xists onl)' providt'tl lhat

(3D). (1)

The :JD r('Sult is also pcrlurbativc sincc frolll Eq. ('2) it follows that, if Voa2 ==
,,'r,' 18m + '1 wilh '1 2: O, lhell E ~ -m~' 12hr.' + O(~3) .

•-0
Tlw lwo-dillleIlsiollal case is qutllit(¡/ivciy differellt. Il is much l('ss familiar in

the textbook lileraluf(" prohahly occallse of lhe cumhersorne nC<"<..!for two kinds of
Bcssd equat ions -one for inside, tile othcr for oulside the (cylind ricillly-s)'rnmctric)
wdl of radills a and deplh - \'0' For tile grolllld slatt', tile rcspcetin' radial Schroo-
inger er¡lIatiolls (upper sign = "'insi(h~"; lower sign = lóoulsidc") are

p'U"(p) + pU' (p) '"' p' R(p) = O,

wherc tile dinwnsionless real dislancc variahlc'S

(.) )

p '" )2m(1'0 -IEI)/,,'r

'" )2m(1'0 -1£1)/,,'r

(illside)

(oulsidc)

(6 )

llave \>een inlrociuc('(1. Eq. (:J) is just lhe zcroeth-order Bcsse1 equation, with solu-
tions which are a) regular al r = O: givcn by tIJe Besse! funclions .Jo(p) (inside wcll,
upper sign) allcl b) regular al r = 00: giV(,Ilhy the "hyperbolic' (or "modifled")
Bcssd fllnctioll /{o(x) (oulsidc well, \owcr sign). For excited stal('s, an extra terrn
with a rotat.ional quantum nllmbcr n = 1,2, ... apl)f'ars in Er¡. (5) and giw'S rise to
the higlwr-ordt'r Bessd functiolls (tI] JII(x) alld f\fl(;r). This general ca.<¡cis discuss('(i
by Boas [12J. Using lhe idelllilies 11Ij J;(.) = -J,(.) ami 1\;(.) = -1\,(.), lhe
continuity of !r(r)f R(r) at r = a immcdiatdy givcs:

)2m(l'o _1"1)/'" JI ( )2m(1'0 -1"1)/"'a) 1Jo ( )2m(l'o -IEI)/"'a)

= 2ml"I/"'I\1 ( 2ml"I/"'a) 11\0 ( 2ml£I/"'a). (20) (7)
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The ¡imit IEI < Vo ••.• O can now easily be performed by reealling the asymptotic
results (11):

xn
Jn(x)----->-2 l'

r-O nn.
(8)

(2D),

Ko(x) -----> -In x,
r_O

and solving for IEI again by exponentiation. Qne quickly arrives at

E __ ~e-2A'llmVoa'l
vo-o 2ma2

(9)

(10)

which because of the minus sign means the existence of a bound state, and for
arbitrarily shallow well depth as in ID. What is new aud difTerent in 2D, as op-
posed to ID where (3) holds, is the essential singulari'y (10) in Vo which precludcs
a perturbativc expansion in powers of Vo to obtain thc eigenvalue, sincc the nth
~taclaurin expansion coefficient En of Eq. (10) expressed as

would be

E = £0 + E, Vo + E2V02 + ... ,

- ~2. [~ -2"/mVi]En - 2 2 I dl!'n e ,ma n. 1"0 Vo=O

(11)

( 12)

which c1carly vanishes for all n ::;0,1,2, ....
The outcomc (lO) in fad holds for any central well V(r), nol nffcssari1y of rect-

angular cross scction, if Voa2 is r('p1ac("(1by ~Ifooodr rV(r)l. This is provcd very ele-
gantly by Landau and Lifshitz [l3J (thongh their result omits a divisor of2). Finally,
a variational lrial fundion consisting of a shifted and "strctchcd" cxponcntial estab-
Hshes [141 the faet that binding oeeur, in 2D for any negative definite well V(r,9)
whatsoevcr, central or not, no malter how shallow, with the charaderistic exponen-
tial term e-lconst.IIVoa'l persisting, if ~'oa2 is eeplaced by 2J1( Joh d<jJJooodrrlV(r, ~)I.

