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Identification of focal epileptic regions from
electroencephalographic data: Feigenbaum graphs
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In the study of problems related to epilepsy, analyzing electroencephalographic data is of much importanceshglpitmnose and to

diminish errors in surgery. In this work, we present an analysis via the construction of Feigenbaum graphs by using real electroencephalo-
graphic signals data sets and calculating characteristic network (graph) quantities, such as average clustering, degree distribution, and average
shortest path length. By using this method, we manage to characterize two different data sets from each other, from data sets corresponding
to focal and non-focal neuronal activity both recorded out of an epileptic seizure. This method makes it possible to identify sets of data from
epileptic focal zones, and we suggest that this approach could be used to aid physicians in diagnosing epilepsy from electroencephalographic
data and in the exact establishment of the epileptic focal region for surgery.

Keywords:EEG; epilepsy; statistical physics methods; Feigenbaum graphs; visibility graph.
PACS: 02.90.+p; 02.70.-c; 05.45.Tp; 87.15.A-; 87.19.le

DOI: https://doi.org/10.31349/RevMexFis.67.324

1. Introduction Since EEG recordings are, in essence, a time series with
lots of noise [17,18], the task of analyzing and achieving a
Epilepsy is a disease that affects sixty-five million people indiagnosis becomes a very difficult one [19,20]. Because it
different countries, and two and a half million new cases arés such a difficult procedure, it requires a very well trained
detected every year [1]. Epilepsy is a disease characterizgghysician [6]. That is why many scientists are trying to
by an enduring predisposition to generate epileptic seizuredevelop techniques to ease this workload and facilitate the
and the neurobiological, cognitive, psychological, and sociaphysician’s job [21-23].
consequences of this condition [2]. One field of study of much relevance is the automated

Epileptic people are two or three times more likely to die EEG analysis, which includes many computer-aided algo-
prematurely [3].50% of the cases begin in childhood or ado- rithms, such as component analysis [24], Fourier Transform
lescence [4]. Epilepsy is characterized by seizures, whic25,26], wavelet transform [27,28], and entropy analysis [29-
can affect persons of any age. The seizures can be as spa&d among others [23,25,30,32,33].
as once a year or as often as several times a day [5]. Given Zhong-Ke Gacet al. [34] used a hybrid method of mak-
these factors, the importance of diagnosing epilepsy is vering a visual graph out of an adaptive optimal kernel time-
high [6], so the tools and techniques used and developed fdrequency representation of the EEG. They manage to detect
this end are too [7-11]. epileptic seizures from EEG data by means of statistical mea-

Seizure disorders are not epileptic in nature; or, in othesurements of the visual graph, such as clustering coefficient
words, not all seizures are epileptic fits. Epileptic seizuresand clustering entropy.
are unprovoked due to the involvement of the central ner- Salim Lahmiri [35] made a statistical analysis of EEG
vous system. Non-epileptic seizures could be due to sewignals by measuring the Generalised Hurst exponent. He
eral measurable causes, such as stroke, dementia, head injslgows statistical differences between the estimated Gener-
brain infections, congenital birth defects, birth-related brainalised Hurst exponent for normal EEG signals and EEG sig-
injuries, tumors, and other space-occupying lesions [12,13].nals with epileptic activity.

One of the procedures for diagnosing epilepsy consists of Lei Wanget al. [36] used visibility graphs to analyse
the analysis of electroencephalographic signals (EEG) of aeizure patterns in EEG signals. By calculating and com-
patient [14]. The EEG measures the electrical activity of theparing degree distributions they manage to show that it can
cortical area by means of electrodes placed on the scalp of tHee used to discern between EEG recording with and without
patient [15]. More accurately, it measures the electrical poseizures.
tential of the dendrites of the pyramidal neurons adjacentto A new method to characterize EEG signals is proposed.
the cortical surface. Hence, the relevance of EEG analysis ifthis method can be used to identify epileptic regions by
diagnosing neural disorders, and epilepsy in particular [16]. means of the associated Feigenbaum graphs. By turning the
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The Data used was taken from the publicly available source
N N N O T of the Bern-Barcelona EEG database [37], where Andrzejak
t et al. originally made a correlation study.

The data were taken from intracranial EEG from five dif-
R 55 ferent epileptic patients. The EEG recordings were made as
= CEPCLE A part of the diagnostics of the epileptic patients, prior and in-
dependently to this study. The EEG signals were either sam-
TN pled at 512 or 1024 Hz, depending on whether it was a more

(b) (c) or less than 64 channel record.

