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Analytical solution to Scholte’s secular equation for isotropic elastic media
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In terms of a Cauchy integrals based method, robust analytical expression was obtained to predict the unique physical solution to Scholte’s
slowness for all elastic and isotropic medium. In particular, it is found that at the limit where the fluid above the solid vanishes, the slowness
with which the interface wave propagates corresponds, as expected, to that of a Rayleigh wave. The results show that a Scholte wave’s
propagation speed is less than or equal to a Rayleigh wave.
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1. Introduction interface [16]. Before discussing the complexity of solving
this equation, let us consider a particular case: the Rayleigh’s

Materials, in general, have different mechanical propertiessecular equation. This last equation was formulated for the
and consequently, body waves propagate differently inside dfrst time by Lord Rayleigh [17], and it arises from posing the
them. In the scientific community, there has always been aRroblem of the propagation of a wave (with spegjlalong
enormous interest in studying the propagation of body wavethe free surface of an elastic and isotropic solid and is de-
since they offer to determine in a non-invasive or destructivescribed as

way, the mechanical properties of the medium through which F(C)=A(C)-B(C) =0. 1)
they travel [1-5]. Its study has allowed obtaining informa- Here A(C') and B(C) are in terms ofv and3 (the compres-
tion on the structure and composition of our planet's varioussional and shear velocities, respectively) as

layers [6]. But they have also been of great help in seismic

prospecting to locate oil deposits on land, shallow and deep 40 = (2- Cj 2
waters [7]. o 82 )

Among the mechanical waves, the most technologically 5 5
attractive are those known as interfacial waves, which emerge B(C) =441 — Q, [1— g 2)
at the interface of two media due to the coupling of both shear B2 a?

and compression waves [8]. The characteristics of this typq.O find a distinct solution from the trivial one”( = 0) in

?r]: wavegélwgich in_ tu(;n r:;]akbe ttrr:em easy tot detectl,l ?;e:ﬂ?kq. (1), Lord Rayleigh [17] proposed to find solutions to
ey rapidly decay in-depth, b) they propagate parallel to €4(C)? = B(C)? (known as the “rationalization method”),

interface between wo media, c) they have the largest aMyhich will lead us to a third order polynomial. The coun-

plitude, and d) they decay more slowly than body waves . : ; -
There are three types of interfacial waves [9]: a) the Stone’;_erpart of this procedure can be obtained by introducing the

ley wave that emerges at the interface of two solids, b) theOIIOWIng new function
Scholte wave that appears at a solid-fluid interface, and c) the f(C) = A(C) + B(C). )
Rayleigh wave or (surface wave) that arises in the free surface
of a solid exposed to a vacuum. Although interface waved\ote that the roots of Eq3f do notcorrespond to the prob-
are commonly used to detect defects in the surface of matéem of the Rayleigh wave propagation, but the equality
rials [10, 11], they can also be used to develop biosensors, 9 9
temperature sensors, pressure sensors, and humidity sensors, F(O)J(C) = A%C) = B (C) =0 “)
among others [12,13, 13]. Due to the feasibility of the phys-eads to the same polynomial as the one obtained by
ical conditions under which Scholte waves can be exciteQayleigh. Thus, it is evident that this procedure introduces
and measured, so its characterization is very attractive for thgyyrious roots that come froff{C). Lord Rayleigh (based
development of technological devices with practical applicagn physical arguments) showed for some particular cases,
tions [14,15]. that Eq. [{) has only one physically acceptable root, which
Theoretically, the zeros of Scholte’s secular equation deshould be real and with speéd < 3. Later on, using the
termine the speed with which a wave moves at the solid/fluidame argument as Rayleigh, Knopeffal. [18] humerically
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extended the solution to the entire range of physically al-2. Scholte’s secular equation

lowable Poisson radii. However, for the case of Rayleigh’'s

wave propagation at the interface of a viscoelastic mediumin general the existence of a wave propagating through the in-
the non trivial solution to Eq[j) is not restricted to real solu- terface of two homogeneous and isotropic semi-infinite me-

tions [19]. Thus, in this last case the discrimination of solu-dia (exponentially decaying) was predicted by Stoneley [30].

