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A new fractional mechanics based on fractional addition
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In this paper, we introduce a new fractional derivative to define a new fractional velocity and a new fractional acceleration with the fractional

space translation symmetry, which is given by fractional addition. We also construct the fractional version for Newton mechanics with frac-

tional space translation symmetry in one dimension. We show the conservation of fractional energy and formulate the fractional Hamiltonian
formalism for the fractional mechanics with fractional space translation symmetry. We exhibit some examples for the fractional mechanics
with fractional space translation symmetry.
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1. Introduction ators with fractional order and fractal dimension have been
recently introduced in Ref. [17], and in this paper has been

Fractional derivative is a derivative of fractional (non-integer)d€fined the powerful mathematical tools to model complex
order and has a long history [1]. It has attracted much atreal-world problems that could not be modeled with classical

tention from mathematicians, physicists, and engineers in ré2nd nonlocal differential and integral operators with a single
cent decades [2-18]. In Ref. [2], the concept of the solyorder. In Ref. [18], the local asymptotic stability and the

tion has been presented for a differential equation of fracglobal asymptotic stability for the trivial equilibrium point of

tional order with uncertainty. Ref. [3] concentrates on thethe fractional electrical RLC circuit have been discussed.

class of fractional derivatives most important in applications, Fractional derivative is regarded as a powerful tool for
the Caputo operators, and provides a self-contained, thostudying nonlinear systems [19-22]. In Ref. [19], the local
ough, and mathematically rigorous study of their propertiedractional Burgers’ equation (LFBE) is investigated from the
and the corresponding differential equations. Also, the aupoint of view of local fractional conservation laws envisaging
thors have investigated the applications of fractional calculug nonlinear local fractional transport equation with a linear
to first-order integral equations with power and power log-non-differentiable diffusion term. Reference [20] is a review
arithmic kernels, and with special functions in kernels andof physical models that look very promising for the future de-
to Euler-Poisson-Darboux’s type equations and differentialvelopment of fractional dynamics, and the Authors suggest a
equations of fractional order in Refs. [4]. In Ref. [5-11], short introduction to fractional calculus as a theory of inte-
the most comprehensive developments on fractional differgration and differentiation of noninteger order. Also, Some
ential and fractional integral-differential equations involving applications of integro-differentiations of fractional orders in
many different potentially useful operators of fractional cal-physics are discussed, and the models of discrete systems
culus are provided. In Ref. [12], the authors propose a novalith memory, lattice with long-range inter-particle interac-
fractional-order adaptive filter structures such that the outpution, dynamics of fractal media are presented [20]. In Ref.
from the conventional filtered-x least mean square algorithnj21], the problem of robust control of uncertain fractional-
is passed through a new update equation derived from a costder nonlinear complex systems is investigated and, after
function based on a posteriori error and optimized using fracestablishing a simple linear sliding surface, the sliding mode
tional derivatives. In Ref. [13-15], the steady-state fractionatheory is used to derive a novel robust fractional control
advection-dispersion equation on bounded domaingdiis  law for ensuring the existence of the sliding motion in finite
discussed, and the fractional differential and integral operatime. In Ref. [22], By use of the Gibbs-Appel approach and
tors are defined and analyzed. A novel method as the doubthe complementary constitutive axioms corresponding to the
integral method, for obtaining the solution of the fractional fractional Kelvin-Zener model of the viscoelastic body, the
differential equation in the class of second-grade fluids modequations of motion were derived. Riemann and Louville [9]
els is proposed [16]. Nonlocal differential and integral oper-first constructed the fractional derivative through the integral,



A NEW FRACTIONAL MECHANICS BASED ON FRACTIONAL ADDITION 69

for z(t') > x(t) > 0. We refer to the fractional velocity (6)
z as fractional velocity with fractional space translation sym-
/(x —ormaTlfe)de, (1) metry. The fractional velocity with fractional space transla-
tion symmetry is not invariant under the translation in po-

