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Little group generators for Dirac neutrino one-particle states
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Assuming neutrinos to be of the Dirac type, the little group generators for the one-particle states, created off the vacuum by the field
operator, are obtained, both in terms of the one-particle states themselves and in terms of creation/annihilation operators. It is shown tha
these generators act also as rotation operators in the Hilbert space of the states, providing three types of transformations: a helicity flip, the
standard charge conjugation, and a combination of the two, up to phases. The transformations’ properties are provided in detail and theit
physical implications discussed. It is also shown that one of the transformations continues to hold for chiral fields without mixing them. It is
argued that these results provide support for the Majorana nature of massive neutrinos.
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1. Introduction On the other hand, if lepton number is violated neutrinos and
anti-neutrinos are just two helicity states of the same parti-
Itis now established that neutrinos oscillate in flavor and argje (Majorana case), and E)(is the right one. Neutrinos
therefore massive [1-7], and one fundamental aspect still unyng anti-neutrinos are related by the anti-unitary and discrete
resolved is the determination of their nature, whether they>p7 transformation (charge conjugation, parity and time re-
are Dirac or Majorana particles [8-12]. Perturbative calcuversal) [11]. Ifv (p, h) represents a Dirac neutrino with mo-

lations do not help in this regard because of the vanishingnentump an helicityh then, setting the overall phase to one,
small ratiorn/E that all differences between the two types for simplicity, we have

are proportional to [10, 13—15]. Experimentally, the obser-

. . CPT _
vatlo_n of ngutnryoless double beta decay processes Wpuld v (p,h) 7 (p,—h), 3)
confirm their Majorana nature, and there are already various

types of experiments, both planned and underway,_ setup Withherew (p, —h) is the anti-neutrino with the same momen-
that purpose [16-21]. However, the non-observation of sucly, 1, ang opposite helicity. For the Majorana casedRT

processes do not necessarily imply that neutrinos are of thg,\sformation just reverses the helicity
Dirac type [22]. On the theoretical side, Majorana neutrinos

are preferred because they are central in the various types v (p,h) CPT, (p,—h) @)

of the see-saw mechanism [23-29], and also in leptogenesis ’ ’ '

models [3.0_32]' . . . _ In this work we take Eq. 1) as the premise and con-
Associated with the ”"’“F”e of neutrlnos_|s the quesft'onsider neutrino and anti-neutrino one-particles states, labeled

of lepton-number conservation. Let us consider mass eigers, their momentum and helicity. That is, we restrict the dis-

states for both neutrino types. These are one-patrticle states ¥ ‘ '

definit d A ted off th b th(?ussion to the Hilbert space of the free one-particle states
elinite energy and momentum created oft the vacuumm by tfg 5 given momentum, created off the vacuum by the rele-
relevant field operator. In terms of creation operatotgp)

(b (p)) for Dirac neutrinos (anti-neutrinos) arid (p) for vant field operator, which in the case of Dirac neutrinos it is
b - p

Mai i the alt i tvel four dimensional. Let us, for now, generically denote them
ajorana neutrinos, the alternatives are, respectively, by |p, h) (they will be properly defined in the next section).

of (p) # bt (p) ) They are degenerate in the four-momentum eigenvalues and,
B + ’ in particular, ifH is the Hamiltonian operator we have

al (p) #a' (p), 2

where the subscripts respectively denotes positive and neg-

ative helicity. Thus, if lepton number conservation holds, dif-with £, = /p? + m?2. Now let us consider a unitary trans-
ferent helicity neutrinos and anti-neutrinos are different partiformationU such that

cles (Dirac case), and EdL)(is the right choice (there is also

al (p) # bi (p), but these modes have not been observed). Ulp,h) = «alp,h’), (6)

H‘pvh> :Ep|p7h>a (5)



26 R. ROMERO

wherea is a phase,a|2 = 1. That is,U transforms the one- relations are the canonical ones [38]
particle states among themselves. Then it is easy to see that

