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Modeling of the deuteron wave function in coordinate
representation and calculations of polarization characteristics
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Modeling of the deuteron wave function in coordinate representation for the nucleon-nucleon potential Reid93 were performed. For this
purpose, the asymptotics of the radial wave function near the origin of coordinates and at infinity are taken into account. The most simple
and physical asymptotics were applied. In this case, the superfluous knots of both components of the deuteron wave function for the
coordinate valuer = 0.301 fm were compensated. Taking into account the asymptotics of the wave function has little effect on the general
behavior of the calculated polarization characteristics oft20 andAyy. Particular points of the transmitted momentum have been identified,
where the tensor deuteron polarizationt20 and the tensor analyzing powerAyy show a clear difference.
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1. Introduction

The deuteron is a coupled system consisting of two nucle-
ons (neutron and proton) [1, 2]. The cognitions about such
a few body-nucleon system allows us to study the features
of the deuteron behavior of both the two-particle system and
the nucleon-nucleon interaction, taking into account vari-
ous forms of potential models and approaches. The calcu-
lated theoretical values of polarization observables in pro-
cesses with the participation of deuteron (electron-deuteron
scattering, deuteron-proton scattering, A(d,d’)X reactions on
light nuclei, and others) can be compared with experimen-
tal data. Theoretical calculations of the polarization charac-
teristics for such processes are based on the deuteron wave
function (DWF) in coordinate representation.

On the one hand, the deuteron is fairly well studied both
theoretically and experimentally. Static parameters have been
reviewed and identified repeatedly. However, on the other
hand, there are some inconsistencies and problems. One of
these problems is related to the peculiarities of the behavior
of the radial DWF near the origin of coordinates. Examples
of this behavior are Refs. [3, 4], where the DWF contains
an superfluous knot for one or both components in coordi-
nate representation. There are two reasons for this inconsis-
tency. The first reason is related to numerical inaccuracies for
the determination of DWF when using certain program algo-
rithms (codes) [5]. The second reason is related to the use of
nucleon-nucleon interaction potentials.

Given these behavioral features for DWF, accurate stud-
ies for DWF can be performed near the origin of coordinates.
By learning about the reliable information about asymptotics
for DWFs or making the right fit for them, we can begin to
calculate polarization characteristics for important processes,
where the deuteron plays a key role as a target or incident

beam. For this purpose it is necessary to conduct modeling
for DWF in coordinate representation using one potential of
nucleon-nucleon interaction.

The purpose of this study is the modeling of DWF in co-
ordinate representation with subsequent use to find polariza-
tion characteristics. In this case, the asymptotics near the ori-
gin of coordinates and at infinity must be taken into account
for DWF. For a more correct and simplified task, we will use
one nucleon-nucleon potential. It will be the potential Reid93
from the Nijmegen group [6,7].

2. Deuteron wave function in coordinate rep-
resentation

DWF as the main characteristic describes the deuteron as a
quantum mechanical system. The knowledge of DWF allows
us to obtain the maximum information about this coupled
system for neutron and proton, as well as to theoretically cal-
culate and predict those characteristics that depend on DWFs
measured in the experiment.

In the theoretical description of DWF forms, such denom-
inations [8] as “analytical form”, its “approximation” or “pa-
rameterization” are used in the coordinate representation. Of-
ten, the appellation “analytical form” is used as the resulting
solution to the Schr̈odinger bound system. Later in the pa-
pers, this label is used to refer to records obtained as a result
of the approximation for DWF.

In a detailed review [8] for the 1940-2015 years, the static
parameters of deuteron, which were calculated by the DWF
for various potentials and models, are systematized and de-
scribed. The presence or absence of knots near the origin of
coordinates for the radial DWF in coordinate representation
is indicated. According to the references in the cited liter-
ature, an overview of analytical forms for DWFs was con-
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ducted. In addition, the asymptotic behavior of the DWF near
the origin of coordinates and for large distances is analyzed.