) ) sition z — x + a while it is invariant under the fractional

wheren = [a] + 1 and[z] IS the grgatest mtgggr equal to or translation in positionz® — x* + a®. Using the fractional
less tham. Rlemann-LouvHI_e fractional derivative of a €ON- yelocity with fractional space translation symmetry, we de-
stant is not zero. To cure this problem, Caputo [14] modifiedie yhe fractional acceleration with fractional space transla-
R|e_ma.nn and Louville’s def_lnltlon fqr frgctlonal derivative, tion symmetry and construct the fractional Newton equation
which is called Caputo fractional derivative, with fractional space translation symmetry. This paper is or-

1 ar

a§7RLf(x) = F(TL _ (Jé) d.’L‘in

0

1 y ar ganized as follows: In Sec. 2, we discuss the fractional ve-
2% f(x) = T /(x - 5)”*"‘*1d—nf(§)d§, (2)  locity and fractional acceleration. In Sec. 3, we discuss the
(n—a) 0 ¢ fractional work, fractional kinetic energy, and fractional po-

tential energy. In Sec. 4, we discuss the fractional Hamilto-
nian formalism for the fractional mechanics. In Sec. 5, we
discuss some examples of the fractional mechanics.

wheren = [a] + 1.

Riemann-Louville fractional derivative and Caputo frac-
tional derivative do not obey the Leibniz rule. A new frac-
tional derivative obeying Leibniz’s rule was introduced by
Khalil, Horani, Yousef, and Sababheh [23]. It is called a con-

formable fractional derivative and depends just on the ba-2' Fractional velocity and fractional accelera-

sic limit definition of the derivative. Namely, for a function tion: New definitions
f :(0,00) — R the conformable fractional derivative of or- _ , -
dera (0 < o < 1) of f atz > 0 is defined by Now let us invoke the average velocity when a particle lies on

- L x(t) at timet and lies onc(t') at timet’ wheret’ > ¢, which

o, KHY S . fle+Aze ) — f(x) i
(2 f(z)) = lim IS .
Az50 Az - displacement  x(t') — x(t) %
= '8, f(x), ©) ¢~ changeintime ¢ —t

and the conformable fractional derivative(ats defined as where the displacement is defined as

(02 KHYS £)(0) = lim,_0(0% f)(2). Some applications of

the conformable fractional derivative are given in [23-34]. displacement z(t') — x(t), (8)
Riemann-Louville fractional derivative and Caputo frac-

tional derivative have been successfully applied to characteand it is invariant under the ordinary space translation.

ize the constitutive equations of viscoelastic non-Newtonian  First let us consider the case thdt’) > z(t) > 0. If we

fluid, by using the fractional derivatives to replace the integergefine the fractional displacement as

order derivatives [35-37]. For the conformable fractional

derivative, a study on the classical mechanics was given in fractional displacement (z(t'))* — (z(t))*,  (9)

[29], and a study on the motion in the viscoelastic medium

was given in [30], where the fractional velocity was definedang define the fractional average velocity as

as

A KHYS ozt tTA) — x(t) __ fractional displacement (z(t'))* — (x(t))* 1
v(t) = (9, z(t)) = Jim At Yae = T Change intime t—t » (10)
l-a,
=t (4)  we know that the fractional average velocity is invariant un-
The fractional velocity defined in Eq. (4) can be written as  der the fractional space translation.
2(t') — z(t) The numerator in Eq. (10) can not be regarded as the
v(t) = (5) deformed subtraction because its corresponding deformed

et é((t/)a — )’ addition is not associative. For this reason, we define the
Eqg. (5) is notinvariant under the translation in time> t+7  fractional addition and fractional subtraction for the case of
while it is invariant under the fractional translation in time, z > y > 0 as
t¢ — t* + 7.

Instead of the fractional velocity with fractional transla- T By = (x+y)V* (0<a<l), (11)
tion in time, we can consider the fractional velocity with frac-
tional translation in space. In this paper, we introduce a new
fractional velocity defined by

L) — (x(t)*] The fractional addition is commutative and associative and

v(t) = lim = T— : (6)  preserves the dimension.

