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The temporal fluctuation of the inverse participation ratio for
localized field modes in three-dimensional percolation system
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We investigate the structure of the optical field radiated by the disordered optical nano-emitters randomly incorporated in three-dimensional
cluster of a percolation material. Our numerical studies shown that the temporal variations of the inverse participation ratio allow analyzing
the extended and localized field structures over a long time range. The properties of IPR and the dynamics of the lasing emitters allow to find
the characteristic time scales when the localization of the field in a general three-dimensional disordered system occurs. The studied effect
opens new perspectives to control the optical fields localization in modern optical nano-technologies.
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1. Introduction

The localization of optical fields in disordered materials is
one of the most interesting new concepts of optics. This
type of localization is related to the absence of diffusion in
random materials as a result of interference of all the scat-
tered waves [1]. In disordered optical materials, the multiple
scattering of light and the interferences between propagat-
ing waves lead to the formation of electromagnetic modes, in
particular in three dimensions can be localized or extended
depending on the degree of disorder and other factors. Re-
cent studies have shown the possibility of creating useful op-
tical structures by intrinsic disorder in diverse materials [2,3].
These structures are planned to be more economical and re-
quire relatively simple technology. This has increased the
need to create favorable systems for light localization [4–10].

Disordered structures have been studied for investigation
of complex optical phenomena, including light localization
and random lasing [11–13].

Random lasers are mirror-less lasing systems that use
highly disordered materials to obtain laser action [13]. Sev-
eral models of random laser are available,e.g., diffusive feed-
back model, that has been applied to obtain absorption curves
and energy velocities [14]. Transfer matrix model [15] has
applications on the calculations of laser frequencies, thresh-
old and spatial distribution of laser modes. Hakanet al. ap-
plied time-independent Maxwell-Bloch equations coupling
the electrical field equations, polarization and inversion on
a gain media. Similar approaches are generally used to study
low dimensional systems [16–18].

Since the classical diffusive model cannot correctly de-
scribe the photon propagation on a dispersive gain media or
with non-uniformly distributed loss [19], in this work we pro-
pose the use of the vectorial Maxwell-Bloch equations based
on the three-dimensional (3D) Finite-difference time-domain
(FDTD) method [20,21], instead of a diffusive approach.

Many works on 3D systems are focused on finding the
critical disorder [9, 10], fractal dimension of critical modes
[22, 23], as well as extended states [24] and localized. This
last has been discussed on the photon free path regime for the
strong [25-27] and weak [28] localization cases.

Previous efforts have concentrated on finding the com-
plete characterization that encompass longitudinal and time
scales [29]. We found very few studies about the time dynam-
ics of random lasers and their correlations with inverse par-
ticipation ratio (IPR) on the optical localization regime. For
example, in [9], the relation of IPR was calculated to evaluate
quantitatively the localization degree of a field in a 3D sys-
tem. In that work the existence of light localization near the
percolation threshold was proven. However, the study was
performed for a time that does not exceed the critical time of
lasing percolation. Our work could be an extension of that re-
sult in the scope of weak localization, in which we show that
is possible to obtain localization on a wide temporal range,
under and above of the percolation threshold of a 3D system.

In this paper we study the optical radiation of nanoemit-
ters incorporated into 3D structures, where the spanning clus-
ter serves as a set of bonds linking the pores of random size
through which the field radiation of nanosources can flow .

The study of IPR behavior allows to relate the number
of sites that participate in the field eigenstates [30]. Our
treatment of the time dynamics of the field, through the
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Maxwell-Bloch equations coupled to the levels of emitters,
besides IPR, permit to situate spatial and temporally the op-
tical modes on the 3D system. This is one of most important
integral characteristics of the optical field structure.

This paper is organized as follows. In Sec. 2 we formulate
our basic model, approaches and the equations to study the
structure of radiation field associated with nano-emitters in-
corporated in 3D percolating cluster. In Sec. 3 we present our
numerical finite-difference time-domain method results for
the properties of the field localization radiated by the emit-
ters. Finally, in Sec. 4 we present our conclusions.

2. Basic considerations and equations

We consider a three-dimensional disordered cluster system,
where the clusters are filled by an active media composed
by light emitters. In such a non-uniform spatially disordered
structure the radiating and scattering of field occurs in an in-
coherent way. The advantage of the time-dependent model is
that one has access in principle to the full nonlinear dynamics
of the laser system.