(HU =~ UH)[p, h) = 0. Thus, {¥a 0. 09} = 8 (x =) bap,

U H] =0, ) (Vo (%), 05 (1)} = {0} (x), ¥ ()} =0,
and we conclude by Egs.5)X and 6) that U is a unitary T — (970353 (1 — ) Srnr.
transformation leaving the four-momentum invariant, which {ak (p).ax (q)} (2m) (P = a)on
is precisely the definition of a little group transformation b bt — (21363 (1 — Q) Sx v 9
[833—36]. Since there are four one-particle states, two he- { A (p),by (q)} (2m)70% (p — ) Orv- ©)

licity values for each of the neutrino and the anti-neutrino, h icl
there are three different types of unitary transformations wd Ne one-particle sates
can consider, these are: a transformation that flips the helic-

ity without mixing particles and anti-particles, the standard Ip.—) =al (p)]0),
charge conjugation and a combination of these two. Also, Ip,+) = of (p) [0)
because the one-particle states are fermionic and massive, the ' + ’ (10)
little group is SU(2), the rotation group f&tL(2, C) in the Ip,—) = ph (p) |0),
(1/2,0) @ (0,1/2) representation [34, 36]. B ;
It is the purpose of this paper to define tfidransforma- P, +) =bL (p)[0),

tions, both in terms of the one-particle states themselves and _

in terms of creation/annihilation operators, and exhibit theircorrespondingly represent left- and right-hartdeelutrinos,

properties, which are of physical interest. Among other propand left- and right-handed anti-neutrinos, with the anti-

erties, we show that the transformations are Hermitian beParticle states distinguished by an over bar, gndienoting

sides being unitary, and that they do indeed satisfy the SU(Ze free vacuum state.

Lie algebra. Physically, the three transformations correspond The bispinors in the field expansion in Ed8) @re ex-

to helicity flip, charge conjugation and a combination of thepressed in terms of the two-component Weyl spinors

two, up to phases. This last transformation will be also shown .

to hold for ch|rally. pr(_)Jected fields. | £, (p) = <e_lz cos (g)) 7
The organization is as follows: We first present the states,

operators, and spinors and establish the conventions in sec- _ie . 0

tion Il, we then proceed to present and discuss the three ¢ (p) = <_6_¢ ’ Smg(z)) , (11)

unitary transformations in Sec. 3, first in terms of the one- (5)

particle states, assuming a finite volume quantization, and . R .

then in terms of creation/annihilation operators, which isWhich satisfyo - p&x(p) = A&i(p), A = =, with three-

more fundamental. In Sec. 4 we show that the Dirac field opMomentump = p/|p| = (sinfcosp,sinfsinp,cosl).

erator, both for the unconstrained case and for the left-chirdPXPliCitly

one, is consistently transformed under one of the little group

transformations. Finally, we further discuss the physical im- uy (p) = (\/ E — X|pléx (P)) ’

plications of the results and provide concluding remarks. VE+Xpléx (p)

(12)
vy (p) = (—)\v E+ A|plé-a (P))
2. Free field conventions AE = Aplé-x (P)
Let us assume that a free massive neutrino is of the Dira@nd they are normalized according to the relations
type, so that Eqg.1f) holds. It is thus described by a massive _ —oms
Dirac field operator, here given in the helicity basis [37] ux (P) ux () =2mdxx
Bp 1 Tx (P) va (P) = — 2mdx x (13)
U (x) :/737 > (u/\ (p)ax (p)e ™" x (p) v (p) =0 (p) uy (p) = 0.
(2m) V2E fyt A A A A
t ip.x Here, the over bar represents the Dirac adjaint u+°.
Foa(p)hi(p)e )’ ®) The bispinors satisfy the momentum-space Dirac equations