It is interesting to rccall that this particular behavior also oceues in a many-body
context in solid-statc physics: the 2U perfeel (¡.e., noninterading) Fcrmi gas at
low temperaturcs. Its ehemical potential'l as a fundion of temperature cannot be
expressed as the so-called Sommerfcld expansion in powers of T, very familiar in
the :U) ea..<¡c,namely

I,(T) = EF + 1'2T2 + 1"1' + ... ,T_o ( 13)

where Er is the Ferrni energy and 112,1'4, ... are certain constants. The reason is
lhal, bccausc g(() = consl., the cxacl cxprpssion [I5J for Il(T) is found lo be

I'(T) = EF - kTln(1 + ,-"liT)

= EF - kT [,-"liT _ !c-2"/iT + ...]
T-o 2 '

(14 )
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which lherefore, by Eq. (12), cannol be written in lhe form (13) cilher, excepl for
the trivial case T = O.

3. Cooper pairs and superconductivity

The mosl slriking aspccl of lhe Coopcr (161 pair problem is lhal il can form a bound
state for an arbilrarily weak (but attractivc) efTective interaetion. This happens in
cither 1, or 2 or 3D because oC tIJe Pauli principIe imposcd on the f\r electron system,
which manifests ilselC in lerms oC a constant-encrgy (so-caBed Fcrmi) surface, on
lap oC but very ncar whieh the nct cffectivc elcctron-c1ectron inleradion is different
from zero.

Two conduetion c1cetrons oC opposite spins orbit around eaeh othcr with a
cenler-of-mass momentum hK == h(kl + kz). Thcy are submerscd in the "Fermi
sea" oCN - 2 passive (or background) eledrons, and all N c1edrons obey the Pauli
exc1usion principie. The partners oC the chosen pair repel each other through the
usual Coulomb c1cetroslatic force, but also attract in a very particular way thought
to be eltaracteristic oC all metals. Namcly, a conduction electron can absorb or emit
"phonons" creatcd by the vibrations of thc undcrlying ionie latticc, produced in turn
by the distorting motion of the two elcdrons themselves. If the net combincd elfect
of the Coulomb repulsion plus phononic attraction is repulsh'e we have a "normal"
metal, oC which, for example, there are at least 85 of the 106 or so elements of
the periodic table. On the other hand, iC the phononic atlraction overwhclms the
Coulomb repulsion we have a "superconductor", oC which there are at least 28 oC
those 85 elemental melals al atmospheric pressure (plus a few more under higher
pressures or in tite form oC thin films).

Let this net elJectit.e interaetion V(r), where r == rl-rz is the rclative coordinate
oí the two clectrons, be reprcsented by the sehematic model interaetion oC Bes. This
model captures lite essential physical features of the combined effed of lhe electron-
electron coulombic repulsion and the elcctron-phonon collision pro('ess whcreby an
electron pair is scatlered from a pair state (kt, _k1) lo another pair state (k't, -k'!).
It is very simply written as

(15)
otherwise,

where D is the (Iimensionality and 11: lhe V.dimensional "volume" of lhe sample,
V > O is a positive conslant eoupling parameter for a net, effeetive attractive
inleraction, t:k the single-cleclron energy, and hWn is lhe maximum (Debyc) energy
thal an ionie crystal phonon can possess to transfer to a sca!tering electron. The
resulting SchrOdinger equalion in momenlum space for the two electrons in a Fermi
sea is then slraightforward [17,18] to reduce to the rclation

