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1. Introduction

It is now established that neutrinos oscillate in flavor and are
therefore massive [1–7], and one fundamental aspect still un-
resolved is the determination of their nature, whether they
are Dirac or Majorana particles [8–12]. Perturbative calcu-
lations do not help in this regard because of the vanishing
small ratiom/E that all differences between the two types
are proportional to [10, 13–15]. Experimentally, the obser-
vation of neutrinoless double beta decay processes would
confirm their Majorana nature, and there are already various
types of experiments, both planned and underway, set up with
that purpose [16–21]. However, the non-observation of such
processes do not necessarily imply that neutrinos are of the
Dirac type [22]. On the theoretical side, Majorana neutrinos
are preferred because they are central in the various types
of the see-saw mechanism [23–29], and also in leptogenesis
models [30–32].

Associated with the nature of neutrinos is the question
of lepton-number conservation. Let us consider mass eigen-
states for both neutrino types. These are one-particle states of
definite energy and momentum created off the vacuum by the
relevant field operator. In terms of creation operators,a† (p)
(b† (p)) for Dirac neutrinos (anti-neutrinos) and̂a† (p) for
Majorana neutrinos, the alternatives are, respectively,

a†− (p) 6= b†+ (p) , (1)

â†+ (p) 6= â†− (p) , (2)

where the subscripts± respectively denotes positive and neg-
ative helicity. Thus, if lepton number conservation holds, dif-
ferent helicity neutrinos and anti-neutrinos are different parti-
cles (Dirac case), and Eq. (1) is the right choice (there is also
a†− (p) 6= b†+ (p), but these modes have not been observed).

On the other hand, if lepton number is violated neutrinos and
anti-neutrinos are just two helicity states of the same parti-
cle (Majorana case), and Eq. (2) is the right one. Neutrinos
and anti-neutrinos are related by the anti-unitary and discrete
CPT transformation (charge conjugation, parity and time re-
versal) [11]. Ifν (p, h) represents a Dirac neutrino with mo-
mentump an helicityh then, setting the overall phase to one,
for simplicity, we have

ν (p, h) CPT−−−→ ν (p,−h) , (3)

whereν (p,−h) is the anti-neutrino with the same momen-
tum and opposite helicity. For the Majorana case theCPT
transformation just reverses the helicity

ν (p, h) CPT−−−→ ν (p,−h) . (4)

In this work we take Eq. (1) as the premise and con-
sider neutrino and anti-neutrino one-particles states, labeled
by their momentum and helicity. That is, we restrict the dis-
cussion to the Hilbert space of the free one-particle states
of a given momentum, created off the vacuum by the rele-
vant field operator, which in the case of Dirac neutrinos it is
four dimensional. Let us, for now, generically denote them
by |p, h〉 (they will be properly defined in the next section).
They are degenerate in the four-momentum eigenvalues and,
in particular, ifH is the Hamiltonian operator we have

H |p, h〉 = Ep |p, h〉 , (5)

with Ep =
√

p2 + m2. Now let us consider a unitary trans-
formationU such that

U |p, h〉 = α |p, h′〉 , (6)
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whereα is a phase,|α|2 = 1. That is,U transforms the one-
particle states among themselves. Then it is easy to see that
(HU − UH) |p, h〉 = 0. Thus,

[U,H] = 0, (7)

and we conclude by Eqs. (5) and (6) that U is a unitary
transformation leaving the four-momentum invariant, which
is precisely the definition of a little group transformation
[33–36]. Since there are four one-particle states, two he-
licity values for each of the neutrino and the anti-neutrino,
there are three different types of unitary transformations we
can consider, these are: a transformation that flips the helic-
ity without mixing particles and anti-particles, the standard
charge conjugation and a combination of these two. Also,
because the one-particle states are fermionic and massive, the
little group is SU(2), the rotation group forSL(2, C) in the
(1/2, 0)⊕ (0, 1/2) representation [34,36].