tions which come fron#(C) and f(C) is no longer straight- A particular case of a Stoneley wave arises when one of
forward. those semi-infinite media becomes fluid, which is known as

a Scholte wave. The speed propagation of this wél)dg a

As discussed above, the rationalization method restategero of the Scholte secular equation [26, 31-33]
the solution to Eq./d) in terms of a third-order polyno-

mial, the roots of which allow a piecewise solution to be o2\ 2 2 C2

constructed [20-24]. The availability of analytical expres- F(C) = [<2 - 52) - 4\/ 1- 32 1- o2

sions for the respective complex roots may incorrectly sug-

gest additional solutions [25] to Ecl)( Nevertheless, due 2 C 2
. . . . . PF
to the simplicity of the method, it has been used to investi- X4 [1= ozt o (5) 1- =z = 0, (9
F

gate analytically the solutions of both Scholte and Stoneley
secular Egs. [26]. However, because these equations havg gqer the following physical restrictions

larger number of square roots terms, the polynomial order

increases, and consequently, the number of spurious roots in- 02 2
troduced also increases. For these cases, even the numerical e ( 1- 2) >0, Re ( 1- 2) >0,
evaluation of the roots is not an easy task, and in the case of @ B
viscoelastic media, it is practically unthinkable. Nkemzi [27] o2

and Romeo [19], in terms of a method based on Cauchy inte-  Re ( 1— 2) >0,
grals, considered Edl) for both the elastic and viscoelastic Ci

cases, respectively, and demonstrated the existence of only . . . . .
one physical solution. Later Aaez-Garia [28] would con- velhlch ensures solutions with an exponentially decaying be-

sider the same method to solve the Scholte equation for %awor].c Hleretg andg are ihe clt_)(;n:prgs;sr:onal ang spear veI(()jc—
specific range of fluid velocities, which would be extended' o> 0! €1aSlC WaVes In a Solid,y 1S In€ speed of a soun

by Vinh [29], both showing that it also has only one physit:alvv‘"we na fluid, p and'pF are the densities of a Sc.)“d and
solution. fluid medium, respectively. Note that the terms inside of the

square brackets in E¢g)correspond to the Rayleigh charac-
As previously shown, the Scholte secular equation'steristic Eq./d). By convenience we rewrite Eq®)(and 6)
parametrization in terms of the slowness drives directly to dn therms of the dimensionless variable= 3% /C* and pa-
unique physical solution of this expression [28] without anyrametery = o? /%4t = CE /3% as
additional assumptions; then, we propose extending those re-

(6)

sults in the full range of possible fluid velocities. Unlike the F(z)= {ﬁ(% —1)2 — 42z —1\/yz — 1}

work presented by Vinh [29], the current one makes a more \/7

detailed analysis of the solution’s behavior for the different [, 14 PEVY 11— 7
speed ranges with which a wave can propagate in a fluid. So VT + p e 0

the relevance of the present work falls in obtaining a simple
analytical expression to describe the slowness of the Scholtg!

wave for all the range of possible elastic and isotropic media. T T
We also show that the Rayleigh’s wave is a singular solution Re (1 /11— ) >0, Re ( 1— ) >0,
(at the free surface limit) that rises specifically at the connec- Tz
tion point of two fluid speed ranges. 1
Re ( 1-— T > > 0.
Yz

bject to the restrictions

(8)
The article is organized as follows: Sec. 2 is devoted to
give a brief introduction of the Scholte’s secular equation and For any elastic and isotropic medium g, andC are
the requirements for the existence of that solution. In Sec. 3 y e . X edium j, O
) ; A . \ real and positive quantities. In particular, the ratio of speeds
the quotient of discontinuities associated to the Scholte’s sec- ) ! . .
. . . . can be described in terms of Poissow} atio as
ular equation are analyzed, and the continuous continuatioh
of them for different speed ranges was established. In Sec. 32 1— 92y
i i i = == Vryeo0<v<1/2. (9
4 the expression for the unique physical root of the Scholte’s 7 a2~ 21-v) s .
secular equation is obtained and particularly, it is used to re-
cover the Rayleigh wave solution. Additionally, numerical Thus, there are three cases for the study of the characteristic
calculations were included to test the solution of the Scholte’Scholte equatiorid): () Cr > o > 3, (b)a > Cr > [ and