The analysis of the relationships for DWFs shows [8] that
most analytical forms and parameterizations are presented in
the form of exponential expansions.

Consider the DWF in coordinate representation in detail.
When considering specific problems in order to determine the
polarization characteristics, it is necessary to select the avail-
able DWFs in the literature or to find these functions inde-
pendently. In the first case, researchers pay attention to the
simple recording and convenient form of such DWF. In the
second case, the DWF is calculated using the coupled system
for Schr̈odinger equations and the nucleon-nucleon potential
in the coordinate space. The obtained numerical values of
DWFs are logical to represent in the form of visual, simple
and convenient approximations.

After selecting the approximation dependence for the de-
scription of the DWF in coordinate representation, the model
DWF should be analyzed. There are three steps to this end.

The first step is to find the difference between the nu-
merical data and the approximation form. This difference is
characterized by integrals [3] for the S- and D- states of the
deuteron respectively

IS =




∞∫

0

[uapprox(r)− utable(r)]
2
dr




1/2

,

ID =




∞∫

0

[wapprox(r)− wtable(r)]
2
dr




1/2

,

or by the magnitude ofχ2corresponding to the degree of free-
dom

χ2 =
1

n− k

N∑

i=1

(yi − f(xi; a1, a2, ..., ak))2,

wheren - the number of points of the arrayyi of the numeri-
cal values of DWF in coordinate representation;f - approxi-
mating function foru(r) or w(r); a1,a2,. . . ,ak - parameters;
k - the number of parameters.

The second step investigates the static parameters for the
deuteron. The obtained DWF in the numerical calculations is
tested for compliance with the theoretical values of deuteron
static parameters and their experimental data. This is a must,
since these static parameters are determined by DWF in co-
ordinate representation [3,9,10]:

- the radius (“matter radius”) of deuteron:

rm =
1
2
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]
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

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; (1)

- the electric quadrupole moment:

Qd =
1
20

∞∫

0

r2w(r)
[√

8u(r)− w(r)
]
dr

=
1√
50

∞∫

0

r2

[
u(r)w(r)− w2(r)√

8

]
dr; (2)

- the contribution of D-state:

PD =

∞∫

0

w2(r)dr; (3)

- the magnetic moment:

µd = µs − 3
2
(µs − 1

2
)PD; (4)

- the asymptotics of D/S- state:

η = AD/AS ; (5)

whereAS andAD are the asymptotics of the normalization of
the S- and D- state wave functions. The valueµs = µn + µp

in Eq. (4) is the sum of the magnetic moments of the neutron
and proton. The values of the deuteron magnetic moment are
given in nuclear magnetonsµN .

Only after passing these three steps, the obtained DWF
can be used to calculate the polarization observables in pro-
cesses involving deuteron.

3. Superfluous knots of the deuteron wave
function in coordinate representation

The calculated values of the static characteristics of the
deuteron are in good agreement with the experimental data.
However, there are some theoretical inconsistencies and
problems. Thus, in some Refs., one (for example, for OBEP
[11], Bonn [3] potentials) or both (for RSC [12], Moscow [4],
renormalized chiral and [13] potentials) components for ra-
dial DWF have knots near the origin of coordinates. As noted
earlier, this is also related to the features of the potential mod-
els for describing the deuteron. Next, we will look at the
confirmation of this reason.

In [14] it was noted, that there is one coupled allowed
state in the D- wave. This state together with the S- wave
determines the ground state of the deuteron.

As noted in [15], the wave function for the S-wave in
a deuteron is of the form 2 s and a knot atr ≈ 0.5 fm,
which has the characteristics of a repulsive core characteristic
of meson-exchange potentials. Due to the presence of color,
this phenomenon cannot be conditioned by Pauli’s exclusion
principle for quark degrees of freedom.

