RESEARCH Revista Mexicana désica67 (2) 219-225 MARCH-APRIL 2021

Particle creation in the context of the emergent universe
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We study the mechanism of particle creation in the context of the emergent universe (EU) scenario which is privileged by certain important
characteristics such as the absence of time-like singularity. EU asymptotically coincides with an Einstein static model in the infinite past and
it approaches to a de Sitter expansion phase at late times. By introducing the conformal time, we obtain the solution of the Klein-Gordon
equation and by applying the “in” and “out” states method, the total number of produced particles and the total energy associated with them
are determined.
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1. Introduction In order to study the process of particle creation in a time-
dependent gravitational field, many different approaches
In recent years, there has been a great interest in the pregaye been developed such as the Hamiltonian diagonaliza-
cess of pair creation by strong electric fields after the piotjon method [10, 11], path integral technique [12, 13], the
neering works of Sauter [1], Heisenberg and Euler [2] andgreen function approach [14], the semiclassical WKB ap-
Schwinger [3]. Since then, the pair creation of particles angyroximation [15, 16], the method based on vacuum-vacuum

antipartiCleS from the unstable vacuum by external electrOtransition amp“tude [3], and the “in” and “out” states formal-
magnetic fields became a curious process in quantum elegsm [17,18].

trodynamics (QED).

| inal studv 131, Schwi " lculated th Recently, the particle creation problem under the influ-
n a seminal study [3], Schwinger exactly calculate Cence of electromagnetic and/or gravitational fields was stud-

pair creation probability from the vacuum due to an externa‘ed in [19-27]. Also, more recently, the Schwinger effect by

field by applying the proper-time formulation. He showedjn SU(2) gauge field during inflation for scalar particles and

that the pure magnetic fields do not produce any pairs %armions was calculated in [28] and [29, 30].
charged particles, but the presence of a magnetic field mod-

ifies the probability of pair creation when the vacuum is
perturbed by an electric field. The probability of pair cre-
ation in a constant homogeneous electric field is given by th

On the other hand, one of the most serious questions in
the standard cosmology is whether the universe has a begin-
ging or has existed eternally, and this question has been lead-

Schwinger rate [4, 5], namely ing us into a profound discussion by using general relativity
T ’ and modern cosmology. The standard cosmological model
Poxe TF (1) implies that the universe stems from a Big Bang singularity.

To elude this singularity, Elligt al.[31, 32] proposed an in-
WhereE‘c — (m203/eh) ~ 108 V/mis Schwinger’s critical tereSting model, called Emergent Universe (EU), in which the
field. This exponential is independent of the spacetime variuniverse originates from an Einstein static state rather than a
ables and does not admit a Taylor expansionan E, which Big Bang singularity, and therefore, there is no time-like sin-
indicates that this is a nonperturbative effect. gularity.

In addition, the theory of quantized fields in curved space- In this paper, we study the mechanism of particle creation
time is one way of unifying Einstein’s general relativity and in a spatially closed Robertson-Walker model with the scale
quantum field theory in Minkowski background. The mecha-factora (t) = ay + Ae'’ot, whereaq, A and H, are positive
nism of particle creation by the external electric field is analo-constants [33—35]. In this universe, there is no time-like sin-
gous to the particle production by a time-dependent metric ofularity. It asymptotically coincides with the Einstein static
a curved spacetime [6-9]. The cosmological particle creatiomodel in the infinite past (t) — ao and, it approaches to
mechanism in a time-dependent gravitational field is one of de Sitter expansion phase at late timégs) — Ae’’o?, In
the most remarkable known results. This mechanism has ahe beginning, we consider a spin-0 scalar in spatially closed
important role in explaining the origin of the structures in our Robertson-Walker spacetime in the context of the emergent
Universe and opened a new field in physics. universe scenario. Then we solve the Klein-Gordon equation
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by introducing two successive changes of variables. In orand Cf;tle (cos (x)) are Gegenbauer polynomials [36, 37].
der to study the mechanism of particle creation, we use th&he S® scalar harmonic¥ ™*# satisfy the following ortho-
canonical method based on Bogoliubov transformation conaormality conditions:
necting the “in” and “out” coefficients. This method allows
us to find the number density of the created particles and the /Y"v‘*v“ (X, 0,0) Y™ L (.0, o) sin® xdx
total energy.