I 1
1 = V:L 2rk _ E'

k
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where the "prime" over surnmation sign rerninds us to restrict the surn to tIJase
k values associatcd with a single-electron energy fk within the limits specified by
Eq. (15). This is the fundamental equation for the possible energy eigenvalues E
of the Cooper electron pairo The sum can be converted to an integral over the
single-particle energics lk ir we introduce the dcgcneracy (or "'density of states")
9('k), so that Eq. (16) becomes

j,
Er+'~o g(,) j,Er+>wD d,

l=V d'-2 E ",Vg(Er) ;¡¡;;.
EF <: - EF l- ,

The last step is ensurcd if g(l) is rcasonably smooth over the integration interval of
width hWo, and if this intcrval is sufficiently small compared with Er. The former
condition holds since g(t) ex fl/2, or const, or t-1/2 (for 11 = 3, or 2, or 1 dirnensions,
respcctively) (sce Appendix) as shown in elementary solid-state physics texts such as
Buros [19). The latter condition, namely hwD <t: Er, holds because lhe characterislic
Fermi temperature TF ;: Er/kB = h2(h2n)2/J/2mkB, (where kB is lJoltzmann's
coostant and n the concentration of conduction c1ectrons) is typically ID. to 105 K
for most conductors, whereas the characleristic Debye temperature To == hwo/ ka
(proportional to an avcraged crystallatticc sound speed) is typically only hundreds
of degrees K. Consequently, the Bes intcraction (8) opcrates only very near the
Fermi surface, within an energy shell of thickncss 10-2 to 10-3 times the value
of the Fermi energy Er itsel£. It is c1aimed in the textbook lileral ••• re [17) that
to the empirical extent that hwo < Er, Cooper pairing will essentially be a tw~
dimensional phcnornenon. Qualitatiavcly, this is clcar sincc "things look planar very
near a spherical surface". Qllantitatively, the last step of Eq. (17) is juslified either
if hWo/ EF <t:: 1 or if g() is constant as occurs in two dirnensions. The integrallcft
in Eq. (17) is now e1ementary, and eqllal lo

~ln [(2Er - E) + 2hWD].
2 (2EF - E) ( 18)

(19)

(20)

Inserting this ioto Eq. (17) and solving by cxponentiation for the pair-energy c¡gen-
value E, we obtain

2hwD
E = 2EF - e2/.(Er)V _ l'

As expected, for V = O,E = 2EF, the energy of two eleetrons at the Fcrrni surface.
For V > O, E < 2Er so thal the paír is (qllasi) bOllnd, and has a binding energy
Áo given by

2Er = E ;: Áo ;: 2hwD -.2hwDe-2/.(E,.)V
e2/.(Er)V _ 1 V-o '

with the latter expression holding for weak cOllpling. As in Eq. (10), lhe binding
energy .6.0 is not an analytic fuodion oCV.
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Ir thc first inlegral in Eq. (17) is carricd out without approximation by taking
g(,) ex ,~/2 (in 3D) and ex ,-1/2 (in ID), somewhat harder inlegrals resull lhan lhe
ones wh~ch lead lo Eq. (18). 110wever, lhese can also be perlormed analylically (sce
Appendlx) and Icad to longcr expressions than before but E -. 0- and hw A' E, D ~ F,
the 3D .and.1 D cases result in prccisely the same asymptotic limil giren by the lasi
e:rp1Y.'SSlon In Eq. (20), regardless of dirnensionality. This means that the esscntial
singularity is indcpcndcnt oC dimensionality.

HistoricalIy, it was nol an eas)' malter to crnbcd the Coopcr pair idea into a
truly many-c1cetron thcory. This DCS did in 1957 by a tour-de%~~rce construction, for
the same schematic intcraction model (15), of an antisymmctrizN! N-electron vari-
ational wave fundion dcpicting a "chargcd macromolccule" oC N supcrconducting
elcctrons, oC which those ncar the Fermi surface form Coopcr pairs highly corrclatcd
among thcmsclvcs. This c!cctronic macromolceule cxtends ol/cr thc cntire sample
volume and constitutcs the "slIpercurrcnt 11 that flows (when an (~xt('rnal dcdric field
is applicd) rcsistancclcss throughout the material, indefinitcly in time. Indccd, the
BCS throry is olle of the most e1egant, seminal and successCul applications oC quan-
tum many-body physics known to date. It Icads [20] to a tcmpcraturc-dcpcndcnt
"cncrgy gap" ordcr paramcler ~(T), which CorT = O is Cound lo he

Ó(O) - hwo ~ 2h -l/g(Er)V
- sinh[l/g(Er)VJ v-o WuC

•
(21)

Only the ver)' last cxpression is reliable since thc DCS thcory is restricted to wcak
coupling, in which I¡mit the zero-temperature gap parameter is secn to bc similar
to the weak-coupling Coopcr pair binding energy (20) valid in 1, 2 or 3D.