In the context of chiral effective theory (χET) [16], os-
cillations are available in the numerical integration of values
〈r−n〉Λ, which are associated with the appearance of erro-
neous coupled states whose bond energies exceed the scale
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of partition 1/Λ, whereΛ is the scale at which the potential is
regulated.

There are no knots for DWF in the coordinate represen-
tation for the Nijmegen group potentials [7], as well as for
Argonne v14 and v18 [17], Paris [18] potentials.

4. Polarization characteristics and the
deuteron wave function

Among the large set of polarization characteristics in pro-
cesses with the participation of deuteron [19], we choose such
quantities that characterize two different processes. This is a
tensor deuteron polarizationt20 for elastic electron-deuteron
scattering and a tensor analyzing powerAyy for inelastic
scattering of deuterons (A(d,d’)X reaction at light nuclei).

The first polarization characteristic oft20 is an important
value because it is expressed through three deuteron form
factors (FFs) and is determined by the experiment. At the
same time, the magnitude of tensor polarizationt20 is de-
termined by the functions of structureA(p), B(p) and the
scattering angleθ. Tensor deuteron polarizationt20 is repre-
sented as [1,2,20–22]

t20(p, θe) = − 1√
2S

(
8
3
ηGC(p)GQ(p) +

8
9
η2G2

Q(p)

+
1
3
η

[
1 + 2(1 + η)tg2

(
θe

2

)]
G2

M (p)

)
. (6)

An alternative name fort20 is the tensor deuteron analyz-
ing power [23,24] and is often indicated to asT20.

Here the factorS(p, θe) = A(p) + B(p)tg2 (θe/2) de-
pends on electrical and magnetic structure functions of a
deuteron [1,2,25]

A = G2
C +

8
9
η2G2

Q +
2
3
ηG2

M ; B =
4
3
η (1 + η) G2

M . (7)

ChargeGC(p), quadrupoleGQ(p) and magneticGM (p)
deuteron FFs contain information about the electromagnetic
properties of a deuteron [2,26]:

GC = GENDC , GQ = GENDQ,

GM =
md

2mp
(GMNDM + GENDE) . (8)

Here, the “body factors”Di are determined by the DWF
in the coordinate representationu(r) andw(r):

monopole electric

DC =

∞∫

0

[
u2 + w2

]
j0dr;

quadrupole electric

DQ =
3√
2η

∞∫

0

[
uw − w2

√
8

]
j2dr;

transverse magnetic

DM = 2

∞∫

0

[(
u2 − w2

2

)
j0 +

(
uw√

2
+

w2

2

)
j2

]
dr;

longitudinal magnetic

DE =
3
2

∞∫

0

w2 [j0 + j2] dr.

HereGEN = GEp + GEn; GMN = GMp + GMn are
the isoscalar electric and magnetic FFs;GEp andGEn are
proton and neutron isoscalar electric FFs;GMp andGMn are
proton and neutron isoscalar magnetic FFs;j0, j2 are spheri-
cal Bessel functions of zero and second order from argument
pr/2. The dipole form was used for electromagnetic nucleon
form factors.

Experimental data for tensor deuteron polarizationt20(p)
are given in the Refs. of Bates [21, 27, 28], JLab [22, 29],
VEPP-3 [30–34], NIKHEF [35, 36], Saclay [37], BLAST
[23, 24, 38] collaborations and in Boden [39], Garcon [21],
Abbott [40] reviews.

To estimate the tensor analyzing powerAyy as the polar-
ization observables in the A(d,d’)X reaction, we can use the
models of plane wave impulse approximation (PWIA) [41]
andω-meson exchange [42,43].

The magnitude of the tensor analyzing powerAyy can be
experimentally obtained from the numbers of deuteronsn+,
n−, n0, which registered for different modes of beam polar-
izationpz, pzz, and normalized to the beam intensity, taking
into account the effect of dead installation time [44]:

Ayy = 2
p−z (n+/n0 − 1)− p+

z (n−/n0 − 1)
p−z p+

zz − p+
z p−zz

. (9)

Tensor analyzing power in PWIA is theoretically calcu-
lated by the following formula [41]:

Ayy =
T 2

00 − T 2
11 + 4P 2T 2

10

T 2
00 + 2T 2

11 + 4P 2T 2
10

, (10)

whereTij(p/2) are the amplitudes, which are determined by
the radial DWF in the coordinate representationu(r) and
w(r):

T00 = S0 +
√

2S2, T11 = S0 − 1√
2
S2, (11)

T10 =
i√
2
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0

(
u2 − w2

2

)
j0dr

+
i

2
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0

w

(
u +

w√
2

)
j2dr. (12)
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Here,S0 andS2 are the spherical (charge) and quadrupole
FFs of the deuteron

S0(p/2) = S
(1)
0 + S

(2)
0 ,

S2(p/2) = 2S
(1)
2 − 1√

2
S

(2)
2 , (13)

expressed through sphericalS
(i)
0 and quadrupoleS(i)

2 FFs
[41,45]

S
(1)
0 =

∞∫

0

u2j0dr, S
(2)
0 =

∞∫

0

w2j0dr,

S
(1)
2 =

∞∫

0

uwj2dr, S
(2)
2 =

∞∫

0

w2j2dr. (14)

In Eq. (10), the parameterP = a · p at a = 0.4 [41] is
used.

The experimental data for the tensor analyzing power
Ayy are given for the reaction of type (d,d’) on light nuclei:
on hydrogen [46], carbon [46–48], beryllium [42–44]. From
the data of [48] the tensor analyzing ability is determined by
the formula:Ayy = −T20/

√
2.

It is better to calculate those polarization characteristics
that are sufficiently defined in the experiment. Then, we can
compare theoretical calculations with experimental data over
a wide range of transmitted momentums. As a consequence,
the conclusion of model calculations and the satisfaction of a
particular potential model for experiment will be fully justi-
fied.

5. Calculations and results

Numerical calculations show that a certain number of addi-
tions to the expansion sums for DWF in coordinate represen-
tation will show a superfluous knot near the origin of coor-
dinates. More often this effect is present at small number of
additives. To eliminate this effect, it is necessary to increase
the number of additions in the sum of the expansions. How-
ever, this can lead to large rounding errors.

The second feature of the calculations for DWF in the co-
ordinate representation is its form of asymptotics atr →0
and atr → ∞. Among the list of asymptotics atr →0 we
pay attention to the following:

1) in Ref. [49]

u(r) → r, w(r) → r3, (15)

2) in Ref. [50]

u(r) → r2, w(r) → r3. (16)

The standard asymptotics for DWF asr →∞ is this rep-
resentation [49]

u(r) ∼ AS exp(−βr),

w(r) ∼ AD exp(−βr)
[
1 +

3
βr

+
3

(βr)2

]
, (17)

whereβ =
√

MEd; M is the nucleon mass;Ed is the bind-
ing energy of the deuteron.

To approximate the DWF in coordinate representation for
Reid93 potential, we use the following forms [51,52]





u(r) = r
N∑

i=1

Ai exp(−air),

w(r) = r2
N∑

i=1

Bi exp(−bir).
(18)

The degrees forrn before the sums of the expansions
were chosen optimal so that the obtained DWF satisfies the
static parameters.

Application of the approximation to DWF for Reid93 po-
tential by the formulas [51,53]





u(r) =
∞∑

n=0
cnψ1n(r),

w(r) =
∞∑

n=0
dnψ1n(r).

(19)

does not cause the knot to appear only in the componentu(r).
Hereψ1n(r) - Laguerre functions [51]:

ψ1n(r) =
√

2α

n!
exp(αr)

× dn

drn

(
rn exp(−2αr)

)
, n = 0, 1, 2, 3, . . .

Figures 1 and 2, also show the DWFs for OBEPB [54]
and fss2 [55] models for qualitative comparison. The indi-
cated DWF behavior near the origin of coordinates indicates
the numerical problems of the calculations.

FIGURE 1. The wave functionu(r) for various potentials, as func-
tion of coordinater.
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FIGURE 2. The wave functionw(r) for various potentials, as func-
tion of coordinater.

Without going into the details of obtaining these asymp-
totics (16) and (17), we apply them to our model representa-
tions of DWFs. The submission area for DWF was actually
divided into three parts:

1)0− 0.301 fm,

2)0.301− 24.997 fm, 3)24.997 fm−∞. (20)

The reason for this division into three regions below is
explained by the peculiarities of the numerical calculations
for (18).

In numerical calculations of DWF for potential Reid93
by formulas (18), a superfluous knot was found atr = 0.172
fm and 0.154 fm for the componentsu(r) andw(r), respec-
tively (Figs. 1 and 2). This superfluous knot near the origin
of coordinates is prevented by approximation. For example,
you can use the approximation in the form (16) [50] to co-
ordinate valuesr = 0.301 fm. The asymptotic behavior of
DWFs asr → ∞ is chosen as (17). In Figs. 1 and 2, this
DWF modification is designated (18)m.

FIGURE 3. The tensor deuteron polarizationt20, as function of
transmitted momentump. The experimental data are taken from
Refs. [21–24,27–40].

FIGURE 4. The tensor analyzing powerAyy, as function of trans-
mitted momentump. The experimental data are taken from Refs.
[42–44,46–48].

In Figs. 3 and 4 present the results of calculations of the
polarization characteristics oft20 andAyy for the model cal-
culations for the DWF for Reid93 potential by (18). The
optimal number of additions in (19) for Reid93 potential is
n = 17. The difference between these calculations is due to
different expansions and high-momentum component. The
theoretical values obtained are compared with the experimen-
tal data. In Fig. 4 usest- scaling according to the elementary
notation by the formulat = −(0.197326p)2 at the units for
momentump in [fm−1] andt- scaling in [(GeV/c)2].

For the polarization characteristicAyy, the difference
between theoretical calculations and experimental data (for
Ndata=45 values) is described byχ2/Ndata, which is equal to
0.159425, 0.132223 and 0.153614 for DWFs for the poten-
tials fss2, Reid93 (18) and Reid93 (19), respectively. Simi-
larly for the characteristict20 (at Ndata=96), these values are
given as 0.090236, 0.067306 and 0.068475. The smaller the
deviationχ2/Ndata, the better the theory describes the exper-
iment in a given region of transmitted momentums. That is,
the theoretical calculations with DWF for the Reid93 poten-
tial by (18) are better consistent with the experiment.

Figure 5 compares the results oft20 for the approximation
(18) for potential Reid93. It takes into account the peculiar-
ities of the DWF behavior at different coordinate regions ac-
cording to (20). Purely calculations for (18) are designated as
“DWF (18)”. The refinement of the asymptotics tor = 0.301
fm by the formula (16) is denoted as “DWF (18) + asymp.
(16)”. If we consider asymptotics (17) after the coordinate
point r = 24.997 fm in the previous case, then we have the
calculations “DWF (18) + asymp. (16) + (17)”.

As the analysis of the results fort20 shows, the difference
between the calculations slightly depends on the specifica-
tion of the asymptotic behavior of the DWF in the coordinate
representation. Refinements of DWFs were compared with
each other using the ratio of polarization characteristics. Ra-
tio of “DWF (18)” / “DWF ( 18) + asymp. (16) ” and “DWF
(18)”/“DWF ( 18) + asymp. (16) + (17)” were the same. This
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TABLE I. Theoretical and experimental values of deuteron parameters: D- state contributionPD, matter radiusrm, electric quadrupole
momentQd, magnetic momentµd, the asymptotics of D/S- stateη.

Potential PD [%] rm [fm] Qd [fm2] µd [µN ] η

Reid 93, DWF (18); N=17 5.6948 1.9694 0.26703 0.847356 0.02477

Reid 93, DWF (18)+ asymp. (16); N=17 5.6949 1.9694 0.26703 0.847356 0.02477

Reid 93, DWF (18)+ asymp. (16) + (17); N=17 5.6949 1.9689 0.26703 0.847356 0.02477

Reid 93 (19); n=17 5.6992 1.9677 0.27019 0.847332 0.02458

Reid 93 (19) [53] 5.7009 1.9671 0.27015 0.847322 0.02426

Reid 93 [6,56] 5.699 1.969 0.2703 - 0.0251

Nijm I [6,56] 5.664 1.967 0.2719 - 0.0253

Nijm II [6,56] 5.635 1.968 0.2707 - 0.0252

Nijm 93 [6,56] 5.755 1.966 0.2706 - 0.0252

Argonne v18 [17] 5.76 1.967 0.270 0.847 0.0250

Experiment [1] - 1.975(3) 0.2859(3) 0.857438 0.0256(4)

FIGURE 5. Comparison of the results oft20 for approximation (18)
taking into account asymptotics.

means that it is not possible to find out the difference be-
tween the asymptotics of DWF. Therefore, it is necessary to
find a direct numerical difference between the results of the
refinements of the asymptotics, that is, the ratio of the results
“DWF (18) + asymp. (16)” and “DWF (18) + asymp. (16)
+ (17)”. The influence of “manual recording” of asymptotics
in the calculations of the tensor analyzing powerAyy was
similarly evaluated.

As can be seen from Figs. 5 and 6 there is only a slight dif-
ference in the calculations in the narrow region of the trans-
mitted momentums. What is the reason for the difference
between calculations in a small region? Obviously, we need
to turn to the algorithm of numerical calculation. The pecu-
liarity of determining the polarization characteristics is that
they contain mathematical expressions with spherical Bessel
functions of zero and second order. These functions are in in-
tegrals ranging from zero to infinity (formulas for elementary
“body form factors” and form factors (14)).

FIGURE 6. Comparison of the results ofAyy for approximation
(18) taking into account asymptotics.

In general, such meticulous refinements do not affect the
overall appearance of the polarization characteristics. The
insignificant difference between the calculations with the
choice of different asymptotics does not affect the general
behavior in the scale of the transmitted momentums. How-
ever, the analysis of numerical data is fully justified. And
such numerical refinements based on asymptotics for DWF
may be useful for further refinements for a specific accurate
momentum value or for a narrow momentum interval.

The static parameters of the deuteron are shown in Ta-
ble I. The data obtained are compared with the results of the-
oretical calculations in other studies and experimental values.
The difference between them is not significant.

6. Conclusions

1. The simulation for DWF in coordinate representation
for the nucleon-nucleon potential Reid93 is performed.
For this purpose, we take into account the asymptotics
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of the radial DWF near the origin of coordinates and at
infinity. Such asymptotics, which are the most simple
and physical, are applied.

2. Compensated superfluous knots for both DWF com-
ponents in coordinate representation to the coordinate
valuer=0.301 fm are illustrated.

3. On the basis of the obtained DWFs in the coordinate

representation, two polarization characteristics oft20
and Ayy were calculated. Taking into account the
asymptotics of the wave function has little effect on
the general behavior of these polarization characteris-
tics. Particular points of the transmitted momentum
have been identified, where the tensor deuteron polar-
izationt20 and the tensor analyzing powerAyy show a
clear difference.

1. M. Garçon and J. W. Van Orden, The Deuteron: Structure and
Form Factors, in Advances in Nuclear Physics, edited by J. W.
Negele and E. W. Vogt (Springer, Boston, 2001),Vol. 26, Chap.
4, https://doi.org/10.1007/0-306-47915-X 4.

2. R. Gilman and F. Gross,Electromagnetic structure of the
deuteron, J. Phys. G28 (2002) R37,https://doi.org/
10.1088/0954-3899/28/4/201 .

3. R. Machleidt, High-precision, charge-dependent Bonn
nucleon-nucleon potential, Phys. Rev. C 63 (2001)
024001, https://doi.org/10.1103/PhysRevC.
63.024001 .

4. V. I. Kukulin, Moscow-typeNN potentials and three-nucleon
bound states, Phys. Rev. C57 (1998) 535,https://doi.
org/10.1103/PhysRevC.57.535 .

5. I. Haysak and V. Zhaba,On the nods of the deuteron wave func-
tion, Visnyk Lviv Univ. Ser. Phys.44 (2009) 8.

6. V. G. J. Stoks, R. A. M. Klomp, C. P. F. Terheggen, and J.
J. de Swart,Construction of high-qualityNN potential mod-
els, Phys. Rev. C49 (1994) 2950,https://doi.org/10.
1103/PhysRevC.49.2950 .

7. J. J. de Swart, R. A. M. Klomp, M. C. M. Rentmeester, and T.
A. Rijken, The Nijmegen potentials, Few Body Syst. Suppl.8
(1995) 438.

8. V.I. Zhaba,Deuteron: properties and analytical forms of wave
function in coordinate space, e-print arXiv:nucl-th/1706.08306
(2017).

9. J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics
(Springer, New York, 1979),https://doi.org/10.
1007/978-1-4612-9959-2 .

10. S. De Benedetti, Nuclear Interactions (John Wiley and Sons,
New York, 1964).

11. R. Machleidt, K. Holinde, and Ch. Elster,The bonn
meson-exchange model for the nucleon-nucleon interaction,
Phys. Rep.149 (1987) 1,https://doi.org/10.1016/
S0370-1573(87)80002-9 .

12. R. V. Reid Jr.,Local phenomenological nucleon-nucleon poten-
tials, Ann. Phys.50 (1968) 411,https://doi.org/10.
1016/0003-4916(68)90126-7 .

13. E. Ruiz Arriola and M. Pavon Valderrama,Deuteron ra-
dial moments for renormalized chiral potentials, Eur. Phys. J.
A 31 (2007) 549,https://doi.org/10.1140/epja/
i2006-10294-2 .

14. S. B. Dubovichenko, Properties of Light Atomic Nuclei in the
Potential Cluster Model (Daneker, Almaty, 2004).

15. V. A. Knyr, V. G. Neudatchin, and N. A. Khokhlov,Relativis-
tic optical model on the basis of the Moscow potential and
lower phase shifts for nucleon-nucleon scattering at labora-
tory energies of up to 3 GeV, Phys. At. Nucl.69 (2006) 2034,
https://doi.org/10.1134/S1063778806120064 .

16. L. Platter and D. R. Phillips,Deuteron matrix elements
in chiral effective theory at leading order, Phys. Lett.
B 641 (2006) 164, https://doi.org/10.1016/j.
physletb.2006.08.053 .

17. R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla,Accurate
nucleon-nucleon potential with charge-independence breaking,
Phys. Rev. C51(1995) 38,https://doi.org/10.1103/
PhysRevC.51.38 .

18. M. Lacombeet al., Parametrization of the ParisN −N poten-
tial, Phys. Rev. C21 (1980) 861,https://doi.org/10.
1103/PhysRevC.21.861 .

19. G. G. Ohlsen, Polarization transfer and spin correlation
experiments in nuclear physics, Rep. Prog. Phys. 35 (1972)
717, https://doi.org/10.1088/0034-4885/35/
2/305 .

20. R. G. Arnold, C. E. Carlson, and F. Gross,Polarization trans-
fer in elastic electron scattering from nucleons and deuterons,
Phys. Rev. C23 (1981) 363, https://doi.org/10.
1103/PhysRevC.23.363 .
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