FIGURE 1. 20 seconds of EEG activity from a focal electrode. b) Each signal was filtered by a band-pass fourth-order But-
shows a subnetwork for the EEG built by Feigenbaum approach{erworth filter, between 0.5 and 150 Hz. Signals that were
c) shows the values for average degr&d,(average clustering) sampled at 1024 Hz, were down-sampled to 512 Hz.

and average shortest path lengsiAL). Data were compiled into two different data sets: the “F”
set, are the data from the focal epileptic point, which was
identified as the first electrode that measures the epileptic
’ : seizure. And the “N” set, are the data from the non-focal
M“ h @ ‘M Iu M W‘ Mt ‘J‘“ H » points. A non-focal point is any other point that didn’t show
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FIGURE 2. 20 seconds of EEG activity from a non-focal electrode. Graph Theory has been used to study both the static and dy-
b) shows a subnetwork for the EEG built by Feigenbaum approachnamic descriptions of complex systems. The “particles” or
c) shows the values for average degrkk &verage clusteringX) individual elements of the system are represented as nodes
and average shortest path lengsHL). in the network and the interactions or links between these
elements correspond to lines that join the nodes in pairs.
EEG time series into graphs, they can be studied through theirhe topology of these abstract objects allows to character-
topology. This is made by calculating and statistically checkize certain types of network (small world, free scale, etc.)
ing the average clustering coefficient and the average shorteghd associate them with some typical systems. The topol-
path length of the graphs. ogy is determined by the number of links each node pos-
In the construction of the Feigenbaum graph from thesesses (degree distribution), the clustering coefficient, or the
data, most of the detailed information of the time seriesaverage shortest path length between any pair of nodes. A
will be reflected in some properties of the obtained networkcomprehensive review of the subject can be fouriatiat
topology and its statistical measurements. In this study, th@networksciencebook.com/ [38].
Feigenbaum graphs are used to analyze EEG data from the
Andrzejaket al. study [37]. Using statistical criteria, average 31, Feigenbaum graphs
shortest path length, and average clustering coefficient were
used to discern between signals “F” from a focal region andrhe Feigenbaum graphs are a tool that has been employed in
signals “N” from the non-focal region. the characterization time series data. By constructing a net-
In Figs. 1 and 2, the Feigenbaum network is shown, alongvork from a given time series data set [39-41], the network
with the values of the parameters, average degkBedver-  structure extracts important information from said time series
age clustering@), and average shortest path lengPl)  [42-46].
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- The process for building the network is as follows: For
— ot TR each pointz; in the data set, a nodes added to the network.

g Then, for each pair of points; andz; in the set, every time
the criterionz;, z; > «,, for all n, such that < n < jis
met, an edge is added between nodasd; [12,44].

Following the aforementioned procedure for the example
data in Fig. 3a), the network from Fig. 3b) is built. By build-
ing the Feigenbaum network a new structure is met for the
data, and so it can be analyzed as such.

Take the EEG from Fig. 4a). For each data point, a node
is added to the network in Fig. 4b), and the edges are created
following the procedure in Figs. 3a) and Fig. 3b).

3.2. Statistical measurements

b)

Once the Feigenbaum graphs were built, an analysis of the
structure of the graphs is in order. To find a measure to char-
acterize them as “N” or “F” whichever was the case, some

calculations on the topology of the networks are of use.

EEG To this end, we calculated the average shortest path length
‘ ' ' for each graph, as it has a direct correlation to the size of
" /,-.‘ P the graph, and the data itself. On the other hand, we cal-

y

FIGURE 3. a) A data set where the lines indicate a link in the net-
work. b) The network that results from the data in a), by following
the mentioned procedure.

100

culated the average clustering coefficient. It is a measure-
sl ment of how the network is connected and correlates with
how auto-similar the data are.

‘.f
70l *,. ] Getting the average clustering coefficient for each net-
2l b work, a single number is set to identify each of the time win-
60 ! dows in the data sets. Also by calculating the average shortest
// path length for each network, a new single number is obtained
My
e

Vit)

50 to identify each EEG signal of 20 seconds.
The average clustering coefficient is calculated in the sim-
ple form (1) [47].
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a‘) wheren is the number of nodes in the netwatk andc, is

the clustering coefficient for each node
The clustering coefficient, is calculated using Eq2
[49].
{ a 2T (v)
£ Cp = ———7
' k() (k(v) = 1)

" whereT(v) is the number of triangles through nodeand
i k(v) is the degree of.