(p—m)ux(p) = 0and (p+m)uvx(p) = 0, with p =
where the operators, (p), bl, (p), respectively, create par- 7"p,. \We use the Weyl representation of the gamma matri-
ticles and anti-particles of the given helicity, labeled by theces, as given in Ref. [38].
subscript, off the vacuum. The equal-time anti-commutation  The Hamiltonian, momentum, and lepton-number opera-
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LITTLE GROUP GENERATORS FOR DIRAC NEUTRINO ONE-PARTICLE STATES 27

tors are respectively given by Us =|p,+) (P, —| — P, +) (P, —|
3 — —
) 2
. A= which respectively produce
d’p f i
= a a +b b , (15 .
[ r(deraw e e). a9 Uil — —ilp s
d3p Ul |p7 > =1 ‘pa > )
-/ ol (p)ax () — B () b2 (p)) - (16)
(2@32( ’ g ) Ui[p,—) =[P, +).
. . Ul |p7 > —i |§a _> ) (20)
3. Little group transformations
3.1. One-particle states Uz |p,—) = [p,—),
To simplify calculations and obtain a rapid overview of the Uslp,+) =P, +),
transformations let us for now resort to a discrete volume .
guantization [11], so that the one-patrticle states in Hd) ( U21p, =) = Ip, —)
can be taken orthonormal. It is then straightforv_vard to con- U P, +) = |p,+) (21)
sider operators of the fory_ ann |p, h) (p, 1|, with app
adequately chosen phases so that the operators are unitary
and satisfy the SU(2) algebra. These constitute trapera- Uslp,—) =—1Ip, 1),
tors in Egs.6) and 6). Then we have
1=1|p,— p7+71p7+ p,—
B) B+ B B @) e e
—t|p, - p7+ +Zp7+ P,
U2 = |p7 _> <pv _| + ‘pa _> <pv _|
_ _ 18 To further establish their properties, it is easier to work
+p, ) (P + [P +) (P, +, (18) with a matrix representation, obtained from the matrix ele-
| ments
<_ap‘Ui |p7 _> <+»p|U1 ‘p7_> <_7§| UZ |p7_> <+a§| Ul |p7 _>
<_7p‘Ui |p7+> <+7p|Ui ‘pv +> <_7§| Uz |p7+> <+a§| Uz |p7+> (23)
Thus, I
P00 o ot =},
U, = 0o o0 o il (24) v, = Ut
0 0 —i 0 ’
det UL‘ = 1, . 1.2.3 (27)
1 =1,z
8 8 0 ' =0,
U2 == ) (25)
1000 [H,U;] =0
01 00
[Uh UJ} = 2i5iijk~
0 0 0 -1 . . - .
Being both unitary and Hermitian, the transformations
0 01 0
Us = 0 1.0 0 (26)  are also observables. The second last property follows from
100 0 comparing Egs. [17) to (19) with Eq. () and using Egs.

(5) and [7). This property verifies that the transformations
Where, with a slight abuse of notation, we label the matrixleave the four-momentum invariant and are conserved. The
representation with the same symbol as the correspondingst property establishes that the transformations fulfill the
operator. With these matrices, the following properties aresU(2) algebra, so they can be identified with the little group
readily verified generators. In this regard they are analogous to the Pauli ma-
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trices that play the dual role of being SU(2) generators and
27 rotation operators for spih/2 particles.

The transformation’s physical content is read directly
from Egs. R0) - (22): U; flips the helicity without mixing
particles and anti-particle®, is charge conjugation with the
conventional phases [38], abd is a combination of the pre-
vious two, up to a phase. Thudg; relates particles and anti-
particles with opposite helicities and, in particular, connects
a LH neutrino one-particle state with a RH anti-neutrino one.