The "normal mctal"-to-"superconducior" transition temperature Te is then de-
lerrnined in lhe nes lhoory by lhe vani,hing 01 lhe [unclion Ó(T), narne1y Ó(T,) =
O, and is Cound to be related to ~(O) through the very simple reslllt for the empiri-
eally observable energy gap:

(22)

where'Y :::::0.5772 is the Eulcr constant. This amount oC cnergy "excites" the highly-
ordered elcetronie macromolccule out of its ground statc, COTlscqucntlydestroying
lhe superconducling phase allogelher. Nole lhal E<¡s. (21) amI (22) predicl lhal T,
can be arbitrarily small, a Cactempirically illustrated in a striking wa)' by the metal-
lie clernent rhodiurn (Rh), whieh apparently has the lowest lransition temperature
(3.25 x 10-' K) rneasured lo dale. In a lucid lulorial review, Lillle [21] shows how
the weak-coupling DCS re1ation (22) is rcrnarkably cotlsistent with rccent encrgy-gap
measurements even in the new, highest-Te coppcr-oxi<le matcrials. Unfortunately,
Bcs-based formalisms [22] using the phonon mcchanism presently appear unable to
predict valucs oC Te greater than about 40 K in solids¡ this Iimitation has come to
be known as thc "phonon barrier". So, it is still not clcar whethcr these formalisms
may eventually provide clues Cormaterial scientists on how to adually cngincer the
long-sought roorn-ternpcrature superconduding substance that sorne bclieve will
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rival the invention oC the transistor. On the other hand, as Schricffcr 123) hirnsclf
argues, the inapplicability oC the "pairing throry" in solids o\'er a tcmpcrature range
between 10's to 100's oCdegrccs Kelvin would scem highly unlikcly in vicw of clcar
successes of the throry to explain phenornena over 13 orders oCmagnitude in crit-
ical temperature -Crom 10-3 K where Iiquid-3He hecomes supC'rfiuid, lo 1010 K
where nuclei show clear-cut evidence of nuclconic pairing. The rdevanee in high-Tc
superconduclivity of the Bes pairing thoory is thus one of the most hotly pursued
questions in prcsent-day condensed-matler physics.

4. Conclusion

For the one-particle poten ti al well problem in either one or two dimensions a bound
statc exists no malter how shallow the well -in contrast with the thrce-dimensional
case rcquiring a critical well depth to bind a leve!. But whereas the ground-state
eigenvalue energy can be expressed as a perturbative powcr series in the well depth
strength in one dimension, such is not the case in two dirnensions where an es-
sentíal (non-power-scries) singularity emerges. This particular type oC singularity
(whieh carries over into the many-elec1ron, superconductivity trcatrncnt oC ncs)
also appears in the Cooper two-elcetron problem in either 1,2, or 3D and is thus
not related to the apparent two-dimensionality oC the Bes intcraction model.
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Appendix: (ooper pairing in one-, two- and three- dimensions

We briefly sketch how the basic weak-eoupling expression (20) for thc Cooper pair
binding energy follows explicilly regardless of lhe value of D (space dimensionalily),
whelher 1, 2 or 3, provided only lhal 2v '" hWD/ EF ~ 1.

For any D, the surnmation over l.: in Eq. (16) leads to an intC'gral o\'er

LD
(27r)D dDk '" g(£)d£, (A.l)

where L IS the size length of the systcm. Sinee £ = h2 k'212m, this immediately
leads to

g(£) = C,£-1/2

= C2

= C3£'/2

(D = 1)

(D = 2)

(D = 3),

(11.2)
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where the con,tant, Cl = (m/2)1/2L/~h. C, = m/,2/hh and C3 = 2-1/'(m/h')3/'
X LJ/1r2. For D = 2, the first integral in (17) was already carried out in the texto
For D = 1, the first integral in (17) leads to