It is the purpose of this paper to define theU transforma-
tions, both in terms of the one-particle states themselves and
in terms of creation/annihilation operators, and exhibit their
properties, which are of physical interest. Among other prop-
erties, we show that the transformations are Hermitian be-
sides being unitary, and that they do indeed satisfy the SU(2)
Lie algebra. Physically, the three transformations correspond
to helicity flip, charge conjugation and a combination of the
two, up to phases. This last transformation will be also shown
to hold for chirally projected fields.

The organization is as follows: We first present the states,
operators, and spinors and establish the conventions in sec-
tion II, we then proceed to present and discuss the three
unitary transformations in Sec. 3, first in terms of the one-
particle states, assuming a finite volume quantization, and
then in terms of creation/annihilation operators, which is
more fundamental. In Sec. 4 we show that the Dirac field op-
erator, both for the unconstrained case and for the left-chiral
one, is consistently transformed under one of the little group
transformations. Finally, we further discuss the physical im-
plications of the results and provide concluding remarks.

2. Free field conventions

Let us assume that a free massive neutrino is of the Dirac
type, so that Eq. (1) holds. It is thus described by a massive
Dirac field operator, here given in the helicity basis [37]

Ψ(x) =
∫

d3p

(2π)3
1√
2E

∑

λ=±

(
uλ (p) aλ (p) e−ip.x

+ vλ (p) b†λ (p) eip.x

)
, (8)

where the operatorsa†± (p), b†± (p), respectively, create par-
ticles and anti-particles of the given helicity, labeled by the
subscript, off the vacuum. The equal-time anti-commutation

relations are the canonical ones [38]

{
Ψα (x) , Ψ†β (y)

}
= δ3 (x− y) δαβ ,

{Ψα (x) , Ψβ (y)} =
{

Ψ†α (x) , Ψ†β (y)
}

= 0,

{
aλ (p) , a†λ′ (q)

}
= (2π)3 δ3 (p− q) δλλ′ .

{
bλ (p) , b†λ′ (q)

}
= (2π)3 δ3 (p− q) δλλ′ . (9)

The one-particle sates

|p,−〉 = a†− (p) |0〉 ,
|p, +〉 = a†+ (p) |0〉 ,
|p,−〉 = b†− (p) |0〉 ,
|p, +〉 = b†+ (p) |0〉 ,

(10)

correspondingly represent left- and right-handedi neutrinos,
and left- and right-handed anti-neutrinos, with the anti-
particle states distinguished by an over bar, and|0〉 denoting
the free vacuum state.

The bispinors in the field expansion in Eq. (8) are ex-
pressed in terms of the two-component Weyl spinors

ξ+(p) =
(

e−i ϕ
2 cos

(
θ
2

)
ei ϕ

2 sin
(

θ
2

)
)

,

ξ−(p) =
(−e−i ϕ

2 sin
(

θ
2

)
ei ϕ

2 cos
(

θ
2

)
)

, (11)

which satisfyσ · p̂ ξλ(p) = λξλ(p), λ = ±, with three-
momentump̂ = p/ |p| = (sin θ cosϕ, sin θ sinϕ, cos θ).
Explicitly

uλ (p) =
(√

E − λ |p|ξλ (p)√
E + λ |p|ξλ (p)

)
,

vλ (p) =
(−λ

√
E + λ |p|ξ−λ (p)

λ
√

E − λ |p|ξ−λ (p)

)
,

(12)

and they are normalized according to the relations

uλ (p)uλ′ (p) =2mδλ,λ′

vλ (p) vλ′ (p) =− 2mδλ,λ′

uλ (p) vλ′ (p) =vλ (p)uλ′ (p) = 0.

(13)

Here, the over bar represents the Dirac adjointu ≡ u†γ0.
The bispinors satisfy the momentum-space Dirac equations(
/p−m

)
uλ (p) = 0 and

(
/p + m

)
vλ (p) = 0, with /p ≡

γµpµ. We use the Weyl representation of the gamma matri-
ces, as given in Ref. [38].