So the average shortest path length is calculated employ-
ing the Eq.8) [50].

b) s
- Z nd(s,t) 3)

FIGURE 4. a) EEG data from the [37] data set. b) The network that = (n—1)
results from the data in a), by following the mentioned procedure. e

)

WhereV is the set of nodes in the grapt(s, t) is the
To characterize the data sets and achieve a systematshortest path length froma to ¢t. And n is the number of
method for identifying epileptic focal points, each signal nodes in the graph.
from the corresponding data set, “N” or “F”, was transformed  Because the average shortest path length and the average
into a Feigenbaum graph. Following the idea that most of thelustering coefficient of each graph are calculated, each sig-
characteristics of the signals are translated to the topology ofal in each data set gets identified by two singular numbers.
the network, the analysis of this topology is relevant. As these numbers on their own are not singularly defining, a
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FIGURE 5. a) Distribution of the shortest path length for the focal Figure 6. a) Distribution of the shortest path length for the non-

data set, curve fitted tel exp(—bx)(z — c) whereA = 669.5,  focal data set, curve fitted td exp(—bz)(x — ¢) whereA = 1455,

b = 0.330 andc = 1.793. b) Average clustering distribution for p = 0.419 andc = 1.999. b) Average clustering distribution for

the focal data set, curve fitted tbexp(—(z — 1)?/(20°)), where  the non-focal data set, curve fitted tbexp(—(z — p)2/(202)),

o = —0.007 andu = —0.089. Distributions of average shortest wherec = —0.007 andy = —0.086. Distributions of average

path length 5a) and average clustering coefficient 5b) for focal datashortest path length 6a), and average clustering coefficient 6b) for
non-focal data.

statistical approach must be made. For this end, each indtering coefficient distributions are not accounted for, with-
vidual set of parameters were assembled in distributions foput affecting the criteria for differentiation between focal and
said parameter and data set, as shown in Figs. 5a), 6a), 58dn-focal data. For the average shortest path length, the his-

and 6b). togram is curve fitted tod exp(—bz)(z — ¢), as shown in
Fig. 5a) and 6a).
4. Results and discussion In order to increase statistical accuracy and significance

20 subsets of 2000 signals were built from the original 7500

As every signal is processed, the parameters for the averaggnal data set, for both “N” and “F” signals. These sets
shortest path length, and average clustering coefficient, agere assembled by the same means of randomly selecting the
calculated and placed on their respective distribution. 2000 signals from the pool. For these new 20 sets of signals,

The distribution for the average clustering coefficient wasthe distributions of average clustering coefficient and average
assembled for each data set; hence, one distribution for th&hortest path length were assembled and fitted, as shown in
EEG signals in the focal set “F”, and one for the EEG signalFigs. 7a) and 7b).
in the non-focal set “N”. These distributions were curve fit-  From the curve fitting of each new data subset, the rele-
ted to identify the difference or lack of between data sets. Fovant fitting parameters are established. Plparameter from
the average clustering coefficient, the histogram is presentetie A exp(—bz)(x—c) fit for the average shortest path length,
in the log scale and fitted td exp(—(z — u)?/(202)), as is a way of characterizing both sets of data “N” and “F". A
shown in Figs. 5b) and 6b). The tails on the average clus- comparison for this parameter is shown in Fig. 9a). fhe
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FIGURE 7. a) Distributions of the shortest path length, curve fitteditexp(—bx)(z — ¢), b) Average clustering distributions, curve fitted
to Aexp(—(z — u)?/(20%)). Distributions of average shortest path length 7a), and average clustering coefficient 7b) for 3 subsets of 2000
samples of focal data.
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FIGURE 8. Fitting parameters for the average clustering coefficient and average shortest path length distributions.

parameter from thel exp(—(x — ©)?/(202)) fit for the av-

between both data sets “N” and “F” as shown in Fig. 9b).