We follow the approach as in Ref. [31] to calculate the
wave propagation in random media with gain. This model
combines semiclassical laser theory with Maxwell’s equa-
tions as follows. Incorporating a well-established FDTD, this
model describes the coupling of emitter population rate equa-
tions (with different levels) to the field equations. Also, we
calculate the integral emission of electromagnetic energy flux
I from a cubical sample(x, y, z), wherex, y, z ∈ [0, lo], and
lo is a typical size for the nano system structureslo = 10−4

m.
We solve numerically the following equation

∂2P
∂t2

+ ∆ωa
∂P
∂t

+ ω2
aP =

6πε0c
3

τ21ω2
a

(N1 −N2)E. (1)

Here, we couple the polarization densityP, the electric
field E, and occupations of the levels of emitters, to find the
optical emission from the system. In this equation,ωa is the
frequency of radiation,ε0 is the vacuum permittivity,c is the
velocity of light in vacuum, andτ21 is the decaying time from
the second atomic level to the first one.

We find the electric and magnetic fieldsE and H from
the Maxwell equations, together with the equations for the
densitiesNi(r , t) of atoms residing ini-th level [32]. In the
case of lasers up to the fourth level,i = 0, 1, 2, 3, these rate
equations read as (see [31] and references therein) .

∂N3(x, t)
∂t

= ArN0(x, t)− N3(x, t)
τ32

, (2)

∂N2(x, t)
∂t

=
N3(x, t)

τ32
+

j(x, t) · E(x, t)
~ωa

− N2

τ21
, (3)

∂N1(x, t)
∂t

=
N2(x, t)

τ21
− j(x, t) · E(x, t)

~ωa
− N1

τ10
, (4)

∂N0(x, t)
∂t

=
N1(x, t)

τ10
−ArN0. (5)

The lifetimes and energies of upper and lower lasing lev-
els areτ21, E2 and τ10, E1, respectively. Therefore, the
individual frequency of radiation of each emitter isωa =
(E2 − E1)/~. An external source excites emitters from the
ground level(i = 0) to third level(i = 3) at a certain rate
Ar, which is proportional to the pumping intensity in exper-
iments. After a short lifetimeτ32, the emitters transfer non-
radiatively to the second level. Emitters can decay from the
upper (second level) to the lower level (first level) by both
spontaneous and stimulated emission, here(j · E)/~ωa is the
stimulated radiation rate. Finally, emitters can decay nonra-
diatively from the first level back to the ground level. Below
we consider the situation when the incipient percolating clus-
ter is completely filled with light sources.

In calculations, we consider the gain medium with pa-
rameters close to GaN powder, similar to Ref. [33]. The las-
ing frequencyωa is 2π × 3 × 1013 Hz , the lifetimes are
τ32 = 0.3 ps,τ10 = 1.6 ps,τ21 = 16.6 ps, and the dephas-
ing time isT2 = 0.0218 ps. Suppose that in each node of
the network there are many emitters, in such a way that the
total density of emitters inside the percolation cluster being
N = N0 + N1 + N2 + N3 = 3.3 × 1024 m−3. The re-
fractive index of a host material isn = 2.2 that is close to
the typical values for ceramicsLu3Al 5O12, SrTiO 3 , ZrO2,
see review [34]. To simulate the noise in our system the ini-
tial seed for the electromagnetic field has been created with
random phases at each node. In the structure all internal un-
coupled clusters have been omitted. The percolation cluster
has a sponge structure, that depends on the actual random
sampling, re-running simulation with another random seed
value will lead to percolation cluster with somewhat different
geometry.

The inverse participation ratio is the average of the fourth
power of the wave function and it is a convenient quantity
which distinguishes the extended state from the localized
state [35]. To evaluate quantitatively the degree of field lo-
calization, we calculate the inverse participation ratio defined
as

I =
l3o

∫ |E|4d3r(∫ |E|2d3r
)2 , (6)

For small values of the IPR the field extends over the en-
tire cubic network. Nevertheless, there is a minimum critical
value of the IPR above from there the localization of the field
in the medium exists, as confirmed in Ref. [9] with the FDTD
numerical simulations. Also in Ref. [9] it is observed that
I(p) ∼ 0.5 up to percolation transition zone forp < pc and
I(p) changes sharply atp ' pc where the percolating phase
transition occurs. Here, we focus our attention on the calcu-
lation of the IPR for fixed value ofp = 0.49. Our motivation
to usep = 0.49 is simple, for this value ofp, we already pass
the critical percolation valuepc = 0.318, and we have almost
the same probability of having pores or material.
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3. Numerical results

There are many ways to add disorder to a sample. In our
study, in addition to the parameterp defined as the proba-
bility of pore occupation, we have added randomness to the
radio of the pores, similar to the approach made in Ref. [36].
We characterize the radiusr as a random variable function
uniformly distributed in the interval[a, b] wherea = [1− α]
andb = [(1 + α)R], for 0 < α < 1 andR > 0 is the average
radius,σ2 = R2α2/3 is the standard deviation forri, andri

is the radius ofi pore, for more details see [36].