¡Er+'WD dE: = _1_ In[( v"f+2V - .fi-) (1 + .fi-)]
lE, E:l/2(2E: - Eo) 2v<EF v"f+2V +.fi- 1 -.fi- . (A.3)

(A.6)

where ( ;; Eo/2£r. Pulling ( ;; 1 - 6 with 6 ;; ¡j./2Er. the rh, of (A.3) can be
expanded for v <t: 1 and EJ <t: 1 and, afl(~r a littlc algcbra, Icads lo

6 = 2V(-,/,(E,)V, (AA)

where 9(EF) = CIE¡I/2, i.e., of lhe sarne form as the weak,collpling limit of
Eq. (20). Símilarly, for D = 3 we have

+ .fi-1n[(+1+2V-2}«(1+2V)) ( (-1 )]}. (A.5)
2 ( - 1 - 2v ( + 1 - 2.fi-

In the limit of v and 6 < 1, thi, again lead, to the form (AA), but with g(Er) =
C3E~/2. \Ve remark that both integral ion, (A.3) and (A.5) where done u,ing tables,
and checked [2.1}via the compuler-algebra package MATHEMATICA. Note, however,
that in either ID or 3D the e-l/>' esscntial singularity emerges before the "two-
dimensional" property of the RCS interaction 11 <{:: 1 is imposcd. Thus, tite e-JI).
singularily is not a propcrly of dimensionality, in spite of a tcmpling analogy wilh
the 2D quantum binding problem.

Finally, wc wish to recover the well-known propcrlies of the first bOlllld state of
a partiele in a 1',2. and 3. [Eq. (3) and below Eq. (4)1 dimensional attractive well,
namcly the features [13,IOJ that: al in l. and 2. dimen,ions a bOllnd level is always
prcsent, no malter how shallow the well, whercas in 3.dimensions a critica1 dcpth (4)
is rcquired; and b) the hinding energy is analylic in lhe well-depth, as thc well-depth
vani,hes, in l. amI 3. (Eq. (3) and below Eq. (.1)] but nol in 2.dimen,ion,. To gel
this froIn the Cooper pair problern, the l<blockingclTect"of tiJe Fermi sea has to be
phasc..'¿out appropriately, so that wc deal with two particlcs (or one particlc, with
a specific elTcctive mass) interacting in t1lc vacllum. The non-analyticity referred to
in (b) aboye in the 2D case immcdialcly follows from lhe form oC the first inlegral
in Eq. (17) since in this inslance Er docs not appear in lhe rhs and can lhus he
taken to be zero (the vacuum limit). For D = l. Icl Eo;; -IEol and take Er = O
in the Ih, of (A.3). The first integral in F:q. (17) then beco mes

J.
.wn dE:

1 = VC, o E:l/'(2E: + IEol)'
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which evaluatcs to

(A.7)

so lhal (A.6) yiclds

(A.8)

This can he salisfied for V arbilrarily small. By conlrasl, for D = 3 lhe ¡hs of (A.5)
with EF = O gives

fA"", d£ _£_'_/'__ = Jhwo - )-1£2_011an-1 J2
1

h
E

WD

1

_ JhWo.
Jo 2£ + 1£01) ° lEal-o

(A.9)

This logelher wilh lhe firsl c<¡ualily in Eq. (17) means lhal a non-vanishing lhresh-
old deplh of magnitude

V = 1
C3,¡t;Wr;

is needcd to support a bound levcl, as expcetcd.
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Resumen. En este trabajo se reseñan los par<'1elismos entre el proble-
ma de Cooper para dos electrones y el problema de ligadura cuántica
en dos dimensiones. Ambos prohlemas manifi('stan una sin~ula.ridad
anómala esencial, es dedr, un comportamiento no patl.lroolit'o, en el
parámetro de acoplamiento. S{'glín la troría de RCS, una singularidad
similar limita severamente la magnitud de temperaturas de transición
posibles en la superconductivida.d. Al analizar d prohlema de Cooper
en \lna y tu's dimension('s se conr1uj.(' que la singularidad anómala no
está vinculada con la bidim('nsionalidad implícita en el mod('lo dinámico
electrón-fonón de BCS, contrario a lo que se pudiera sospechar.