Parameterg andy are chosen since they have the biggest
erage clustering coefficient is also a way of differentiatingweight in each curve fitting. As the data is assumed to have
different structures for the focal “F” and non-focal “N” data,
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lations of the average shortest path length and average clus-
TABLE I. Values ofb andy for focal and non-focal data. tering coefficient for these subsets were also assembled in
distributions and fitted. The comparison of relevant fitting

H b parameterd, for the average shortest path length in Fig. 10a)

Focaldata | o0+ 00004  0.3310 4 0.0163 andy for the clustering coefficient in Fig. 10b) are shown.
2000 samples In Table 1, the values to differentiate between focal and
Non-focal data non-focal data are presented. For the curve fitting of the av-

—0.0862+0.0005  0.4174 +0.0172 erage clustering coefficiemt exp(—bzx)(z — ¢) the param-

2000 samples i
Focal data eterb. And the parameter for the curve fitA exp(—(z —
—0.0890 £ 0.0005  0.3314 + 0.0338 ©)?/(202)) of the average shortest path length. The differ-
1000 samples ences shown in Table | are consistent when calculating for
Non-focaldata oot 00007 04214 4+ 0.0275 the entire data of 75000 samples, whire 0.419 for non-
1000 samples focal data and = 0.330 for focal data, angs = —0.089 for

focal data ang. = 0.086 for non-focal data.

these parameters are the most important. Furthermore, the As a way to measure the effectiveness of these results,

other parameters are non-significant to make any decisions gomplementary measurements were made. The Hurst expo-

the data comes from focal or non-focal EEG, as shown in th@ent, sample entropy approximate entropy and fractal dimen-

plots for thes, A, andc parameters in Fig. 8. sion of the EEG recordings were calculated. Distributions for
Following the same process, another 20 subsets of 1008ach of these measurements are shown in Fig. 11, for both fo-

signals were built, for both “N” and “F” signals. The calcu- cal and non-focal EEG data.
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FIGURE 11. Non-linear measurements for EEG recordings.

TABLE Il. KS-test results for different measurements

ks statistic P value
Fit parameter b for spl 1.0 0
Fit parametey for C 1.0 0
For 2000
sample data sets
Fit parameter b for spl 1.0 1.4508¢ !
Fit parametey: for C 1.0 1.4508¢ ™11
For 1000
sample data sets
Fit parameter b for spl 1.0 1.4508¢ 11
Fit parametey: for C 1.0 1.4508¢ !
Sample entropy 0.30597 1.26894¢ 33
Approximate entropy 0.28731 1.21786e%°
Hurst exponent 0.10199 4.62265¢~*
Fractal dimension 0.09577 1.24584e3

Focal data
80 s Non-focal data

Frequency

0.57 0.58 0.59
Fractaldimension

d) Fractal dimension

The usefulness of these measurements to differentiate
each individual set of EEG recordings is estimated by means
of the Kolmogorov-Smirnov (KS) statistic test. The results
for the KS tests are presented in Table Il, where one can see
the statistical significance of each property of the EEG.

5. Conclusion

In this work, a new method is proposed to identify epileptic
focal zones from the Andrzejast al. database [37]. It is
managed by assembling Feigenbaum graphs and calculating
distributions for the average shortest path length and average
clustering coefficient from every data set. Fitting the average
clustering coefficient tod exp(—(z — u)?/(202)) and ob-
serving theu parameter, ift = —0.089 4 0.0005 the data is
said to be focal, also jf = —0.0863+0.0007 the data is said
to be non-focal. This yields a differentiating factor between
both focal and non-focal signals.

For the average shortest path length, the distribution,
curve fitting to A exp(—bz)(x — ¢) and checking for thé
parameter. 1Hh = 0.4214 £+ 0.0275, the data are said to be
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non-focal, and ib = 0.3314 + 0.0338, the data are said to be set than the 1000 sample set, it suggests that 2000 samples

focal, giving another criterion to differentiate between focalshould be used for better results, although 1000 samples can

and non-focal signals. be used at a lesser computational cost, since the KS-test val-
As shown in Table I, this new approach yields better con-ues are the same for both sample siZ€s, — statistic = 1,

fidence to differentiate between focal and non-focal EEG. Foandp — value = 1.4508¢ . This could help the physician

the KS test, thé parameter and parameter can be used with assess a better diagnosis for the patient in the determination

a p-value of0 and KS- statistic value of, hence is a much of epilepsy focal sites.

better differentiating factor than either of the Approximate  Subject to considering other databases and other proba-

entropy, Sample entropy, Hurst exponent, or fractal dimenbly more complex cases, we see that, with this technique, it

sion factors. is possible to distinguish between the signal that comes from
Following the idea and how the data set are assembled@n epileptic focus and another that does not, which can be of

this measurement could be calculated for a single patient bgreat value both in diagnosis and in the practical determina-

assembling a data set created from segments -time window#on of focal sites for surgical intervention.

of EEG studies no matter the timeline, and analyzing each
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