In what follows we simulate the radiated field distribu-
tion by FDTD techniques for indicated parameters. The se-
quence of the simulations is as follows: i) calculating the ge-
ometry of the percolation cluster forp = 0.49 and average
radiusR = 0.49; ii) calculating the photon fieldE gener-
ated by spatial nanosources incorporated in this cluster deals
with the use FDTD techniques [21]; iii) obtain the dynamics
of the emitters Eqs. (2-5) and the energy flowI, such that
I =

∮
s
(K · n)ds, whereK is the Pointing vector andn is

the normal unit vector to the surfaces of the cube; finally iv)
calculation of IPR Eq. (6), for each simulation time. In our
calculation the following dimensionless variables are used:
r → /l0, t → (c/l0), wherel0 is the size of the system and
c is the velocity of light in vacuum. Our results are shown in
Figs. 1-6.

Figure 1 shows the dynamics of levelsN1 andN2, as well
as the energy flowIx in thex direction, whenσ = 0.04. Af-
ter an initial excitation time a large number of emitters are
synchronized to contribute to the stimulated radiation, this is
observed in theIx curve (blue line), which shows some os-
cillations over time, these oscillations are the result of the

FIGURE 1. Time dynamics of the field and lasing level populations
obtained from the numerical FDTD simulations of the system for
parametersL = 100 andσr = 0.04. a) The dotted blue line shows
the energy flowIx in the x direction as the function of time, the
lasing levelsN1, andN2 populations are displayed in black and
green line respectively. b) The average IPR as function of time
(10−9 s). The inset exhibits the amplitude of the localized field
mode in outputx = 25, y = 50 for time10.

FIGURE 2. (Color online) Dynamics of the population of lasing
levelsN1,2 (green and black lines respectively) and the IPR (red
line) as functions of time forσ = 0.1. We observe that the IPR has
periodical fluctuations (maximal values) related to the field local-
ization in timest = 10, 21 and29.

inhomogeneity of the structure. We can clearly see thatIx

has three maxima over time, specifically at timest = 8, 19
and28.

When an excitation is applied, this causes the atoms ini-
tially in the lower energy level (N1) to begin stimulated tran-
sitions or “jumps” up to the higher energy level, so we can
observe that the first oscillation of theN1 level ( black curve)
is ascending near timet = 6. At the same time, the same ap-
plied excitation will also cause any atom initially at the higher
energy level (N2) to start making stimulated transitions and
their energy jump down at a rate that is proportional to the
intensity of the applied signal, multiplied by the number of
atoms at the initial level (that is, higher). We can observe the
above in the initial behavior ofN2.

At the intersection of both levels (N1 andN2) the max-
imum amount of energy emerges in the percolation cluster,
this is why att = 8 we observe the greatest amplitude for
Ix. The same goes for timest = 18 and28, but with smaller
amplitudes.

Figure 1b) shows the dynamics of the IPR as a function
of time, we can see two maxima in the IPR, labeled asM1 at
t = 10.5 andM2 at t = 22. In a neighborhood ofM1 we
found a dominant mode with localized field amplitude for a
time t = 10. However, in the vicinity ofM2 there has not
been enough accumulated energy to obtain a localized field,
this is because at that point the IPR∼ 0.38, which is not suffi-
cient to achieve the effects of localization in the environment,
as explained in Sec. 2.

Figure 2 shows the dynamics ofN1, N2 and the IPR as
a function of time forσ = 0.1. We can observe that the IPR
reaches its maximum values with the possibility of finding a
field localized at timest = 10, 21 and29; these maxima of
the IPR are associated with the decay of theN2 level. By
conservation of energy, the radiation must flow somewhere,
and this is reflected in the elevation of the IPR values. Above
the graphic of the IPR (in red), we can observe the modes
localized in the vicinity of the aforementioned times; these,
modes are shown in Fig. 3.

Rev. Mex. Fis.67 (2) 285–291
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FIGURE 3. (Color online) The spatial distribution of field|Ex| for the parameters shown in Fig. 2 at different times. From panels a)-f) we
observe various spots corresponding to the modes localized with large amplitude in the area free of emitters.