We also emphasize that, being a little group rotation, the
transformation does not flip the three-momentum, as it would
necessarily be the case fo€® (charge conjugation and par-
ity) transformation [11, 40]. In fact, using the standard trans-
formation properties of the one-particle states urdpf’,
we see from Eq. 22) that, up to phased/; produces the

<ar ()~ 02 )] |, (39
vy =exp {15 [ S5 (ol o)+ 1L 0

% [a— (p) + by (P)] + 5L (p) — al. (P)]

< ) - )] )} (34

where we have again slightly abused the notation and keep
the same labels for the transformations. Acting on the cre-

same outcome as @P7 transformation. This, of course, ation operators they give

does not mean that these two operators are equivalent, since
the later is a discrete and anti-unitary spacetime transforma-
tion, while the former is a rotation in spin-space.

We can readily verify the commutation properties be-
tween the little group rotations with? andCP7. Setting
phase factors to one for simplicig,g,CP |p, —) = |-P, +)
andCPT |p,—) = |p, +), and remembering we are restrict-
ing the discussion to the Hilbert state of the free one-particle
states, we obtain using E®3)

Uia! (p)Uf = —ial (p),
Uial (U] = ia" (p), o5
Uit (p) U = bl (p),
Uyl (p) U = —ib! (p),
Usal (p)US =b" (p),
Usal, (p)US = b, (p), )
Usb! (p)US =al (p),
Usbl (p)US = dl. (p),
Usal (p)U = —bi (p),
Uga; (p), 37)

USCP |p7 _> = - |_pa _> )
(28)
CPU& |pa _> = |_p7 _> .
Analogously,
U3C7)T ‘pa _> = - |p7 _> )
(29)
Hence,
[Us,CP] = [Us,CPT] = 0. (30)
Similar results hold fof/; andUs,, so we conclude
[U;,CP]=[U;,CPT] =0, i=1,2,3. (31)

3.2. Creation and annihilation operators

From Eqgs.82) - (34) itis clear thatU; |0) = |0),i = 1,2, 3,

with |0) the vacuum state, then the one-particle state trans-
formations in Egs.20) - (22) follow from Egs. B5) - (37).
Explicit construction ofU; and its action is provided in the
appendix. Itis also straightforward to verify that, as required,
the transformations commute with the Hamiltonian and the
momentum operators in Eq&l4) and (L5)

The little group rotations can also be given in terms of cre-

ation and annihilation operators. They are

ti=ew (~if) e {if [ 42 (ol )o@

ot (p)as (p) +5] ()b (p) + b1 (9) by (P) ) }

T 3
X exp {12/ (;l;))g <aT_ (p)a- (p) —al, (p)ay (p)

bl (p) by (p) — b (p)b_ (p) ) } (32)

[(H,Ui| = [P,Ui] =0 i =1,2,3. (38)

U, andUj; anti-commute with the lepton-number operator in
Eq. (16)

{L,U;} =0 1i=2,3, (39)
while U; commutes with it. It can also be shown that the

anti-commutation relations remain invariant under the trans-
formations (the case fdrs is shown in the appendix).

Ui {Wa (), W5 (1)} U] = 6% (x — ¥) b

i=1,2,3. (40)
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LITTLE GROUP GENERATORS FOR DIRAC NEUTRINO ONE-PARTICLE STATES 29

4. Field operator transformation

In this section we show that the Dirac field operator is consis-
tently transformed undé¥s;, both for the unconstrained field

and the chirally projected one.

4.1. Unconstrained field

and Eq. 47) we get

—*R(p)K
(p—m)ux (p) =0 SN (p+m) v_x (p) =0, (49)
whereK represents the operation of conjugating to the right.
We also have that a second application oftheransforma-
tion corresponds to no transformation at all, as can be seen