The Hamiltonian, momentum, and lepton-number opera-
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tors are respectively given by

H=
∫

d3p

(2π)3
∑

λ=±
Ep

(
a†λ (p) aλ (p)+b†λ (p) bλ (p)

)
, (14)

P=
∫

d3p

(2π)3
∑

λ=±
p

(
a†λ (p) aλ (p)+b†λ (p) bλ (p)

)
, (15)

L=
∫

d3p

(2π)3
∑

λ=±

(
a†λ (p) aλ (p)− b†λ (p) bλ (p)

)
. (16)

3. Little group transformations

3.1. One-particle states

To simplify calculations and obtain a rapid overview of the
transformations let us for now resort to a discrete volume
quantization [11], so that the one-particle states in Eq. (10)
can be taken orthonormal. It is then straightforward to con-
sider operators of the form

∑
αhh′ |p, h〉 〈p, h′|, with αhh′

adequately chosen phases so that the operators are unitary
and satisfy the SU(2) algebra. These constitute theU opera-
tors in Eqs. (5) and (6). Then we have

U1 = i |p,−〉 〈p, +| − i |p,+〉 〈p,−|
− i |p,−〉 〈p,+|+ i |p, +〉 〈p,−| , (17)

U2 = |p,−〉 〈p,−|+ |p,−〉 〈p,−|
+ |p, +〉 〈p, +|+ |p,+〉 〈p, +| , (18)

U3 = |p, +〉 〈p,−| − |p,+〉 〈p,−|
− |p,−〉 〈p,+|+ |p,−〉 〈p, +| , (19)

which respectively produce

U1 |p,−〉 = −i |p,+〉 ,
U1 |p, +〉 = i |p,−〉 ,
U1 |p,−〉 = i |p, +〉 ,
U1 |p, +〉 = −i |p,−〉 , (20)

U2 |p,−〉 = |p,−〉 ,
U2 |p, +〉 = |p,+〉 ,
U2 |p,−〉 = |p,−〉 ,
U2 |p, +〉 = |p,+〉 , (21)

U3 |p,−〉 = − |p, +〉 ,
U3 |p,+〉 = |p,−〉 ,
U3 |p,−〉 = |p, +〉 ,
U3 |p,+〉 = − |p,−〉 . (22)

To further establish their properties, it is easier to work
with a matrix representation, obtained from the matrix ele-
ments




〈−,p|Ui |p,−〉 〈+,p|Ui |p,−〉 〈−,p|Ui |p,−〉 〈+,p|Ui |p,−〉
〈−,p|Ui |p, +〉 〈+,p|Ui |p, +〉 〈−,p|Ui |p, +〉 〈+,p|Ui |p,+〉
〈−,p|Ui |p,−〉 〈+,p|Ui |p,−〉 〈−,p|Ui |p,−〉 〈+,p|Ui |p,−〉
〈−,p|Ui |p, +〉 〈+,p|Ui |p, +〉 〈−,p|Ui |p, +〉 〈+,p|Ui |p,+〉


 . (23)

Thus,

U1 =




0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0


 , (24)

U2 =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 , (25)

U3 =




0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0


 . (26)

Where, with a slight abuse of notation, we label the matrix
representation with the same symbol as the corresponding
operator. With these matrices, the following properties are
readily verified

U−1
i = U†

i ,

Ui = U†
i ,

detUi = 1,

tr Ui = 0,

[H, Uj ] = 0,

[Ui, Uj ] = 2iεijkUk.

i = 1, 2, 3 (27)

Being both unitary and Hermitian, the transformations
are also observables. The second last property follows from
comparing Eqs. (17) to (19) with Eq. (6) and using Eqs.
(5) and (7). This property verifies that the transformations
leave the four-momentum invariant and are conserved. The
last property establishes that the transformations fulfill the
SU(2) algebra, so they can be identified with the little group
generators. In this regard they are analogous to the Pauli ma-
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trices that play the dual role of being SU(2) generators and
2π rotation operators for spin1/2 particles.

The transformation’s physical content is read directly
from Eqs. (20) - (22): U1 flips the helicity without mixing
particles and anti-particles,U2 is charge conjugation with the
conventional phases [38], andU3 is a combination of the pre-
vious two, up to a phase. Thus,U3 relates particles and anti-
particles with opposite helicities and, in particular, connects
a LH neutrino one-particle state with a RH anti-neutrino one.