Figure 3 shows the distribution of the|Ex| field in some
times for the results shown in Fig. 2. In Fig. 3, we can see
some circles with a field width localized for different times.
Herez represents one of the 3D system planes for a better
viewing. We want to note that there is no single time for
which we can find a localized field, but in the vicinity of the
maximum (IPR)∼ 0.5, the probability of finding high ampli-
tude modes is very close to one, as we show below.

FIGURE 4. (Color online) Dynamics of laser levels populations
N1, N2 and IPR forσ = 0.3. The insets show that the peaks of
IPR shown in Fig. 3b) correspond to the 3D localized field modes
in the times where the IPR∼ 0.5, these times aret = 10, 20 and
29.

In Fig. 4, the same as in Fig. 2 is shown, but nowσ = 0.3.
In this situation, percolation has not yet occurred as in the
previous cases. The internal panels show some planes of the
3D system with modes localized in the times where the IPR
∼ 0.5, these times aret = 10, 20 and29.

FIGURE 5. (Color online) Numerical simulations made for system
cubic network of sizeL = 100 for σr = 0.6. a) Average of the
IPR calculation as a function of time, (red line). Densities of the
lasing levelsN1, andN2, black and green line respectively. b) Dis-
tribution of the|Ex| field at timet = 18, the spot color boxes show
the field in the position of the emitters. c) Distribution of the|Ex|
field at timet = 27, the point aroundx = 85, y = 40 exhibits the
localized field amplitude.

Rev. Mex. Fis.67 (2) 285–291
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FIGURE 6. (Color online) Amplitude of the field|Ex|, generated by the emitters incorporated in the percolating cluster atσ = 0.6. Arrow
A shows one of the localized field mode in the 3D cube. b) Same as in a), but with a more detailed view, where one of the localized modes
indicated by the symbolA is displayed in part of 3D cube.

We want to compare what happens in the sample with in-
corporated nanoemitters once the percolation has occurred.
This situation is shown in Fig. 5, where we have usedσ=0.6,
a value for which a large cluster is formed that spans the en-
tire network. In Fig. 5a, we can see that there is a longer
synchronization time of the laser levels; this is because the
number of pores in the system has increased considerably and
therefore the volume has increased. Near timet = 28, N2

reaches its minimum value. It is interesting that the IPR in
this situation is a constant value∼ 0.5, so we would expect
that for each time there would be localization of the field.
However, in Fig. 5b for a timet = 18, we can observe the
positions of the emitters in the sample, and the coorespond-
ing amplitude of the fieldEx without presenting a localized
field. On the other hand, for a timet = 27, after the laser gen-
eration has occurred, we observe some mode in the position
x = 80, y = 40 (Fig. 5c) with localized field amplitude, other
modes appear in the sample but with less amplitude. We can
conclude that in order to obtain a field localized at different
times, it is necessary and sufficient that the IPR reaches max-
imum values of approximately 0.5 , and the laser generation
occurs in the percolation cluster.

Figure 6 shows the isosurface of the amplitude of theEx

3D field. In this case the field is generated by the emitters
incorporated in the percolation system withσ = 0.6. Fig-
ure 6a clearly shows some inclusions in blue color occupy-
ing different parts of the sample. Figure 6b shows a detailed
view of Fig. 6a. We can see that the localized field structure
is localized beyond the source area (indicated by the symbol
A), whose shape is normally ellipsoidal, coinciding with the
characteristic property of finding closed cycles in the optical
localization.

One drawback of our proposed method is based on the
huge quantity of computational resources needed to work

3D problems. To overcome these limitations, different ap-
proaches such as solving the wave equation in the frequency
domain could be used, see [37].

4. Conclusions

We have investigated the structure of the optical field radi-
ated by the disordered nano-emitters randomly incorporated
in three-dimensional cluster of a percolation material. Our
numerical studies shown that the temporal variations of the
inverse participation ratio allow analyzing the extended and
localized field structures over a long time range. The prop-
erties of IPR and the dynamics of the lasing emitters allow
to find the characteristic time scales when the localization of
the field in a general three-dimensional disordered system oc-
curs.

Studied conditions are considered for a general case and
thus, are independent of the occurrence/absence of the per-
colation in system. Due to this study, one can evaluate the
times in which the localized modes of maximum amplitude
are recovered in the 3D system. The combination of localiza-
tion and random lasing has practical consequences because
every individual random-laser source would give a unique
emission spectrum defined by the specific localized modes
in each sample. Such modes can be used as resonators to
add functionality to photonic components. The studied effect
opens new perspectives to control the optical fields localiza-
tion in modern optical nano-technologies.
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