equation. Finally, the conclusions are presented. (¢c) a > 8 > CF, which will be discussed below.
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3. Discontinuities of Scholte’s secular equa-

tion

Ty(t)=t, Vtel/f<t<1/y

In general the branch points &f(z) are localized along the To(t)=t, Vteljy <t <1
real axes: = 1,1/~' and1/+. For each of the cases men- N
tioned in the previous section, these branch points define twd®he respective discontinuity quotient along each arc is de-
main branch cuts (see Fig. 1). For the follow discussion, wescribed as
will make reference to the Rayleigh branch tyt, as the one

, Ft(t) 1+iHy (1)
defined by Gi(t) = =0y, ESTACE
Pr(t)=t, Vt e 1l/y <t <1, (10) Galt) = FY()| _ 1—iHy(t) (11)
. | S . Ty, 1+ i)
which describes the discontinuities presented by the Rayleigh
secular equation [28]. with the auxiliary functions
VL
3.1. Case(@)Cr>a>p Hy(t) = Poy/it=1
! VA2t —1)% + 4ty/T— /T =7t
For this case the arcs over which the discontinuities spans
(see Fig. 1a)) are Hy(t) = dtv1 —ty/yt—1 (12)
2 ﬂ(Zt— 1)2 + ,yTﬂiFi\/’Yt*l.
P\ yit—1
3 'XZ) a) For the range of velocities under consideration, note that
t—1/vy r t—1/v Iy

guarantees the continuous continuation of these functions.
The limit in which the fluid vanishes{ — 0) must satisfy

I'y s
—— O NAAANABAANN ey lim0 H,(t)] =0,
1/~ 1/ 1 Re(z) o 1
. . 1 —iHpg(1)
Sm(z) b) panilon(t) N e oI (13)
A Wherel,, is described by Eql(C) and
41 —ty/yt — 1
Hp(t) = ki (14)
VA2t —1)
T. T is the auxiliary function for the free surface limit [28]. Other-
JUNE.... SR N wise, the corresponding auxiliary functions are described by
] ',A T 1 ',.;% Ve ? Eq. 12).
1/9 / 1 he(z) Moreover, it is prohibitive thatt = ~, since in vacuum
— the mechanical waves do not propagate. However, there is
~Sm(z) C) not physical restriction to consider a fluid medium with den-
A sity pr = p’, where0 < p’ <« 1 for which exist are in the
rangel < € < 1 such thatlCr = o — €. Then, at this limit
we will have
lim Hq(t)| #0,
Cp—a—e I
Fr, F(i
e —  pr——
_—O\NVWWVM o lim  Ho(t)| # Hg(t). (15)
1/~ 1 1/47 Re(z) poaTe Iy