We also emphasize that, being a little group rotation, the
transformation does not flip the three-momentum, as it would
necessarily be the case for aCP (charge conjugation and par-
ity) transformation [11,40]. In fact, using the standard trans-
formation properties of the one-particle states underCPT ,
we see from Eq. (22) that, up to phases,U3 produces the
same outcome as aCPT transformation. This, of course,
does not mean that these two operators are equivalent, since
the later is a discrete and anti-unitary spacetime transforma-
tion, while the former is a rotation in spin-space.

We can readily verify the commutation properties be-
tween the little group rotations withCP andCPT . Setting
phase factors to one for simplicity,e.g.,CP |p,−〉 = |−p,+〉
andCPT |p,−〉 = |p, +〉, and remembering we are restrict-
ing the discussion to the Hilbert state of the free one-particle
states, we obtain using Eq. (22)

U3CP |p,−〉 =− |−p,−〉 ,
CPU3 |p,−〉 =− |−p,−〉 .

(28)

Analogously,

U3CPT |p,−〉 =− |p,−〉 ,
CPT U3 |p,−〉 =− |p,−〉 .

(29)

Hence,
[U3, CP] = [U3, CPT ] = 0. (30)

Similar results hold forU1 andU2, so we conclude

[Ui, CP ] = [Ui, CPT ] = 0, i = 1, 2, 3. (31)

3.2. Creation and annihilation operators

The little group rotations can also be given in terms of cre-
ation and annihilation operators. They are

U1 = exp
(
−i

π

2

)
exp

{
i
π

2

∫
d3p

(2π)3

(
a†+ (p) a− (p)

+ a†− (p) a+ (p) + b†+ (p) b− (p) + b†− (p) b+ (p)
)}

× exp
{

i
π

2

∫
d3p

(2π)3

(
a†− (p) a− (p)− a†+ (p) a+ (p)

+ b†+ (p) b+ (p)− b†− (p) b− (p)
)}

, (32)

U2 = exp
{

i
π

2

∫
d3p

(2π)3
∑

λ=±

[
b†λ (p)− a†λ (p)

]

× [aλ (p)− bλ (p)]
}

, (33)

U3 = exp
{

i
π

2

∫
d3p

(2π)3

( [
a†− (p) + b†+ (p)

]

× [a− (p) + b+ (p)] +
[
b†− (p)− a†+ (p)

]

× [a+ (p)− b− (p)]
)}

, (34)

where we have again slightly abused the notation and keep
the same labels for the transformations. Acting on the cre-
ation operators they give

U1a
†
− (p)U†

1 = −ia†+ (p) ,

U1a
†
+ (p)U†

1 = ia†− (p) ,

U1b
†
− (p)U†

1 = ib†+ (p) ,

U1b
†
+ (p)U†

1 = −ib†− (p) ,

(35)

U2a
†
− (p) U†

2 = b†− (p) ,

U2a
†
+ (p) U†

2 = b†+ (p) ,

U2b
†
− (p) U†

2 = a†− (p) ,

U2b
†
+ (p) U†

2 = a†+ (p) ,

(36)

U3a
†
− (p)U†

3 = −b†+ (p) ,

U3a
†
+ (p)U†

3 = b†− (p) ,

U3b
†
− (p)U†

3 = a†+ (p) ,

U3b
†
+ (p)U†

3 = −a†− (p) .

(37)

From Eqs. (32) - (34) it is clear thatUi |0〉 = |0〉, i = 1, 2, 3,
with |0〉 the vacuum state, then the one-particle state trans-
formations in Eqs. (20) - (22) follow from Eqs. (35) - (37).
Explicit construction ofU3 and its action is provided in the
appendix. It is also straightforward to verify that, as required,
the transformations commute with the Hamiltonian and the
momentum operators in Eqs. (14) and (15)

[H, Ui] = [P , Ui] = 0 i = 1, 2, 3. (38)

U2 andU3 anti-commute with the lepton-number operator in
Eq. (16)

{L,Ui} = 0 i = 2, 3, (39)

while U1 commutes with it. It can also be shown that the
anti-commutation relations remain invariant under the trans-
formations (the case forU3 is shown in the appendix).