The Dirac field in Eq. 8) is consistently transformed under from Eq. 37) and the fact that
Us by appropriately transforming the bispinors. For that pur-

pose, let us consider the rotation matrix that implements a
counterclockwise rotation by an andle around the positive

p, axis

3
R(p) = <I%C ROC) = exp {—z’ 2(,02;} , (41)

with 2 being the third component of

o 0
== (5 )

andR¢ the SU(2) matrix
e”® 0 ol
Rc = ( 0 ew> = exp {—z 2@2} (42)

yielding
Ro&li(p) = ¢+(p) (43)

on the two-component spinors.
R(p) in Eq. 41) produces, for the bispinors

R(p)u} (p) = ux (P),

(44)
R(p)vi (P) = va (P) -
We also make use of the chiral matrix
5 -1 0
7 =iyl = < 0 1) : (45)
and the relations
—7%uy (p) = Av_x (p),
. (46)
—7°vA (P) = —Au_x (P).
Combining Egs.'44) and @46) we get
—"R(p)uj (p) = Av_»x (p),
(47)

—7"R(p)v} (p) = —Au_x (p).

The field transformation is then obtained from E@), (37)
and @47) as

UsU(z)UJ = —"R(p)¥* (), (48)

and it constitutes a consistent transformation of the field op-
erator, since its right-hand side induces a transformation of

the Dirac equation in momentum-space: from

n

—°R(p) (p* —m) (—"R(p))' = — (p +m)

Analogously, the matrix

=

(=7°R(p)) K (—"R(p)) K = (—"R(p))
x (—°R(p))" = 1.

The case fol/z, being the charge conjugation operator,
is textbook matter, and the case 16y proceeds in a similar
fashion.

4.2. Chirally projected field

Let us apply the chiral projection operatorE =
1/2(1—+°) andR = 1/2 (1 4+ ~") to the field expansion
in Eq. (8), to obtain

dBp 1

r) = / W@{ (a+ (p) e + bl (p) eip"”>

S OIVETR (o e L)

<& (p)VET |p|}, (50)

Vp(z) = /(;ljrl;g\/%{ (a+ (p)e ™ — bt (p) 6ip.a:)

X £+ (p) E+ |p| + (a_ (p) e—i;D.r + bTJr (p) eip.z)
<€ () VE~ ol -

We thus see that each chiral field and its Hermitian conjugate
produce both helicity states, and we can continue to use the
one-particle states in Ec1@), with one set for each chirality.

In the high energy limit, withE >> m, states with weight
VE — |p| = m/v2FE are suppressed, while the ones with
VE+ |p| = V2E are favored, so in general, and if helicity
is not measured, a left-chiral neutrino of enefgyroduced
by the weak interaction will be in a superposition of both he-
licities. It can then be described by the density matrix [8]

) = (E 32 ) ) o

(550 o) (oo

(52)
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The anti-neutrino density matrix is accordingly given by As for lepton number, even though total lepton number
B+ |p| has never been observed to be violated, it is a classical global

po(E) = ( 2Ep ) I, +) (P, +| §ymmetry, and thgre isa priori.no reason, either.from unitar-

(53) ity, renormalizability, or otherwise, that prevents it to be bro-

E—1p|\ B ken by quantum effects. Flavor lepton number, on the other

+ °F B, =) (B~ hand, is already known to be violated by the flavor basis in

neutrino oscillations.
and from Eq./22) we have

Uspy (E)US = py(E), (54)  Appendix

and in particular we can again conclude that a LH neutrinop  Reglization of the U, transformation
and a RH anti-neutrino, created by a left-chiral field, are con-

nected by thé/; transformation. In this appendix we explicitly derive Eql37). Let us con-
For the field operator in Eq50) we get, using Eqs(3(7) sider the unitary transformations
and @43) ) _

Vs, (@)U} = RoWi (o), (55) @1 =exp (iad) A1)
so the left-chiral field transforms appropriately un@igr On we =exp (i3B) '
the other hand[J; mixes the chiral fields, as it must for .
charge conjugation V\{[Ith « andg real numbers, and and B the Hermitian oper-

ators
Ua U (2)US = —ioy U (a). (56)