Thus, while a fluid under which the solid-fluid interface may
FIGURE 1. Branch cuts for the functiof'(z) for cases in which: ~ be defined, the contribution to the fluid discontinuities will be
a)Cr>a>f3,b)a>Cr>pBandc)a > 3> Cr. distinct to the free-surface limit.
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3.2. Case (b).a > Cp > f8 Sm(z) a)
For a fluid under this range of velocities, the discontinuities A
(see Fig. 1b)) are described by
FT(t) 1+ iHs(t)
t = =
@O =0, = 1- im0’
F*(t) 1 —iHy(t) I's I's
t) = = 16 T e s TR
Ga(t) F=(t)|p, 14 iH(t) (16) ——— AN e
/A [~T )
with the auxiliary functions 1/ A ! Re(z)
2t —1 Sm(z)
Hstt) = 4t/1—t \tﬁ( \/)TPF VAT A b)
—tAE— 1+ W -
4t\/1 — ty/yt —
) = f” .an
il = ”” I's=Tr
which are defined along the arcs . | '
Ts(t)=t, Vt e 1/y<t<1/~t, T - ’ >
3(t) /v <t<1/y 1/~ 1 Yo(z)
Ty(t)=t, Vt e 1/4f<t<1. (18)
) ] ) o ) Sm(z)
Here the continuous continuation and unicity of solutions A C)
is granted by
li t = 1l =1
t—»llr?'yf G2( ) Ts t—)llr?fy‘f G3( ) I, ’
while for the limit with pp — 0 satisfies 113
1 _ H L] 1
lim Hi(t)| =0, lim Hy(t)| = l_iRu) (29) —— AN e
pr—0 I pr—0 r, L+iHg(t) 1/ 1 Re(z)

as in the previous case. Particularly for this case, note that
the Rayleigh branch ciitzy moves from partially screened to  Ficure 2. Branch cuts for the functiorf’(z) in the case that
unscreeneas the presence of a fluid vanishes (see Fig. 2a) > Cr > gfor: a) the general case, py — 0Oandc)1 /4 — 1.

and b)). HereH i(t) is described by Eql1d). As in a previ-  The branch cut colored in blue represents the fluid discontinuities’
ous case, it could be considered a fluid medium with densitgontribution to the three different cases. The cases in whigh

pr = p # p'intherangd < p” < 1suchthaly = a+e, is totally unscreened and totally screened correspond to Figures b)
with 0 < e < 1. At this limit we will have and c) respectively.
) then, the extreme values 6f;(t), particularly corresponds
CFILH;+E Hy(t) - 7 CFILH;,CHl(t) - #0, and to well-defined values
1 1
lim Hi(t) A lim Hy(t) # Ha(t). (20) lim Gs(t=1/7) = -
Cgp—a+te Ty F—Q—€ T, Y

Thus the connection of discontinuities on both cases (a) and #Tl Gs(t=1)=1.

(b) is granted trough the free-surface limit.
Contrarily to theunscreenedRayleigh branch cut limit,
the full-screeningof Iz occurs whemy' — 1 (see Fig. 2c))

where 3.3. Case(C)a>p>CFp
lim Hy(t)] =0, - . . . N
yf—1 I Within this range of velocities, the discontinuities (see
and Fig. 1c)) are described by
lim Hy(t)| = AlC . (21) Gs(t) = Fr@)|  _ 1+iHs()
i1 e AT =1yt — 1+ 20 b F=(t)|p,  1—iHs(t)
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Go(t) = Ff(t) = 1+Z.H6(t) (22) R(z) = 2y =D vt . 2+ (=12 1
F=@)[p, 1—iHe(t) V7 dy(y—1) 2+t
along the branch cuts PEY ( — %) H
+ 7"~ lape (26)
T5(t)=t, Vtel/y<t<l, 2p(y— 1)
Te(t)=t, YVt el<t<1/y0. (23)  which was obtained through the Bourniston method [34].
This method involves the expansion of E&A.3) in terms
with the auxiliary functions of Laurent series. It should be noted that unlike previous
works [19, 27, 29], the parametrization in terms of slowness
() = V2t —1)° conduces directly to a simple polynomi&gj, and additional
4t/ — e/t — 1 + /4t ee 2=t ’ considerations are not necessary to solve it. In fact, directly
PVt from this polynomial is possible to have one and only one
VA2t —1)2 — 4/t —1AT— 1 physical solution for the Scholte slowness, that is
Hg(t) = NS e . (24) , . .
R e~ B :(ﬁ) _2r+(0 -1
* \C. dy(y—1)
It should be noted that the lowest value whighy could 5
take in this speed range is 1, which implies that not only the 1 PFY (1 - W)
Rayleigh branch cuf' i is always screened for this case, but 24F W —Lape (27)
are also extended beyofitk(z) > 1 (See Fig. 1c)). Which
is evident if it is observed that Here is a correction parameter introduced to enhance the
numerical accuracy of the Scholte root, which is a conse-
lim Gs(t) = lim Gs(t)| quence of the truncation process during the Laurent series
yf—1 I's vi—1 I's expansion (Eq.[4)). Thel,, I, I. terms represent the con-
lim Gy(t) —0. tribution of the discontinuities for the different speed ranges
AT—1 I's and are expressed in terms of EA)( (17) and R4) as
Which establishes the continuous continuation betw@gn 1 i ]
andGs;. On the other hand, for the limit in whighe — 0 we I,=— /arctanHl(t) dt—/arctaan(t) dt|, (28a)
have T © |
Jm G| = i LT -
5 (25) Ib:; /arctanH3(t) dt—/arctanH4(t) dt|, (28b)
lim Gs(t) -1 Lo M -
pF—0 Te 1 T
Here Hg(t) is the auxiliary function defined by Eq14). I"’:} /arCtaan’(t) dH/amtanHG(t) dt| . (28c)
Within this range, the discontinuities quotients are different I's Ts .