Ui

{
Ψα (x) , Ψ†β (y)

}
U†

i = δ3 (x− y) δαβ ,

i = 1, 2, 3. (40)
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4. Field operator transformation

In this section we show that the Dirac field operator is consis-
tently transformed underU3, both for the unconstrained field
and the chirally projected one.

4.1. Unconstrained field

The Dirac field in Eq. (8) is consistently transformed under
U3 by appropriately transforming the bispinors. For that pur-
pose, let us consider the rotation matrix that implements a
counterclockwise rotation by an angle2ϕ around the positive
pz axis

R(p) =
(

RC 0
0 RC

)
= exp

{
−i 2ϕ

Σ3

2

}
, (41)

with Σ3 being the third component of

Σ =
(

σ 0
0 σ

)
,

andRC the SU(2) matrix

RC =
(

e−iϕ 0
0 eiϕ

)
= exp

{
−i 2ϕ

σ3

2

}
(42)

yielding
RCξ∗±(p) = ξ±(p) (43)

on the two-component spinors. Analogously, the matrix
R(p) in Eq. (41) produces, for the bispinors

R(p)u∗λ (p) = uλ (p) ,

R(p)v∗λ (p) = vλ (p) .
(44)

We also make use of the chiral matrix

γ5 = iγ0γ1γ2γ3 =
(−1 0

0 1

)
, (45)

and the relations

−γ5uλ (p) = λ v−λ (p) ,

−γ5vλ (p) = −λu−λ (p) .
(46)

Combining Eqs. (44) and (46) we get

−γ5R(p)u∗λ (p) = λ v−λ (p) ,

−γ5R(p)v∗λ (p) = −λu−λ (p) .
(47)

The field transformation is then obtained from Eqs. (8), (37)
and (47) as

U3Ψ(x)U†
3 = −γ5R(p)Ψ∗(x), (48)

and it constitutes a consistent transformation of the field op-
erator, since its right-hand side induces a transformation of
the Dirac equation in momentum-space: from

−γ5R(p)
(
/p
∗ −m

) (−γ5R(p)
)†

= − (
/p + m

)

and Eq. (47) we get

(
/p−m

)
uλ (p)=0

−γ5R(p)K−−−−−−−→ (
/p+m

)
v−λ (p)=0, (49)

whereK represents the operation of conjugating to the right.
We also have that a second application of theU3 transforma-
tion corresponds to no transformation at all, as can be seen
from Eq. (37) and the fact that

(−γ5R(p)
)K (−γ5R(p)

)K =
(−γ5R(p)

)

× (−γ5R(p)
)∗

= 1.

The case forU2, being the charge conjugation operator,
is textbook matter, and the case forU1 proceeds in a similar
fashion.

4.2. Chirally projected field

Let us apply the chiral projection operatorsL =
1/2

(
1− γ5

)
andR = 1/2

(
1 + γ5

)
to the field expansion

in Eq. (8), to obtain

ΨL(x) =
∫

d3p

(2π)3
1√
2E

{ (
a+ (p) e−ip.x + b†− (p) eip.x

)

× ξ+ (p)
√

E − |p|+
(
a− (p) e−ip.x − b†+ (p) eip.x

)

× ξ− (p)
√

E + |p|
}

, (50)

ΨR(x) =
∫

d3p

(2π)3
1√
2E

{ (
a+ (p) e−ip.x − b†− (p) eip.x

)

× ξ+ (p)
√

E + |p|+
(
a− (p) e−ip.x + b†+ (p) eip.x

)

× ξ− (p)
√

E − |p|
}

. (51)

We thus see that each chiral field and its Hermitian conjugate
produce both helicity states, and we can continue to use the
one-particle states in Eq. (10), with one set for each chirality.

In the high energy limit, withE À m, states with weight√
E − |p| ≈ m/

√
2E are suppressed, while the ones with√

E + |p| ≈ √
2E are favored, so in general, and if helicity

is not measured, a left-chiral neutrino of energyE produced
by the weak interaction will be in a superposition of both he-
licities. It can then be described by the density matrix [8]

ρν(E) =
(

E + |p|
2E

)
|p,−〉 〈p,−|

+
(

E − |p|
2E

)
|p,+〉 〈p, +| .