X sin 0d9d<p = 5n7,/5gg/5/,,“/. (9)

2. The Klein-Gordon equation Substituting Eq.5), (6) and [7) in Eq. @), we obtain the dif-
ferential equation fo® (¢),

To study the process of pair creation, we consider the case of )

spatially closed Robertson-Walker universe with the metric, [ 0 +w? (t)] U (t) =0, (10)

ot?
ds® = dt* — a® (t) [dx* + sin® x (d6° + sin® 0dp®)], (2 \yhere
where0 < x <7, ,0 <60 <7 0< p < 2nr. The wave
equation for a real massive scalar field which is coupled to
the closed Robertson-Walker background, takes the form

wy (t) = m®

3 AHZe'Mo 3 ( AHpe'™o \?
2 ag + Aeflot 4 \ qp + AeHot
n(n+2)

5
Laﬂ (g/Ly\/jgayw) + (m2 + CR) w =0, (3) (ao + AeHot)
V=9 The Eq. [L0) involvesn and so, in general, the number of
whereR = g R,,, is the Ricci scalar and is a numerical ~Produced particles will depend on Equation [(0), on the
factor which takes the valug = 0 in the minimal coupling  Other hand, does not depend on the angular eingenvéjues
case and; = 1/6 when a conformal coupling is considered. and so the number of produced patrticles are always indepen-
In this case, the equation of a massive scalar field is writteflent of £ in closed Robertson-Walker spacetime. Note that

(11)

as Eq. (10) is similar to that of the harmonic oscillator with a
time-dependent frequency.
0%  3a 0 1 0? 0 1 Let us analyze the behavior of the time equation when
w i 2 ) |92 + 260“‘@ T sin?y t — 4o0. In the asymptotic past— —oo, Eq. (10) reduces
to
02 0 1 92 9 92
X {892+ ottty 90902} +m” =0, (4) [aﬁ + ann:| U (t) =0;
where we have neglected the numerical fagtt yield min- n(n+2) )
imal coupling {.e. ¢ = 0). To solve the differential equa- a2 M= Wnin, (12)
tion (4), we write the solution (¢, x, 8, ) in the form
with the solutions
_3 n ) )
Yt x.0,p)=a"2()Y o (X, 0,0) ¥ (t), () U e~ Wnint * eleonint (13)
where Y™%* are the scalar harmonics on three-sphgte v 2Wnin ’ v 2Wnin

and,n > ¢ > 0 and/ > pu > —{. These harmonics can On the other hand, in the asymptotic future— oo,
be expressed in terms of the stand&fdscalar harmonics Eq. (10) yields

Yor (6, o) as
0? 9H?
= -0 — 2 _ 0
Y (G 0,0) = HY 00V 0.9). (©) [EH? " “’} PE=0 wo = ym® == (14
The eigenfunctiong?™* () satisfy the following differen- with the solutions
tial equation [36, 37] e Wourt . eWourt
Ut (1) >~ T ;o W (6) ~ T (15)
0? o L{+1) i
BN + 2cot Xa T TsinZy We see thaw,,, does not depend on the label This result

is not surprising because in the future infinity we coincide
x H™ () = —n (n+2) H™ (x). (7)  With a de Sitter spacetime [38]. By making two successive
changes of variables as

with dt
H™ (x) = sin’ xCH (cos (1), ® = / o
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and¢ = effoaon the Eq. (0) takes the form

Wnin — w,,,, We find another set of solutions
m2 — U
(1 £)£ﬁ+(1_25)g+73—% o ( T
dg? a  (1-9) 1
+U+I€J—Z'19n,1+21€;1—f), (23)
n(n+2) + m2 ( n 2) 3 2
2LL2 2 n
4 _Hieg T HF [n 1t2) } () =0. (16) /1
§ agHg 4 U, =¢"(1-¢) 'F<2+U—fi—|—i19n,
The singularities of this differential equation &re- 0, 1 and .
oo, and all are regular singularities. We can recognize this g Rt — e 1-26 18 ). (24)

differential equation as a hypergeometric one by |mposmqn the next section we will use the solutions of the field equa-

the substitution, tion to analyze the mechanism of particle creation.

V(&) = (1 - &) ¢ = (). 17 . .
&) =0-07 =) (17) 3. Pair creation
This, substituted into the differential equation, gives, In order to study the process of particle creation, we will dis-
cuss the asymptotic behavior of the solutions of the Klein-
d? d Gordon equation whem — +oo, or equivalently when
<d§2 (I+20=2(v+r+1)¢) de ¢ — 0, 1. Firstly, whent — —oo or ¢ — 0, we have
. (19" ¢
2 lim ¥ = lim ————
1 n(n -+ 2 —_ 1 m
- (“’”2) +f(1(%3)_1]>:<€>=07 (18) 200 =0\ /up
eiwn int
F (CL, ba (6% E) 0 (25)
wherex = (iw,,, /Hy) andv = (iwy i /Ho). The equation V 2Wn,in
above is a hypergeometric equation whose solution around (1) ¢
the origin¢ = 0 is given in terms of the hypergeometric func- lim Wy = lim ~——=r—
tions as [39] 0 0/ 2nin
_iwn,znt
! XF(aV,ci6)~ —,  (26)
Ele(2+U+n+i19m V 2Wn,in
whereF (a,b,¢;0) = 1. Then, ag — —oo, the positive and
1 .
5 Yotk — i, 1+ 2u: 5) , (19) negative frequency modes are
UEin=Y1; Yy = Vs (27)
Ho = 52”F(1 — v+ K+ 19, The modes[25), (26) may be used to define particle states
2 and a Fock space in the Heisenberg picture in the standard
1 ) way. In particular, the field modeB,, may be expanded
——v+K—10,,1—2v;¢], (20)
2 \Ijn - an\Ijn in + a+\Ij;kL ins (28)
and the solution (€) of Eq. (16) finally reads, where the operators,, a;” obey the commutation relations
1 [an; Clj;/] = Onn’, [ana an’] = [a:; I] =0. (29)
Uy =& (1-9" F(2 + v+ K+ i, Similarly, in the “out” region, whert — +oo or¢é — 1, we
have
1 . _ ey
2+U+f€_“9nal+2v;§)7 (21) lim \I/ng = lim &
£—0 £50  2Wout
1 —tw t
\Ilgz(l—f)ﬁf_vF(—’U—FH—l-iﬁn, % F boe:1l— 26 out 30
2 (aa » G5 5) \/m ) ( )
1 v —K
. . 1—
2U+Ii7,19n,127j,£), (22) hm\Ifn4—hm§ (1-9)
£—0 £—0 2w,
W, ot
whered,, = /(n(n+2)/a2HZ) — 1. Using the invari- XF (W, 51—~ 20 (31
ance of Eq./16) under the transformatiof — 1 — ¢ and V2w,
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and the positive and negative frequency modes as +oo  wherea,, and,, are the Bogolioubov’s coefficients. In or-

are der to obtain the density of created particles, we use the so
called Bogoliubov transformation, connecting the “in” (at
Vg = V0 ous Wn3 = Yaout- (32) ¢ — —oo) with the “out” (att — +oo ) states,
The field modesl,, can be expanded in terms of these “out” Unin = anWnout + Bn ¥, out- (37)
modes as,

The “in” state is written in terms of the outgoing positive and
U, = b, WU 4 hryrout, (33) negative solutions and this is the origin of particle creation

by a gravitational field. The coefficients, and 3, are the

Bogoliubov coefficients satisfying the bosonic relation given

where by
[, b75] = G (b bor] = [b7,55] = 0. (34) ol 1 =1 %9)
P Sty e Bt e P By using the relation between the hypergeometric functions
[39], namely,
There are two different vacu@,,,) and|0,,:) associated
with two Fock spaceg"” and Fo" (a,b, ¢, 5) = I'(c)T'(c—a—b)
F'(c=b)T(c—a)
{ an 0im) =0, Vn (35) xF(a,b,a+b—c+1,1— )
bn|00ut> 0, Vn ' F( ) (a+b76) (17%)67(171)
L @®)I (a)

The creation and annhilation operators are related by the re-
P Y x F (c—a,c—b,c—a—b+1,1—3), (39)

lations
apn = anbn + ﬂnb:; and
{ b, = ata, — Brat (36)
" e F(a,b,c,y):(1—y)c_a_bF(c—a,c—b,c,y)7 (40)
| we find that the Bogoliubov coefficients are
oui D (1 - 2 ) T (20 )
Qap = , ; (41)
T (% _ ,L'wn,ingl‘oiwout + ,“971) T (% _ iwn,iv}{‘zwout _ ,“9”)
s (1 - 2020 ) T (202 )
ﬂn - w. w, Wn,in —W. ’ (42)
D (4 - jemmens gy, T (4 - s 4 y,)
So, the number of particles is given by:
N, = <0m| br—tbn |0m> = |ﬁn|2 : (43)

A direct calculation gives

coshm (w — 19”) cosh 7 <w + 19“)
N, = Ho Ho ’ (44)

. 2TWn in o 2T Wout
sinh i sinh e

where we used the relations,

2

. s N T 1 . T
F 2 _ . 1—\ 1 — . F — = . 45
It )] xsinhma’ T (1 +iz)] sinh 7z’ ‘ (2 + zx) cosh (45)

The total number of the produced particles is obtained by taking the sum over all the oscillation modes as
00 cosh (7“’"’”};“’“” — 19,”) cosh (7w"’"};w°“'t + ﬁn)
N=> (n+1)° R T = , (46)
sinh =7~ sinh =Teut
0 0
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and the total energy is given by

Wn,in —Wout __ Wn,in —Wout
cosh (7H0 ﬂn) cosh (7110 + ﬂn)

E=3"wou (n+1)

n=0

, 47
sinh “4n

2T Wn in _: 2T Wont
e sinh i

where(n + 1)2 is the degree of degeneracy.

In Fig. 1, we plot the total number of produced particl®d @s a function of variabld/ = m/H, for several values of
h = agHy. The Eqg. 46) has an infinite sum over all oscillation modes. Thus, we need to truncate the infinite series in order
to perform a numerical study for the total number of particles. We calculated the sum for 100, 1000 and 10000 terms and
concluded that the number of particles increases with the number of terms taken into the summation indicating a divergence
while leaving the character of the curves unchanged. For 100, 1000 and 10000 terms, we have the number of particles in the
numerical order 0%, 107~® and10°~11 respectively. In Fig. 1, we present the values obtained for the summation of 100
terms that shows the curves clearly. The number of produced particles decreases rapidfy @itanges in the parameter
change the behavior of the curves very slightly. While small valuésmbduce individual curves, the curves start to coincide
ash increases. We did not include the curve foe= 10000 for simplicity as it also coincides with the curves associated with
h = 100 andh = 1000.

Indeed, the sums in Eq6) and @7) are quite divergent, therefore the “in” and “out” representations are unitarily in-
equivalent, since Bogoliubov transformations need not to be unitary. Otherwise, it is remarkable that the system evolves slowly
and continuously over time, which corresponds to the adiabatic regime. Consequently, the study of the frefj@Enicy
equations/10) and (L1) implies that the asymptotic behavior @f(¢) whent — +oco is approximated by a WKB solution.
Therefore, in order to regularize this divergence to find a sensible result, we consider that the process of pair production occurs
at the time of maximum violation of the adiabatic condition, narelydt) log | (w/w?)| = 0, around timet. and we can
cut-off the sum akh = N, which is the highest value of [40—42] Then the expressions of the total numBeof particles
and the total energy are written accordingMpas follows

N ) cosh (7%"“}1_0%1” — 19n> cosh (7%””}'1_0“”’” + 19n)
N= Z (n + 1) . 27wy, 4 . 2 ’ (48)
e sinh 7 sinh ”I‘jg“t
N, coshm (7“)"’”'_“”“‘ — 19,,) coshm (7“)”'""—“””‘ + ﬁn)
E= Z Wout (M + 1)2 ul 27w 2 = ’ (49)
o sinh 7 sinh ”I‘jg“t
and their asymptotic behaviours are given respectively by
1 N3
N~ - —n (50)
3 sinh <L§S“)
and LB
Eo o —edout (51)
3 siul 25z
Finally, let us study the limit,; — 0 that reproduces the de Sitter case. By taking into account that
2 : Ll L
n(n+2) — k* Hy— H and al;LnO Wnin = o alolgo 9, = Hay' (52)
wherek? = k2 + k2 + k. For these conditions, Ec44) becomes
costir /37 3 ) costr (3L — 57 =3
mao_,o = limo . (53)
a0 sinh (25—('1]?)') sinh (27r %z — Z)
By using of the formula
lir+n sinh z — €%; liIJP cosh z — €% (54)
we obtain
2my/ 329 -
Moy 0 = {e Qe 1} , (55)
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) for some h= ao H, values).

and this result agrees exactly with that of [43]. Integrating

this expression over all wave modes gives a divergent resul
1

+oo
. / d%%wozhﬁ / k2dk.  (56)
(2m) (2m) J

We introducek. as the highest value of the momentum for

which the pairs have been created at a given time [40—421,

D M. MERAD

4. Conclusion

We studied an explicit calculation of the Klein-Gordon equa-
tion in spatially closed Robertson-Walker universe with the
emergent universe (EU) scenarios whose scale factor evolu-
tion is modeled by (t) = ag + AeH°t. Itis remarkable that
this universe is characterized by the absence of the time-like
singularity and, it asymptotically coincides with the Einstein
static model in the infinite past and it approaches to a de Sitter
expansion phase at late times.

The exact solution of the Klein-Gordon equation is ob-
tained in terms of the hypergeometric functions for the tem-
poral part, multiplied by the scalar harmonics on three-sphere
153. To calculate the total number of produced particles
and the total energy associated with them, we analyzed the
asymptotic behavior of the solutions of the Klein-Gordon
equation whert — +oc in order to determine the suitable
choice of the “in” and “out” states. Consequently, we applied
the usual method of Bogoliubov transformations to find the
coefficients connecting the “in” and “out” states that directly
ield our results. We plotted the number of produced parti-

Consequently, the total number of created particles is giveqq using a truncated series as a functiomgfH, to see

by
1

(2m)”

3
k:Mao—0

672

(57)

/ dPPENyy 0 =

that the number of produced particles decreases rapidly with
m/Hy. Finally, we studied the limito — 0 that reproduced
the de Sitter case as expected.
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