3
A:/ d’p {af_ (p)a_ (p) — al (p) as (p)

As for U; it is not possible to obtain a consistent transfor- (271—)3 (A.2)

mation of the fields and at the same time maintain the SU(2)

algebra, so this transformation is lost for chiral fields. +b! (p) by (p) — b () b_ (P)} :
5. Concluding remarks ap
, _ _ =/ 3 {ai (p) b+ (p) +b'. (p)a_ (p)
We have obtained the little group generators, which act (2m) (A.3)

also as symmetry operators, for massive Dirac neutrino one- i +
particle states, provided their properties in detail and dis- +b= (p)ay (p) +al (p) b- (p)}'
cuss their physical interpretations. The most interesting re- . . .
sult comes fronUJ3 because it connects a LH neutrino stateThen’ using the operator identity
with a RH anti-neutrino one, by a rotation in spin space that
violates lepton number conservation. The other two transfor-
mations involve states that have not been observed, namely a
. . . . : . ’we have
RH-neutrino and a LH anti-neutrino, but which are in prin- A _
ciple not precluded by any fundamental consideration. Re- [4,a— (p)] = —a—(p),
gardingUs,, which as stated is just the standard charge con- [A,[A,a_ (p)]] =a_ (P),
jugation operator, what we have obtained is consistent with

the fact that this transformation is actually an internal trans-and soonrecursively. Thus, by the Baker—Campbell-Hausdorff

. N ~t o .
formation [41], not related to spacetime at alll. relation we getoa— (p)wy = a- (p)e . Performing
Let us considet/, andUs for free charged fermions. In analogous calculations for the rest of the operators, and

this case charge conjugation is also a symmetry of the freghoosinga = /2, yields

[AB,O] =A {B, é} —~ {AC’} B,

theory since it commutes with the Hamiltonian, but of course it
this does not imply that a charged fermion can spontaneously “a—(p)ey = —ia—(p),
change to its anti-fermion, since such a process is precluded Orag (p) w} =iay (p),
by the charge conservation selection rule. The same ap- (A.4)
plies for Us. No such selection rule exists for strictly neu- &b (p) & =ib_ (p),
tral fermions so, to the extent that the transformations here . “t
@1by (p) &y = —iby (p)

presented are superseded by charge conservation, these ap-
ply only to strictly neutral, elementary fermions, of which As for the B operator we get
the neutrino is the only particle known to exist so far, in the

free theory. The elementary part is guaranteed by the funda- [B,a_ (p)] = —by (p),
mental aspect of the field and the use of one-particle states
created off the vacuum by the field operator. [B,[B,a- (p)]] = a- (p),

Rev. Mex. k5. 67 (1) 25-32
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and so on recursively, yielding
ra_ (p) @b = a_ (p) cos § — iby. (p) sin 3.

Performing analogous calculations for the rest of the opera-
tors, and choosing = /2, result in

(A.5)

Now, with the help of the identity
{AB, CD} = A {B, é} D— {A, é} BD
+CA {B,[)} -C {A,[)} B,
it is straightforward to check that the operatotsand B

commute and so, with = § = 7/2, we havew;0, =
exp {i(m/2) (A + B)} = Us, with Us given in Eq. 84), and

31

where the last equality is directly verified after factorizing.
Thus, combining Eqs/A.4) and (A.5) and taking the Hermi-
tian conjugate, Eql37) follows directly.

To check the invariance of the equal-time anti-

commutation relations let us define the unitary matrix

i -2},

I' =iv?exp { (A.6)

with i = (—sin g, cos p,0). Using Egs. (41) and (42) it is
straightforward to check thaty® = —~v°R(p). Then the rhs
of Eq. [48) is rewritten as

UsW(z)Ud =TT (2). (A7)

Thus,

sl (), 7} ()} ={ (T 0), . (7 (27 }

= Faltr)/l(/)u {\I’V (X) ) \I/J; (y)} ’)/(())_Tri_ﬁ
=0° (x—y) (Ty"°T7) ;= 0% (x = ¥) dap. (AB)

1. In this work, the terms left-handed (LH) and right-handed (RH)
always refer to helicityr, respectively.
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