T,y = (2% -y (0<a<l). (12)
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The fractional displacement is then written as 1. Distributivity
fractional displacement [z (') &, z(¢)]*,  (13) (kz) ©a (ky) = k(2 Da y),
(kx) 04 (ky) =k(r S0 vy), keR. (20)

and the fractional average velocity

v [2(E) Sa 2()]* (14)
ave= " (A@a B)(C @4 D) = AC &4 BC &, AD &, BD. (21)

Here we have a problem. The positiof¥) can take a neg- From the definition of fractional average velocity, the frac-
ative value. In that case, the fractional addition or fractionaffional instantaneous velocity (shortly fractional velocity) is
subtraction becomes a complex number. To cure this proifefined by

2. Expansion

lem, we should modify the definitions of fractional addi- . [x() ©4 (1))
; ; ; (t) = lim 22 for x(t) > z(t), (22)
tion and fractional subtraction so that they may hold for any ~ V\*) = jm alt — 1) z ),
z,y € R.
Forz > 0,y > 0, the fractional addition and fractional and e
subtraction are defined as o(t) = — tl’irnt W for (t') < z(t). (23)
T @y = (2% +yM)V, Equation (22) and Eq. (23) are unified as follows:
- {(mﬂ —y)"" (2> y) as) V=D
ad a a\l/a :
—(y* =) (v <y) i P S0P @) S0 2 0)]
Forz > 0,y < 0, the fractional addition and fractional sub- t—t at’ —1) ’
traction are defined as or
, u(t) = |z*7 4, (25)
« a\l/a
€Oy = (@ = (=9)%) ) (&> —y) , which is derived in Appendix A.
—((=y)* =z (z < —y) The fractional average acceleration is defined as
— (o ayl/a change in fractional velocit
& Oay = (x + (—y)") e (16) o — SNENG tion y
change in time
Forz < 0,y > 0, the fractional addition and fractional sub- u(t) = (t)
traction are defined as == (26)
= (mz))e (—z < y) hence the fractional instantaneous acceleration ( shortly frac-
T Pay = —((—z)* =y (—x>y) tional acceleration) is given by
dv
2 Oay=—(y"+ (—x)*)"". (17) a=—. (27)
Forz < 0,y < 0, the fractional addition and fractional sub- The fractional version of Newton's law is then
traction are defined as F— g — m% _ m%(ma—l@). (28)
T@Oay=—((—2)" + (—y)a)l/a7 Equation (28) is invariant under the following transformation
(—)* — (—o))Vo (2> y) for the fractional velocity,
- —(—x T
TOL Y= Y Y (18) "= 0 29
~((~0)* = (=) (@ <y) v=vtu (w>0) (29)

. : . . which is the same as the ordinary case. But, Eq. (28) is not
;I;g(l;ltsiownea(;an write the fractional addition and fractional SUb'invariant under the ordinary Galilei transformation

¥=x—ut, t'=t (30)

TPy = IEQ71I+ a—1,11/a—1 o - - o
oy =llz] wI*y] Instead, Eq. (28) is invariant under the fractional Galilei

x (|z]*ta + |y|*y), transformation, which is given by
TOqy = ||z]* 1z — |y‘a*1y|1/a*1 7 = (ma—&-aut)l/“ =T Dy (aut)l/a, (31)
a— a— / i
x (|lz]* 1z = [y|* ). (19) forz,2’,u > 0. Now we will refer to the system whose

coordinatez’ is given by Eq. (31) as a fractional inertial
Besides, we have the relatianc, y = = @, (—y). For  frame. For the fractional inertial frame, the fractional version
the fractional addition and fractional subtraction, we have thef Newton’s law remains invariant, which is called a frac-
following properties: tional Galilei relativity.
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3. Fractional work, fractional kinetic energy,  where the fractional kinetic energy is defined as
and fractional potential energy 1 1

K = —mv* = —m(|jz|*'%)2. (42)

In ordinary mechanics, work is the product of the force 2 2

and displacement. When a for€eis acted on a body with a Thys, we have fractional energy conservation,

massm, and this body moves fromto 2’ (' > x) in a same

direction as the force, the work is given by E=K+V= %mvg LV (43)

w = (force) x (displacement= F(z' — z). (32)
4. Fractional Hamiltonian formalism in the