(52)
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The anti-neutrino density matrix is accordingly given by

ρν̄(E) =
(

E + |p|
2E

)
|p̄, +〉 〈p̄, +|

+
(

E − |p|
2E

)
|p̄,−〉 〈p̄,−| ,

(53)

and from Eq. (22) we have

U3ρν(E)U†
3 = ρν̄(E), (54)

and in particular we can again conclude that a LH neutrino
and a RH anti-neutrino, created by a left-chiral field, are con-
nected by theU3 transformation.

For the field operator in Eq. (50) we get, using Eqs. (37)
and (43)

U3ΨL(x)U†
3 = RCΨ∗L(x), (55)

so the left-chiral field transforms appropriately underU3. On
the other hand,U2 mixes the chiral fields, as it must for
charge conjugation

U2ΨL(x)U†
2 = −iσ2Ψ∗R(x). (56)

As for U1 it is not possible to obtain a consistent transfor-
mation of the fields and at the same time maintain the SU(2)
algebra, so this transformation is lost for chiral fields.

5. Concluding remarks

We have obtained the little group generators, which act
also as symmetry operators, for massive Dirac neutrino one-
particle states, provided their properties in detail and dis-
cuss their physical interpretations. The most interesting re-
sult comes fromU3 because it connects a LH neutrino state
with a RH anti-neutrino one, by a rotation in spin space that
violates lepton number conservation. The other two transfor-
mations involve states that have not been observed, namely a
RH-neutrino and a LH anti-neutrino, but which are in prin-
ciple not precluded by any fundamental consideration. Re-
gardingU2, which as stated is just the standard charge con-
jugation operator, what we have obtained is consistent with
the fact that this transformation is actually an internal trans-
formation [41], not related to spacetime at all.

Let us considerU2 andU3 for free charged fermions. In
this case charge conjugation is also a symmetry of the free
theory since it commutes with the Hamiltonian, but of course
this does not imply that a charged fermion can spontaneously
change to its anti-fermion, since such a process is precluded
by the charge conservation selection rule. The same ap-
plies for U3. No such selection rule exists for strictly neu-
tral fermions so, to the extent that the transformations here
presented are superseded by charge conservation, these ap-
ply only to strictly neutral, elementary fermions, of which
the neutrino is the only particle known to exist so far, in the
free theory. The elementary part is guaranteed by the funda-
mental aspect of the field and the use of one-particle states
created off the vacuum by the field operator.

As for lepton number, even though total lepton number
has never been observed to be violated, it is a classical global
symmetry, and there is a priori no reason, either from unitar-
ity, renormalizability, or otherwise, that prevents it to be bro-
ken by quantum effects. Flavor lepton number, on the other
hand, is already known to be violated by the flavor basis in
neutrino oscillations.

Appendix

A. Realization of theU3 transformation

In this appendix we explicitly derive Eq. (37). Let us con-
sider the unitary transformations

ω̂1 = exp (iαA)

ω̂2 = exp (iβB)
(A.1)

with α andβ real numbers, andA andB the Hermitian oper-
ators

A =
∫

d3p

(2π)3
{

a†− (p) a− (p)− a†+ (p) a+ (p)

+b†+ (p) b+ (p)− b†− (p) b− (p)
}

,

(A.2)

B =
∫

d3p

(2π)3
{

a†− (p) b+ (p) + b†+ (p) a− (p)

+b†− (p) a+ (p) + a†+ (p) b− (p)
}

.

(A.3)

Then, using the operator identity
[
ÂB̂, Ĉ

]
= Â

{
B̂, Ĉ

}
−

{
Â, Ĉ

}
B̂,

we have
[A, a− (p)] = −a− (p) ,

[A, [A, a− (p)]] = a− (p) ,

and so on recursively. Thus, by the Baker–Campbell–Hausdorff
relation we getω̂1a− (p) ω̂†1 = a− (p) e−iα. Performing
analogous calculations for the rest of the operators, and
choosingα = π/2, yields

ω̂1a− (p) ω̂†1 =− ia− (p) ,

ω̂1a+ (p) ω̂†1 =ia+ (p) ,

ω̂1b− (p) ω̂†1 =ib− (p) ,

ω̂1b+ (p) ω̂†1 =− ib+ (p) .