to those obtained with the same limit in Eq$3) and (19).

Similar expressions are obtained wheh — 0 is reached, 4.1. The free surface limit

however, their behavior along the drg is not required to be

similar; this is because, in general, we do not have a physicdfontributions associated exclusively with the branch cut,

argument to establish a linear relation betwpemdC/. occur only at the point at which the continuous continuation
of the speed range between cases (a) and (b) odceirshe
pole contribution. Thus, the free surface limit in terms of

4. The Scholte solution Egs. 27), (289 and 28k) corresponds to

Since we have guaranteed the continuous continuation of the lim 2 =2 — 29+ (v - 1)
Scholte discontinuities for the entire range of fluid velocities, pr—0 ¢ " dy(vy—1)
we are in a position to determine the polynomial containing

1
the zeros of Eq. (7). According to the construct@rfor the 1
canonical solution of the Riemann problem, the polynomial * ™ arctan Hy (t) dt, (29)
with only zeros of the Scholte characteristic Ef).i§ 1/y
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ﬁ%g = TABLE |. Input parameters for the different solifi;j and fluid (¢3)
Hrey Semh x  Scholte materials under consideration.
717.4 — Rayleigh , . -
73 Material Label Density Compressional Shear
;1;3(1) [Kg/m®] Speed[m/s] Speed [m/s]
gg: f_ 7 7-A teflorf* S, 2157.7 1307 503
gg: Lucite’ Sa 1180 2680 1100
BY 2= : Silver’ Ss 10400 3650 1610
(E) 7 » Berylium® Sy 1870 12890 8880
o1 s-m . Ice-1° Ss 344 440 304
264 son X Ice-2! Ss 442 1472 755
1.5 * Ko Ice-3° S7 637 2709 1489
0.96 ] Sy-F Si-F Water (Distilledf F 998 1496 -
et Air (dry)® F  1.293 331.45 -
by SeaWateh  F3 1028.15  1442.45 -
8:331 aReference [35]°Reference [36]¢Values taken at sea level [37Values
g:gg: taken at 5 mts depth [37]¢Values taken at 20 mts depth [37f.Density
0.87 computed at sea level)°C, 30 PSU salinity and 1 Atm. [38]. Compres-

T T T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

y sional speed taken from Ref. [39].

FIGURE 3. Sholte ¢s.) versusRayleigh ¢r) slowness as function 4.2
of the Poisson’s ratio. o

Numerical Results

To numerically test the expression in EQ7) for different
or explicitly to solid-fluid interfaces, we have used the parameters in Table |
to illustrate the numerical derivation of the root in each of
9 ) 9 the three different fluid speed ranges. Wolfram Mathematica
2, = <5) _ 2+ (- software was used to implement this expression numerically.
Cr dy(y-1) The root calculated from Eq. (27) was compared with that ob-
1 tained from Eq. (5) utilizing a root finder routine (provided by
n 1 / arctan <4tv 1 —tyt - 1) dt 30) the software). It should be noted that not in all cases, the root
T V2t —1)2 ’ finder routine was able to obtain the correct value, even when
Rl the provided value was close to the zero.