When the force varies during motion frobnto by, the work . )
fractional mechanics

is given by
by
JF 33 The fractional classical mechanics is also constructed by the
oF(x) (33) fractional Poisson bracket defined as follows:
b;
For the conserved force, we have the potential endtgy {F(x,p),G(x,p)}a = 2|~
-0, V; thus, the work reduces to <8F oG  OF 8G> ”
w=—V(by) = V(b)). (34) dx dp  0Op Ox
For the fractional case, we define the fractional wirkas ~ Which gives -
the product of the force and fractional displacement, {z,pla = lz[77* (45)
W = (force) x (fractional displacemeit= F(a’ S, )% If we introduce the fractional Hamiltonian as
(35) p?
If we setz’ = z + Az, we have H=_—+ V(z), (46)
(2" ©q 2)* = alz|* ' Az (36)  we have the fractional Hamilton’s equation of motion as
Thus, the fractional work reads i={z,H}o = ‘I|1,a£,
m

)= {p,H}o = —|z[' "0,V (z) = —D3V(z). (47
W= /d oF(x /dx(a|x|a*1)F(m)_ 37) p=A{p, H}a =zl (2) SV(x).  (47)
From the first relation of Eq. (47), the fractional momentum
is given by

If we define the fractional potential energy as
P 9y p =m|z|* i = mo. (48)

F(z) = D3V (z), (38)  Inserting Eq. (48) into Eq. (47), we have the same equation
where like Eq. (28).
, Now let us find the geometrical meaning of the fractional
D¢V (x) = lim a(V(2') — V(z)) Poisson bracket. The fractional Poisson bracket is related to
’ o'~z |7/ Oq |* (2! O 7) the mechanics in a curved space. In one dimensional curved
= |z[t~28,V, (39)  Space, the metric is given by
we have d82 = g;pTdCCz (49)
W= —=(V(bs) = V(bi))- (40) . :
_ _ o ~Inacurved space, the Poisson bracket is deformed as
Now let us find the fractional kinetic energy from the defini-
tion of the fractional work, which is given by {w.p} = g.2"%. (50)
bt bt This is the same as Eq. (45) if we take
w /madax—/ma alz|*!
o!? =l (51)
f do or ]
= O(/makda 17dt /mivdt d52 = dez (52)
» Thus, our model is related to the mechanics in a one-
= K(by) — K(bi), (41)  dimensional curved space with a metric of the form (51).
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The fractional momentum defined by Eq. (48) is not re-Case 4.u < 0,z < 0: In this case, we have
lated to the ordinary translation but the fractional translation

a—1, _ @
T.(Az) :  — x ®, Az. Indeed we can easily check 2" = —(alult + [zo]*). (61)
that the fractional momentum is invariant under the frac-Its solution is
tional translation. This translation obeys the product rule, B ayl/a
To(A2)Ta(A2') = Ta(Az @, Ax'). Thus, the fractional o(t) = —(adult + |zo|*) ™. (62)
momentum is the conserved quantity for the fractional transFigure 4 shows the plot of versust with u = —1, 29 = —1
lation. for a = 1 (Gray),a = 0.8 (Brown), anda = 0.5 (Pink).

. . 5.2.  Uniform fractional acceleration
5. Some examples of the fractional mechanics

) ) o ) Let us consider the motion of a particle with a uniform frac-
In this section, we will discuss some physical examples Otjona| acceleratiom. From the definition of the fractional
fractional mechanics. acceleration. we have

5.1. Uniform fractional velocity % =a, (63)
Let us consider the motion of a particle with a uniform frac- which gives
tional velocityu. From the definition of the fractional veloc- v(t) = vy + at. (64)
ity, we have For simplicity, let us consider the case thgt= 0,a > 0.
a—1; Then we have
|‘T‘ T =1u, SL’(O) = Zo, (53) |£L"a71£C _ laatQ (65)
2 k)
or i which gives ,
a a—1 _ 1 1/«
Sl ) = au. (54) o) = (qoat?) (66)

The solution of Eq. (54) depends on the signs @indz.

h Figure 5 shows the plot af versust witha = 1fora =1
Case 1.u > 0,z > 0: In this case, we have g P “ @

(Gray),a = 0.8 (Brown), anda. = 0.5 (Pink).