(A.4)

As for theB operator we get

[B, a− (p)] = −b+ (p) ,

[B, [B, a− (p)]] = a− (p) ,
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and so on recursively, yielding

ω̂2a− (p) ω̂†2 = a− (p) cos β − ib+ (p) sin β.

Performing analogous calculations for the rest of the opera-
tors, and choosingβ = π/2, result in

ω̂2a− (p) ω̂†2 =− ib+ (p) ,

ω̂2a+ (p) ω̂†2 =− ib− (p) ,

ω̂2b− (p) ω̂†2 =− ia+ (p) ,

ω̂2b+ (p) ω̂†2 =− ia− (p) .

(A.5)

Now, with the help of the identity
[
ÂB̂, ĈD̂

]
= Â

{
B̂, Ĉ

}
D̂ −

{
Â, Ĉ

}
B̂D̂

+ ĈÂ
{

B̂, D̂
}
− Ĉ

{
Â, D̂

}
B̂,

it is straightforward to check that the operatorsA and B
commute and so, withα = β = π/2, we haveω̂1ω̂2 =
exp {i(π/2) (A + B)} = U3, with U3 given in Eq. (34), and

where the last equality is directly verified after factorizing.
Thus, combining Eqs. (A.4) and (A.5) and taking the Hermi-
tian conjugate, Eq. (37) follows directly.

To check the invariance of the equal-time anti-
commutation relations let us define the unitary matrix

Γ = iγ2 exp
{

i
π

2
[n̂ ·Σ∗]

}
, (A.6)

with n̂ = (− sin ϕ, cosϕ, 0). Using Eqs. (41) and (42) it is
straightforward to check thatΓγ0 = −γ5R(p). Then the rhs
of Eq. (48) is rewritten as

U3Ψ(x)U†
3 = ΓΨ̄T (x). (A.7)

Thus,

U3

{
Ψα (x) , Ψ†β (y)

}
U†

3=
{(

ΓΨ̄T (x)
)
α

,
(
ΨT (x)γ0Γ†

)
β

}

= Γαµγ0
νµ

{
Ψν (x) ,Ψ†σ (y)

}
γ0

στΓ†τβ

= δ3 (x− y)
(
Γγ0γ0Γ†

)
αβ

= δ3 (x− y) δαβ . (A.8)

i. In this work, the terms left-handed (LH) and right-handed (RH)
always refer to helicity∓, respectively.
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(Springer, Boston, 1980)https://doi.org/10.1007/
978-1-4684-7197-7 15 .

26. R. N. Mohapatra and G. Senjanovic, Neutrino mass and
spontaneous parity nonconservation,Phys. Rev. Lett.44 (1980)
912, https://doi.org/10.1103/PhysRevLett.
44.912 .

27. J. Schechter, J. W. F. Valle, Neutrinoless double-β decay in
SU(2)×U(1) theories,Phys. Rev. D25 (1982) 2951,https:
//doi.org/10.1103/PhysRevD.25.2951 .

28. R. N. Mohapatra, A. Y. Smirnov, Neutrino Mass and
New Physics, Ann. Rev. Nucl. Part. Sci.56 (2006) 569,
https://doi.org/10.1146/annurev.nucl.56.
080805.140534

29. A. de Gouv̂ea, Neutrino mass models,Ann. Rev. Nucl.
Part. Sci.66 (2016) 197,https://doi.org/10.1146/
annurev-nucl-102115-044600 .

30. W. Buchmuller, R. D. Peccei and T. Yanagida, Leptogen-
esis as the origin of matter,Ann. Rev. Nucl. Part. Sci.55
(2005) 311, https://doi.org/10.1146/annurev.
nucl.55.090704.151558 .