Table Il (for distinct solid-fluid interfaces) shows the cor-
which, according to [28], describes tegactslowness of the rected § # 0) and uncorrected)(= 0) zero values obtained.
Rayleigh’s wave propagation. Note that theerm is notin-  The precision of the corrected roats( (6 # 0)) in terms of
cluded in this expression. the exact root4%) was computed using,

TABLE |l. Values for the associated Poisson’s ratifor each solid-fluid interfaceS; — F;), corrected and uncorrected roots, the correction
parametes and the precision of the corrected rabtassociated to this parameter.

Interface v ZSe ZSe ) A
(Uncorrected) (Corrected)

Sy — Fy 0.4103 1.33931 1.28279 0.54107 4.19 x 107°
Sy — Fy 0.3987 1.63185 1.54761 0.40354 2.78 x 107°
S3 — 0.3792 1.34904 1.25176 3.702 6.6 x 107°
Ss — Iy 0.3792 23.69205 23.59477 2857.6 2.2 %1077
Sy — F1 0.04836 35.47909 35.24175 0.6781 6.3 x 107°
S4 — Fo 0.04836 718.29634 717.77757 1144.4 1.2x107°
Ss — I3 0.0433 3.8311 3.8089 0.0112 3.18 x 107¢
Se — F3 0.3215 2.6407 2.5092 0.1624 5.27 x 107°
S7 — F3 0.2835 1.8804 1.7293 0.5555 2.36 x 107°
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Appendix
A = F(z50) — Flzse(d #0)).

The results are summarized in Table Il . A direct compari- ) ] i ) ]
son of these values shows that the uncorrected root preserit§t US consider a multivalued (or discontinuous) function

a relative error with respect to the corrected one between?'(?) With & pole of finite order at infinity. If we define a Rie-
1% < e < 7%. Thus, even ford = 0 the predicted Mann function for this sheet, it would be analytical (except

root presents a reasonable value. F_inally in Fig. 3 ottt infinity) with its discontinuities isolated and their branch
25.(8 # 0) and zz (computed from Eq.30)) are plotted cuts. Thus, Privalov’s theory [40] allows us to rewrite this
together to compare how the Scholte slowness increases folf@nction in terms of their canonical representation, as

particular interface (and) in comparison with the Rayleigh

A. The method based on Cauchy integrals

slowness. F(z) = R(2)e?), (A1)
where ) I G(1)
n
5. Conclusions g(z):%/ - dt. (A.2)
I

In terms of Cauchy integrals, we have obtained a robust ana4ereR is a rational function that contains the zeros and poles
lytic formula to predict the existence of a unique physical so-of F, G is the quotient of the lateral limit8'(t)* and F'(t)~

lution for the Scholte slowness in all range of possible elastiglong the ard@ (which describes the branch cutsiy, and it
and isotropic media.The appropriated analysis of the discons defined as

tinuities associated to the Scholte secular equation allows us G(t) = Fr(t)

to identify the free-surface limit as a pole contribution. F-(t)

Unlike previous results [29], due to the secular Scholtegj,cepo(2) + 0in all the complex domain, it is directly ob-

equation’s fractional-order, our results show that the truncagepyed from Eq/A.1) that R admits the representation
tion process involved in obtaining the rational polynomial )

does not allow getting an exact solution. However, our nu- R(z) = F(z)e—y(2>_ (A.3)
merical results show that this solution presents a reasonable

approximation to the exact value. Additionally, since slow-If the discontinuities off” are isolated at infinity, we could
ness is the inverse of speed, the results show that a Schokasure thaf? contains this function’s zeros. In other words,
wave’s propagation speed is less than or equal to that of we may obtain a polynomial representation for the zeros of
Rayleigh wave. Fin terms of a Laurent series expansion [34,41].
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