77 = aul + . (55 5.3, Fractional harmonic oscillator
Its solution is /e Now let us consider the fractional harmonic oscillator prob-
2(t) = (aut +a5) 7/, (56)  lem. The fractional version of Newton’s law reads
Figure 1 shows the plot of versust with v = 1,z = 1 for m [ d\?> o1 w1
a = 1 (Gray),a = 0.8 (Brown), anda = 0.5 (Pink). o g ) el a) = —k(j2]*a), (67)
Case 2.u > 0,z > 0: In this case, we have with initial conditions
[ e = aut — |ao| . (57) 2(0)=A >0, v(0)=0. (68)
Its solution is Solving Eq. (67), we get
xo|® k
—(|xo|® — aut)/® (t < %) |z|* "tz = A% cos 4/ —at, (69)
(t) = e o N G) m
(aut — |zo|*) (75 > W) which gives
Figure 2 shows the plot of versust with u = 1,29 = —1 A cos ket e (x> 0)
for a = 1 (Gray),« = 0.8 (Brown), anda = 0.5 (Pink). o(t) = m (70)
Case 3.u < 0,z > 0: In this case, we have % e
—A| —cosy/ Tt (x <0)
lz|* e = —alult + 2§, (59) or
L k k
Its solution is z(t) = Al cosy/ By t/a=t o5 4 [ 5%, (71)
m m
(2§ — alult)!/® (t < Oj(;"l) This gives a periodic motion with a period
a(t) = e 4y - (60) -
~(afult —ag)e (1= 2) T =om [ (72)
Figure 3 shows the plot af versust with u = —1,2¢9 = 1 Figure 6 shows the plotafversuswith A =1,m =1,k =
for a = 1 (Gray),« = 0.8 (Brown), anda = 0.5 (Pink). 1 for o = 1 (Gray),a = 0.8 (Brown), anda = 0.5 (Pink).

Rev. Mex. 5. 67 (1) 68-74



A NEW FRACTIONAL MECHANICS BASED ON FRACTIONAL ADDITION 73

6. Conclusion 1. 2(¢) > x(t) > 0: In this case, we have

In this paper, we introduced a new fractional derivative to de- . (x(t)> = (z(t)> o1 <

fine a new fractional velocity with fractional space translation v(t) = }Lmt a(t' —t) = (@(®)"a. (73)
symmetry based on the fractional addition rule. We used the

fractional addition rule to introduce the concept of fractional 2. z(t) > z(t') > 0: In this case, we have
displacement, fractional velocity, and fractional acceleration N e

and constructed the fractional version of Newton's law. We 4 (¢) = — lim (x(t)* — (2(t')* _ (z(t)* 'a.  (74)
showed that the fractional version of Newton’s law is invari- =t ot —1t)

ant under the fractional Galilei transformation. We defined3 #(t) < 2(#') < 0: In this case, we have

the fractional work through the fractional displacement and ™ ' '
constructed fractional kinetic energy and fractional potential C(—z()* = (—z(t))™
energy. We also derived the conservation of fractional me- o(t) = }}H}t alt — 1)
chanical energy. We discussed fractional Hamiltonian for-

malism for the fractional mechanics with the help of the frac- 4. x(t') < x(t) < 0: In this case, we have
tional Poisson bracket. We found that the fractional mechan-

= (—a(t)*"'a. (75)

ics with fractional space translation symmetry is related to o(t) = — Tim (—z(t)* = (—=()~
classical mechanics in a curved space. We discussed some t =t a(t' —t)
examples of the fractional mechanics such as uniform frac- — (—a(t)* i (76)

tional velocity motion, uniform fractional acceleration mo-
tion, and fractional harmonic oscillator problem.
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