31. P. D. Bari, An introduction to leptogenesis and neutrino prop-
erties,Contemp. Phys.53 (2012) 315,https://doi.org/
10.1080/00107514.2012.701096

32. C. S. Fong, E. Nardi and A. Riotto,Adv. High Energy Phys.
2012(2012) 15830https://doi.org/10.1155/2012/
158303

33. E. Wigner, On unitary representations of the inhomogeneous
lorentz group,Ann. Math.40 (1939) 149.https://doi.
org/10.2307/1968551 .

34. W.-K. Tung, Group Theory in Physics, (World Scientific, Sin-
gapore, 1985).https://doi.org/10.1142/0097 .

35. J. F. Cornwel, Group Theory in Physics (Academic
Press, Cambridge, 1997),https://doi.org/10.1016/
B978-0-12-189800-7.X5000-6 .

36. G. Costa, G. Fogli, Symmetries and group theory in particle
physics. (Springer, Berlin, 2012),https://doi.org/10.
1007/978-3-642-15482-9 .

37. A. Duncan, The Conceptual Framework of Quantum Field The-
ory, (Oxford University Press, Oxford, 2012).

38. M. Peskin, D. V. Schroeder, An introduction to quantum field
theory, (CRC Press, Boca Raton, 1995),https://doi.
org/10.1201/9780429503559 .

39. In this work, the terms left-handed (LH) and right-handed (RH)
always refer to helicity∓, respectively.

40. S. Pokorski, Gauge Field Theories, (Cambridge University
Press, Cambridge, 2000),https://doi.org/10.1017/
CBO9780511612343 .

41. S. Weinberg, The Quantum Theory of Fields, Vol. 1 (Cam-
bridge University Press, Cambridge, 1995),https://doi.
org/10.1017/CBO9781139644167 .

Rev. Mex. F́ıs. 67 (1) 25–32

https://doi.org/10.1142/S0217732316300172�
https://doi.org/10.1142/S0217732316300172�
https://doi.org/10.1155/2016/2162659�
https://doi.org/10.1155/2016/2162659�
https://doi.org/10.1142/S0218301316300071�
https://doi.org/10.1142/S0218301316300071�
https://arxiv.org/abs/1704.08537�
https://arxiv.org/abs/1705.03935�
https://doi.org/10.1016/j.physletb.2018.03.073�
https://doi.org/10.1016/j.physletb.2018.03.073�
https://arxiv.org/abs/1306.4669�
https://arxiv.org/abs/1306.4669�
https://doi.org/10.1143/PTP.64.1103�
https://doi.org/10.1143/PTP.64.1103�
https://doi.org/10.1007/978-1-4684-7197-7_15�
https://doi.org/10.1007/978-1-4684-7197-7_15�
https://doi.org/10.1103/PhysRevLett.44.912�
https://doi.org/10.1103/PhysRevLett.44.912�
https://doi.org/10.1103/PhysRevD.25.2951�
https://doi.org/10.1103/PhysRevD.25.2951�
https://doi.org/10.1146/annurev.nucl.56.080805.140534�
https://doi.org/10.1146/annurev.nucl.56.080805.140534�
https://doi.org/10.1146/annurev-nucl-102115-044600�
https://doi.org/10.1146/annurev-nucl-102115-044600�
https://doi.org/10.1146/annurev.nucl.55.090704.151558�
https://doi.org/10.1146/annurev.nucl.55.090704.151558�
https://doi.org/10.1080/00107514.2012.701096�
https://doi.org/10.1080/00107514.2012.701096�
https://doi.org/10.1155/2012/158303�
https://doi.org/10.1155/2012/158303�
https://doi.org/10.2307/1968551�
https://doi.org/10.2307/1968551�
https://doi.org/10.1142/0097�
https://doi.org/10.1016/B978-0-12-189800-7.X5000-6�
https://doi.org/10.1016/B978-0-12-189800-7.X5000-6�
https://doi.org/10.1007/978-3-642-15482-9�
https://doi.org/10.1007/978-3-642-15482-9�
https://doi.org/10.1201/9780429503559�
https://doi.org/10.1201/9780429503559�
https://doi.org/10.1017/CBO9780511612343�
https://doi.org/10.1017/CBO9780511612343�
https://doi.org/10.1017/CBO9781139644167�
https://doi.org/10.1017/CBO9781139644167�

