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This paper revisits Chua’s electrical circuit in the context of the Caputo-Liouville fractional derivative. We introduce the Caputo-Liouville
fractional derivative into the modeling of the electrical circuit. The solutions of the new model are proposed using numerical discretizations.
The discretizations use the numerical scheme of the Riemann-Liouville integral. We have determined the equilibrium points and study their
local stability. The existence of the chaotic behaviors with the used fractional-order has been characterized by the determination of the
maximal Lyapunov exponent value. The variations of the parameters of the model into the Chua’s electrical circuit have been quantified
using the bifurcation concept. We also propose adaptive controls under which the master and the slave fractional Chua'’s electrical circuits
go in the same way. The graphical representations have supported all the main results of the paper.
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1. Introduction Chua’s chaotic model. In [2], Chuat al. introduce an
electrical circuit chaotic model and study the synchroniza-
Chaos, bifurcations, and Lyapunov exponent are longestahion of this proposed model as well. Note that all inves-
lished mathematical problems that continue to generate mudigations on Chua’s electrical circuits come from this origi-
attention. Chaotic systems can be found in physeg,( nal paper. In [3], Abdelouahatt al. propose a bifurcation
the Lorentz actuator), in finance, in biology, or electrical cir- analysis of the fractional-order simple chaotic electrical cir-
cuits .9, Chua’s electrical circuits); for other fields where cuit. In Ref. [4] Maksoudet al. present the implementa-
chaotic behaviors can be found, see Refs. [2,3,7,8,13]. lfion of fractional Chua’s chaotic system by using Grunwald-
1993, Chua et al. introduced the idea of modeling electri{ etnikov's derivative. In [5], Hartleyet al. present the frac-
cal circuits through chaotic systems [2], and Chua’s electricational Chua’s electrical circuit using the Riemann-Liouville
circuits have found interest in the literature. In chaotic sys-derivative. The authors, in their investigation, analyze the im-
tems, three concepts are fundamental. The firstis the stabilityact of the fractional-order derivative into Chua’s electrical
analysis of the equilibrium points. The stability consists ofcircuit. In [6], Wanget al. investigate on generating multi-
studying how a solution converges asymptotically around ascroll Chua’s attractors using the simplified piecewise-linear
equilibrium point, taking into account the initial condition. Chua’s diode. In [7, 13], Petras presents the control prob-
Note that chaotic systems are very sensitive to the initial contem in the context of the fractional Chua’s electrical circuit.
ditions, where the behavior can easily change. In generaln [8], the author uses the Atangana-Baleanu derivative for
chaotic systems are described utilizing many parameters, anflodeling the fractional Chua’s electrical circuit.
it is also crucial to analyze the chaotic behavior generated by
the changes in the values of these parameters, the so-called
bifurcations. In other words, in bifurcations, we analyze the  The objective of this paper is to revisit the Chua’s electri-
impact of the changes in the parameters of the model ogal circuit described by fractional-order derivative. The mo-
the behavior of the chaotic system. Another concept is the&ivations for this use are explained in the next section. The
Lyapunov exponent, which is used to characterize the exisnodel is new. Therefore the stability analysis of the equilib-
tence of chaos or not; the determination of this number igium points has been studied. The second step will be to ana-
done numerically in fractional cases. Recent years fractiond/ze the evolution of Chua’s chaotic system when the differ-
calculus [17, 28] have emerged and attracted many authorent parameters of the model have been modified. We mainly
This new field finds much application in the following areas: use the bifurcation notion to do this investigation. The other
physics [11, 16, 29, 31], mechanics, biology [30], mathematpoint in the research is the characterization of chaos. In other
ical physics [16, 19, 22], electrical circuits [20], economics,words, we use the determination of the Lyapunov exponent
modeling fluids [21, 25] and many others [12, 24, 27]. Fol-to characterize the existence of the chaos for a particular or-
lowing this direction, the Chua’s system is remodeled in thisder of the fractional-order derivative. Note that due to the
paper using the Caputo-Liouville fractional derivative. form of the fractional Chua’s electrical circuit, we decom-
There exist many papers that address chaotic models. Thpose the fractional differential equations in three different
literature is long, but we give a brief presentation. In [1], sub-systems. The research of adaptative control will close
Chenget al. investigate the synchronization of the fractional this present work.
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2. Basic definitions of fractional operators sented by the following differential equations [2]

The fractional derivative is used in this paper for modeling Cy dztcl = % Ve, = Ve,) +9(Vey)s (4)
Chua’s electrical circuit. The motivations for such use are

described in the next section. In this section, we remind the s Ve, _ 1 Ve, = Vo) + 1, ®)
fractional derivatives used in this paper. We recall, respec- dt R

tively, the fractional integral, the Riemann-Liouville deriva- L@ v ©)
tive, and the Caputo-Liouville fractional derivative. We have a %

the following definitions. where the functiom can be represented as the following form

Definition 1 [17, 28] We represent the Riemann-Liouville
integral of the functionz : [0, +o00[— R as the following

form % [[Va + Bp\ + Vi — Byl 7)

( ) GyVr + = (G Gb)

t whereVg, is the voltage across the capaci®t, V¢, is the
(I%x / (t—s) x(s)ds, (1) voltage across the capacito, I is the current through the
0 inductanceG, andG, are the slopes, anttB,, denote the
breakpoints. Under the following change of variables:
underI'(...) represents the Gamma function and with the or- Ve, Ve, 1
der o obeying the condition that > 0. T=p5 Y=g, Z=po @=RG, (8
p p P

Definition 2 [17, 28] We represent the Riemann-Liouville and
derlvatlve_ of the functiom: : [0, +co[— R, of order« in b= RG), d=Cy/Ci,
the following form

c=CyR?*/L, t =7G/Cy, 9)
t
Dea(t) = . (11 );lt/m(s) (t—s5)ds, (2) Chua’s model can be rewritten as
-« .
0 t=d(y—=z—f(r)), (10)
with ¢ > 0, the ordera € (0,1) and T'(...) denotes the y=r-y+tz, (11)
Gamma function. 3= —cy. (12)

Definition 3 [17, 28] We symbolize the Caputo-Liouville |n general, the fractional-order Chua’s electrical circuit can

fractional derivative of the function : [0, +oo[— R, of  pe obtained by replacing the integer-order derivative with

order « in the following relationship non-integer order derivative; the reasons for this replacement
are given next. We have

t
Dz(t) = de (t—s)"“ds, ©) Diz=d(y—z— f(z)), (13)
1 —a) ds
0 Diy=x—y+z, (14)
with the conditionsg > 0, the ordera € (0,1) andT'(...) Dz = —cy, (15)

represents the gamma Euler function. with the initial conditions represented by the following rela-

There exist many other types of fractional-order deriva-tionships
tives. In recent years, fractional der[vat|ves Wlth non- 2(0) =zo, y(0) =yo, 2(0) =z, (16)
singularities have attracted a lot of attention. The definitions _ _ _
of these derivatives can be found in Refs. [9, 10]. and where the functiofi’(z) is defined as follow,

f(a:):ba:—}—%(a—b) [l + 1| — |z —1]]. a7

3. Presentation of the new fractional Chua’s Owing to the fact that Chua’s electrical circuit —in the
electrical circuit model context of fractional order derivatives— has not been much
exploited, it is our motivation to extend Chua’s model ot
In this section, we present the fractional-order Chua’s electrithe non-integer-order derivative case. This paper will be
cal circuit represented by Caputo-Liouville fractional deriva-interested in the Chua’s electrical circuit using the Caputo-
tive. The Chua’s model is an electrical circuit including the Liouville fractional derivative. Another motivation in this pa-
resistor R, the inductorL, two capacitorsC; andC,, and  per is to see what happens with Chua’s circuit when the non-
a nonlinear resistoNg. The classical model can be repre- integer-order derivative replaces the integer-order derivative.
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The question related to the use of the fractional-order derivaAt the pointt,, the discretization should be represented in the
tive comes from the Leibniz question, where one tries to obfollowing forms
tain the value of

N x(tn) =z (0) + I% (tn,x), (25)
d*z (18)
dte” y(tn) =y (0) + I7E(tn, ), (26)
whena = 0.5. This question is reasonable because when 2(tn) = 2 (0) + I7C (tn, 2) (27)

a = 1, we recover the integer-order derivative. In fracUonaIUSing the gridt,, — nh, whereh represents a constant step-

calcul_us, the intuition di_ctates t_hat many phen_om_ena can bﬁze, the scheme of the fractional integral operators are given
described by models using fractional-order derivatives. Manﬁ)

arguments support these reasons. First, we notice all mo

els in real-word problems contain error terms in measuring N i
the real data; for example, in econometric models, where 16 (tn, x) = h Zdn—jg(tj’zj)’ (28)
all models are linear differential equations with error terms. J=t
Other situations, like the data collected for the revenue and n
the consumption do not follow exact linear differential rela- 1€ (tn,y) = ™Y dn_j€ (85, 2) (29)
tionships because of the amount of existing error terms. For j=1
the deterministic differential equations, we notice the one n
of the solutions do not follow the behaviors obtained with I%¢ (tn,2) = h® Zdn_jg(tj,zj), (30)
real data. It is because of these reasons that the stochastic j=1

representations of differential equations are introduced. For . ) o
short, many of the phenomena that is commonly represente herg Lhe palrameter IS given o = ((7.2 —J+1) -
with integer-order derivatives, are not being described ade'’* ~ 7) )/m' We utilize now the first-order inter-
quately at all times. To take into account all these errorsP0lant polynomial of the functions (v, z(7)), & (7. y(7))
the fractional-order derivatives are proposed for solving real@1d¢ (7, 2(7)) expressed as the following forms

world modeling problems. ¢
§(r.2(r) = < (1 2m) + 2
X [¢ (i1, 2541) — < (%), (31)
4. Numerical investigation of the fractional T —ti41
model g(Tvy(T)) = g(tj"rlazj-'rl) + T
_ _ _ _ X [E(tjv1, 2zj41) — € (t5,25)],  (32)
In this section, we describe and apply the numerical scheme iy
considered in this paper. The numerical scheme is motivated C(r,2(7)) = C (tj41, 2j41) + 7+
by the fact the analytical solution of the Chua’s electrical h
circuit is quasi-impossible. The homotopy methods can be X [C(tj41,2541) — C(t5,25)] - (33)

used; the problem will be, after how many iterations the so-_ = | ) . .
lutions will converge. We use the numerical scheme of thel2king into account Egs. (31)-(33), the numerical discretiza-
Riemann-Liouville fractional integral. Note that the follow- 10nSs of the fractional integrals are represented by the follow-
ing representations give the solutions of the fractional Chua’§"d €XPressions

electrical circuit r T

1% (tn, ) = b | ds (0) + Y di i (ty,5) |, (34)
z(t) =z (0) + I% (t,x), (19) i j=1 ]
y(t) =y (0) +I°¢ (t,y), (20) '7( : " |
I%€ (t,,y) = b [d\YE(0 > ¢ (t;,y:)|, (35
At) = 2(0) + 19 (1.2), ey TSI A0+ AT )| (@)
where the functions, ¢ and¢ come from the chua’s electrical N N __(a) n (@) ]
model considered in this paper, we have the following 19 (tn, 2) = 1™ iV C(0) + Z dy,—i€ (55 25) | 5 (36)
L j:1 -
s(tyz)=d(@y—z— f(x)), (22)  where the parameters in the above equations are represented
in the following expressions
- —D)*—n*(n—a-1
(t2) = —a. 24 dor = Z otz m g

'2+a) ’
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and when the indices describe theset 1,2, ...., the previ-  In this case, fractional Chua’s electrical circuit is given by
ous parameters can be expressed as the following form
Dz =d(y—z—bx+ (a—0)), (48)
1
d®=——_ and Diy=xz—-y+z, 49
O T Tara) £y Y (49)
DYz = —cy. 50
(n—1)*T" —2patt 4 (n 4 1)*H! k Y (50)

d(® = (38)

As supposed by Chua’s, we set the parameters to 10,

¢ = 1487, a = —1.27, andb = —0.68. The equilibrium
Finally, as numerical schemes for Chua’s electrical model irpoints of the fractional equations represented in Egs. (48)-
the context of fractional order derivative, we have the follow- (50) are given by

ing representations
—b b—
_ _ @)= (i) 6y

'2+o)

14+56"71+0

x(t,) =2 (0) +h* [d¥s (0) + Z dEf)J (tj,z;) |, (39) Itis straightforward to obtain the Jacobian matrix at the equi-
librium point (z*, y*, 2*); we get the following relationship

—~d(1+b) d 0

y(tn)=y (0) +h i€ (0) +Zdn &t y)| . (40) J= 1 11 . (52)
L i 0 —c 0
I i Considering the values of the parameters of the fractional
z(tn)=2%(0) +h* Z dﬁf)]g (tj,z;)|, (41)  Chua's model, the characteristic polynomial of the Jacobian
i ] matrix is given by
where P(X\) =-X\%—4.2)\* —8.07A—47.584.  (53)
The eigenvalues of the are given by the = —4.6597,
S(tj,zj) =d(y; — 25— fla;)), (42) ), = 0.2298 + 3.1873i, and Ay = 0.2298 — 3.1873i.
tos) = x5 — i 4+ 24 43) We note thatarg (\;)| = 7 > an/2 for all o € (0,1),
) =5 =2 (43) larg (A\2)] = 437/90 > an/2 whena < 0.95, and
C(ty,2j) = —cy; (44)  Jarg (\3)| = 1377/90 > ax/2 for all a € (0,1). Thus, we

conclude the equilibrium poir{tc*, y*, z*) is locally asymp-
We finish this section by recalling some explanations con+otically stable when the order satisfies< 0.95. If not, the
cerning the stability and the convergence of the proposed nwequilibrium point is unstable.
merical schemes. We consider thét,, ), y(¢,,) andz(t,,) the For the second case, we suppasec [—1,1], where
numerical approximations of the Chua’s electrical model andf(z) = ax, where the fractional Chua’s electrical circuit is
Ty, Yn andz, the exact solutions of the same model. We cangiven by
write the residual functions as the following forms

Dz =d(y—z —ax), (54)
@ (ta) = wal = O (mlet12Y) - 4) Diy=2—y+2 (55)
[y (ta) = yal = O (R2n{eT221) - (a6) Ditz = —ey. (56)
inf{at1.2} We consider the valueg= 10, ¢ = 14.87, a = —1.27, and

|z (tn) —2za| = O (hmm o ) - (47) b = —0.68. The equilibrium point of the fractional equation

represented in Egs. (54)-(56) is given by
The convergence of the used numerical scheme comes from

the fact h converge to0. The stability of the numerical (z%,y%,2%) = (0,0,0). (57)
schemes in this paper is obtained by the fact the functiongpe jacobian matrix at the equilibrium poiit 0, 0) is
¢, &, and( are Lipschitz continuous.
—d(14+a) d 0
J = ( 1 -1 1 ) . (58)
5. Stability analysis of the equilibrium points 0 —c 0

Considering the values of the parameters of the fractional

In this section, we study the stability of the equilibrium points model, the characteristic polynomial of the Jacobian matrix

of the fractional Chua’s electrical circuit. The main idea is to;
decompose the fractional system into three cases. In the first
case, we suppose (—oo, —1], wheref(x) = bx — (a — b). P(\) ==X+ 1.70% — 2,17\ +40.149.  (59)
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Direct computation usiniflatlab shows that the eigenval- 5
ues of P(\) are given by the\; = 3.8477 Ao = —1.0739 +
3.0465¢ and A3 = —1.0739 — 3.0465:. We note that

larg (A1)| = 0 < am/2. Thus, it is concluded that the equi- , °
librium point (0, 0, 0) is not stable.

In the last case, we supposec [1, +oo[ wheref(x) =
bx + (a — b), in this case the fractional Chua’s electrical cir-
cuit is given by

D{x=d(y—x—bx—(a—0b)), (60)
Dyy=x—y+2, (61)
Dz = —cy. (62)

Following the work of Chua, we considér= 10, ¢ = 14.87,
a = —1.27, andb = —0.68. The equilibrium point of the
fractional Eqgs. (60)-(62) is given by

FIGURA 1. Dynamics of fractional Chua'’s electrical circuit with
a = 0.95.

following initial condition: z(0) = —0.68, y(0) = 0 and
(%, 5", %) = (b - a’07 a— b) - (63) z(0) = 0.68. The parameters of the model afe= 10,
I+b "1+4+0 c = 14.87,a = —1.27 andb = —0.68 and we consider

The rest of the procedure is identical as in the first case. It ighe ordera = 0.95.

straightforward to see that the Jacobian matrix at the equilib- Fi9ure 1 focuses on the dynamics of the fractional Chua's
rium point is given by the following relationship electrical circuit in the axig-axis,y-axis and-axis. Figure 2

highlights the dynamics of the fractional Chua’s electrical cir-

—d(l14+b) d 0 cuit on thez-axis, andy-axis. Figure 3 describes the dynam-
J = 1 -1 1. (64) ics of the fractional Chua'’s electrical circuit on tlyeaxis,
0 — 0 and z-axis. Figure 4 depicts the dynamics of the fractional

ideri h |  th f the fracti CIZhua’s electrical circuit on the-axis, and:-axis.
Considering the values of the parameters of the fractiona Let us now analyze the impact of the parameter

moc_jel, the character!stic polynomial .Of the Jacobian matri>g(97 11) on Chua’s electrical circuit. The other parameters of

Is given after calculation by the following form the model are supposed constant and do not vary. In Fig. 5,
P\ = 23— 4902 — 807\ — 47.584. (65) we depict the bifurcation d.|agram with the variation of th_e
parameterd. Let us explain the dynamics represented in

The eigenvalues are given by; = —4.6597, Xy = Fig. 5 and give its physical meaning. According to refer-
0.2298 + 3.1873i and\; = 0.2298 — 3.1873i. We note that ence [3], when the parametére (9,10.5), it corresponds
larg (A\1)] = 7 > an/2 forall o € (0,1), |arg(A\2)| = to the asymptotic stability of the trivial equilibrium point,
437/90 > am/2 whena < 0.95, and |arg(\3)] =  the Chua’s system exhibits chaotic behaviors wierceeds

1377/90 > an/2 for all « € (0,1). Thus, we conclude 10.5.
the equilibrium point is locally stable when the order satisfies
the conditiona < 0.95. If not, then the equilibrium point is
unstable. 06
Finally, we can observe the trivial equilibrium point is not
stable, but the two non-trivial equilibrium points are locally
stable under the condition the fractional-order derivative does 02k
not exceed 0.95.

™ of
6. Graphical support of the numerical scheme 02r
In this section, we study the chaotic behaviors of the frac- 04T
tional Chua’s electrical circuit. We represent the solutions 06
graphically by using the numerical discretizations described . . . . . . .
in the previous section. We also analyze the impact of the "0'8_4 3 B 1 0 1 5 3 4
different parameters using the bifurcation concept. Note that
a bifurcation is a tool used to analyze the sensitivity of the X

fractional differential equation due to the variation of one Ficura 2. Dynamics of fractional Chua’s electrical circuit with
of its parameters. For the rest of the paper, we suppose thex = 0.95.
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FIGURA 5. Bifircation diagram with variation of parametér

FIGURA 3. Dynamics of fractional Chua’s electrical circuit with

a = 0.95.
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€T FIGURA 6. Bifircation diagram with variation of parameter

FIGURA 4. Dynamics of fractional Chua’s electrical circuit with  scheme and the Jacobian matrix, as described in our con-
a = 0.95. text [32]. As for the detection of the presence of chaotic
dynamics, it is said that when the maximal value of the Lya-
We continue by analyzing the impact of the parameterpunov exponent is large and positive, then chaotic behaviors
c € (14,15) on Chua’s electrical circuit. The other parame- are taking place. As previously discussed in the bifurcation
ters of the model are assumed to be constant. In Fig. 6, weection, we fixx = 0.95, andd = 10, ¢ = 14.87,a = —1.27,
depict the bifurcation diagram with the variation of the pa-, = —0.68 and f(z) = az. The method of the determination
rameterc. Let us explain the dynamics represented in Fig. 6of the Lyapunov exponent is described in the context of the
and to give its physical meaning. According to Ref. [3], whenfractional calculus in [32]. The novelty in the determination
the parameter < (14, 14.6), Chua’s system exhibits chaotic of the Lyapunov exponent in our context is that we replace
behaviors and when exceedsl4.6, which corresponds to the numerical scheme used in [32] by our numerical scheme,
the asymptotic stability of the trivial equilibrium point, con- and utilize the Jacobian matrix of Chua’s model. It is also im-
firming the previous analysis related to the stability and theportant to mention that the value of the Lyapunov exponent is
chaotic behavior observed in Figs. 1-4. sensitive to the initial conditions. Here, the initial conditions
We finish by proposing the Lyapunov exponent of thearex(0) = —0.68, y(0) = 0 andz(0) = 0.68. Under such
fractional Chua'’s electrical circuit. The importance of the initial conditions, the maximal values of the Lyapunov expo-
Lyapunov exponent is to detect the presence of chaotic beient of the fractional Chua’s model when= 0.95 is ob-
haviors. There exist some methods proposed in the literaturtained at timeél" = 19.98 and is given byL E = 0.3270. The
for the detection of the chaos in the fractional context like themaximal Lyapunov exponent is positive and large, confirm-
method proposed in Ref. [33] based on the semi-analyticahg the existence of high chaotic behavior, as we can observe
solution, and the Lyapunov exponent base on the numericain Figs. 1-4.
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7. Adaptative controls Thus, under the supposed control, and the supposed pa-
rameters of the model, we observe Eq. (77) is a negative

In this section, we propose an adaptative control under whickerm; that is, the trivial equilibrium of fractional error system

the driving system and the response system oscillate or go ig globally asymptotically stable, which in turn implies that

the same direction. It is essential when the stability analys;y,, In]l = lim¢— 4o ||y — 2]|=0. Finally, the driving

sis of a particular model is not trivial. In the first case, Wesystem and the response of the fractional Chua’s electrical

consider the driving Chua’s model described by circuit go in the same way when the signal contrakis: 0.

In the second case, we repeat the same procedure, since

Dy =d(z2 — 21 —ba1 + (a = D)), (66) not many changes are done in the calculations. We consider
D%xy = x1 — 29 + T3, (67) the driving Chua’s model described by
Dizg = —cxo. (68) Diwy =d(x2 — 21 —ary), (78)
Let the response fractional chaotic Chua’s model given by Dy'zy = 21 — 22 + 23, (79)
D?l’g = —CI3. (80)

Diyr=d(y2 —y1 —byr + (¢ — b)) +ur,  (69)
Let the response fractional chaotic Chua’s model given by

Dy2 = y1 — y2 + y3 + ua, (70)
D%y, = — Y1 — 1
D5 = —cys + us, (71) cyr =d(y2 —y1 — ay1) + u, (81)
. . DZys =y1 — y2 + ys + ua, (82)
where the control input is supposed as follows =
(u1,usz,us3). In the first case, the objective will be to give DZys = —cy2 + us, (83)
zd:rp:tl\éebvalues to the control inputs. Let the error terms b%vhere the control input — (w1, uz, us). In the second case,
etined by the objective will be to give adaptive values to the control
o . _ inputs. Let the error terms be defined by
m=y1—x1  Mm=y2—z2 n3=yz—ax3. (72)

=y — —UYo — T =y3 —x3. (84
Applying the Caputo-Liouville fractional derivative to the er- = ! =Yz 2 s = Ys 5 (84)

ror terms we get the following fractional differential equa- Applying the Caputo-Liouville fractional derivative to the er-

tions rors terms, we get the following fractional differential equa-
tion

Dgmy = d(n2 —m — bny) + v, (73)

Dgm =d(ne —m —am) + u, (85)
Dgnz =m —n2 +n3 + ua, (74)

Dgng =m — n2 + 03 + uz, (86)
D?U3 = —CT)2 + us. (75)

Dgns = —cng + us. (87)

We propose the following contral = (0, 0, 0) and we prove
using the Lyapunov function that the fractional differentia
equation given by Egs. (73)-(75) is globally asymptotically
stable. Let the Lyapunov function defined by

| We propose the following contral = (0, 0,0) and we prove
using the Lyapunov function that the fractional differential
equation given by Egs. (85)-(87) is globally asymptotically
stable. Let the Lyapunov function defined by [23, 26]:

V (m1m2,m3) = 03 + 15 + 03 (76) V (n1,m2,m3) = 01 + 15 + 03 (88)

We continue with the linear fractional differential equations. The rest of the proof is not difficult to perform and we fall on
Then the Caputo-Liouville fractional derivative along the tra-the linear fractional differential equation. Then the Caputo-
jectories of Eqs. (73)-(75) is represented by the followingLjouville fractional derivative along the trajectories of Egs.

relationships [23, 26]: (85)-(87) is represented by the following,
DV <mDgm +n2Dgna + n3Dens, DFV <mDgm +n2Dgna + n3Dens,
< mfa(nz —m —bm)] <mla(ne —m —am)]
+ 2 [m — m2 + ns] +n3 [ Bn2] + 2 [m — m2 + n3] +n3 [—Bn2]
s (9] o (5)
I [ R A o P
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Thus, under the chosen control and values of the modalVe continue with the linear fractional differential equation.
parameters, we observe that Eq. (89) is a negative ternThen the Caputo-Liouville fractional derivative along the tra-
that is, the trivial equilibrium of fractional error system is jectories of Eqs. (97)-(99) is represented by the following
globally asymptoatically stable, which in turn implies that relationships [23, 26]:

limg o0 ||| = limy— 4 ooy = 0. Finally, the driving
system and the response of the fractional Chua’s electrical

K « [e% «
circuit go in the same direction when the signal control is 2tV = mDem + 12D + nsDens,

u=0. o _ < e (2 =1 — b))
For the last case, a similar procedure to the one before is
followed. We consider the driving Chua’s model described + 02 [m —m2 + n3) + n3 [=Bn2]
by
<—P+%—C*dﬂﬁ
Dizy =d(z2 — 21— bry — (a — b)), (90) 2
[ _ 1+d 1- —1
Difws = a1 — @2 + a3, (o1) -[1—-25— > C}n%—-cizné (101)
Dizs = —cxo. (92)

Let the response fractional chaotic Chua’s model given by ThUS, under the Supposed ControL and the Supposed pa-

D1 = d(ys —y1 — byr — (a — b)) +us, (93) ra_meters of the _model, we obse_r_ve_ Eq. (101)_ is a neg-
ative term, that is the trivial equilibrium of fractional er-

DZys = y1 — y2 + y3 + uz, (94)  ror system is globally asymptotically stable, which in turn

impliedim;_, 1 o ||7]] = lim;— 4 ||y — z||=0. Finally, the

driving system and the response of the fractional Chua’s elec-

where the control input is supposed as follows =  trical circuit go in the same way when the signal control

(u1,uz,u3). In the last case, the objective will be to give u = 0.

adaptive values to the control inputs. Let’s the errors term

defined by the following terms

Dy = —cya + us, (95)

m =y — 1, N2 = Yo — T2, n3 = y3 — 3. (96)

Applying the Caputo-Liouville fractional derivative to the er- 8. Conclusion

ror terms we get the following fractional differential equa-
tion: In this paper, we have revisited the fractional Chua’s electri-
cal circuit. The numerical schemes allow us to get the solu-

(6%
Dem = a (2 —m = b)) + ua, O7) " tions of the proposed model and to analyze the model have
D&y =m — 02 + 13 + ug, (98) been presented. The qualitative properties as the stability
analysis of the equilibrium points, the bifurcation diagrams,
Deng = —fnz + us. (99)  and the Lyapunov exponent were discussed. The Lyapunov

We propose the following contral = (0,0, 0) and we prove ~ €Xponent depends on the chosen initial condition and the con-
using the Lyapunov function that the fractional differential Sidered order for the fractional derivative. Note that this fac-
equation (97)-(99) is globally asymptotically stable. Let thetor proves the existence of highly chaotic behavior when the

Lyapunov function be defined by fractional order is used in modeling Chua’s electrical circuit.
s o o This paper demonstrates that the fractional-order can also be
V(nism2,m3) =0y + 03 + 13- (100)  ysed for modeling the electrical Chua’s circuit in general.
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