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A new scheme of coupling and synchronizing low-dimensional dynamical systems
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A different approach to the study of synchronization between chaotic systems is presented. This is done by using two different forced
coupled nonlinear circuits. The way of coupling the systems under study is different from those used in the analysis of chaos in dynamical
systems of low dimensionality. The study of synchronization and how to manipulate it, is carried out through the variation of the couplings
by calculating the bifurcation diagrams. We observed that for rather larger values of the coupling between the circuits, total synchronization
is reached, while for small values of the coupling it is obtained, in the best of the cases, partial synchronization.
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1. Introduction

From the seminal work by Pecora and Carroll [1] on syn-
chronization in experiments of electrical circuits, numerous
works on this theme have been published [2]. In particu-
lar, four systems of low dimensionality have been extensively
studied in a systematic way to understand the chaotic behav-
ior and the synchronization; namely, Lorenz and Rössler sys-
tems and Duffing and van der Pol oscillators. We can men-
tion, for instance, that it has been observed that two coupled
van der Pol oscillators show a rich fractal structure whenever
they interact [3]. Other systems based on the forced Duffing
oscillator [4–6], as well as the coupled Lorenz or Rössler sys-
tems [7,8] have also been analyzed. The dynamics of coupled
nonlinear oscillators, identical or not, with the same kind of
attractors is still under scrutiny. Nevertheless, the dynamics
of these systems with different kind of attractors is hardly
been studied and it could give rise to important information.
In fact, a system of coupled oscillators could model real sys-
tems in nature [8], such as hysteresis or resonant phenomena
like the found in biological or electromechanical systems.

As far as the coupling between two different oscilla-
tors is concerned, there exist three distinct basic schemes of
coupling that have been used in the literature, namely: gy-
roscopic (coupling through acceleration), dissipative (cou-
pling through speed) and elastic (coupling through solution)
[9–15]. Among the diverse ways of coupling the van der
Pol and Duffing systems, the most common are the elastic
and dissipative ones [13–17]. However, up to our knowl-
edge, there are no previous studies on how to mix different
couplings between distinct dynamical systems. In this work,
it is proposed to combine elastic and dissipative couplings
into a dynamical system in order to achieve synchronization.

Previous studies on synchronization are only based on us-
ing a single type of coupling. There exist several proposals
for synchronizing two dynamical systems, such as the adap-
tive method, the feedback method [2] and, more recently, the
fuzzy control [18] or the bang-bang method [19, 20]. One of
the most used ways to check whether two dynamical systems
are synchronized is through the error function [2] or equiva-
lent by means of a straight line in the plane of the correspond-
ing variables.

The study of synchronization is mainly motivated by
the fact that the phenomenon is observed in many coupled
systems ranging from biological to physical systems. Syn-
chronization occurs in many natural and technological sys-
tems, from cardiac pacemaker cells to coupled lasers [21,22].
Therefore, understanding the mutual interactions of coupled
oscillators and obtaining consensus and phase locking among
corresponding states of these oscillators leading to their syn-
chronization is a key challenge. Thus, the comprehension
of how individual rhythm of oscillation in the systems ad-
just with each other such that the coupled systems oscillate
with a common frequency, is yet a problem that needs atten-
tion [23]. There are several schemes to enforce synchroniza-
tion on a pair of systems: The master-slave, the mutual, or
the adaptive, just to mention a few [24,25].

Chaos in electrical circuits is a topic of current interest
from both theoretical and experimental point of view. The
synchronization of a chaotic system is of interest due to its
applications in encrypting signals and in secure communica-
tion systems, in both stable and chaotic regions. The Chua
circuit is the simplest electronic circuit exhibiting chaos, and
many well-known bifurcation phenomena, as verified from
numerous laboratory experiments, computer simulations, and
rigorous mathematical analysis. This circuit consists of an
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inductor, a resistor, two capacitors, and a nonlinear element
called Chua diode [26, 27]. The Chua diode provides the
non-linearity to the circuit, the nonlinear part is represented a
three-segmented piecewise linear function.

In a work by Gonźalez et al., (GEA) [28] the chaotic
dynamics was analyzed by means of circuits with nonlinear
parts performed by three-segmented piecewise linear func-
tions. This nonlinear function is different from the corre-
sponding provided by the Chua diode, and it is generated by
saturation of the operational amplifiers. The system presents
a double-scroll located around the break point of the nonlin-
ear function. We will be using this system for the subsequent
analysis. The subject in this work is twofold: to propose a
different way of coupling distinct low-dimensional dynam-
ical systems and introduce a way of measuring the degree
of synchronization through bifurcation diagrams varying the
coupling constant between the coupled systems. To this end,
we employ a modified system of that given by the GEA cir-
cuit, where the nonlinear function is used in the two equa-
tions describing the dynamical system. The modified circuit
is coupled to the GEA circuit to illustrate the synchronization
between the systems in terms of the bifurcations diagrams.

An outline of this paper is as follows. In Sec. 2, it is
briefly studied the main features of the GEA circuit. In Sec. 3,
it is presented a modified GEA circuit that will be used to
study the synchronization. Section 4 is devoted to exemplify
the proposed way of synchronization trough the use of bifur-
cation diagrams. In Sec. 5, some final remarks and an outlook
are presented.

2. Forced nonlinear circuit

The GEA circuit [28] is shown in Fig. 1a). By applying Kir-
choff’s laws and using as variables the voltageuc, on the ca-
pacitor, and the current in the inductanceiL, it is found that
the equations governing the dynamics are

L
diL
dt

= v(uc)− b sin(ωt)−RLiL − uc,

C
duc

dt
= iL, (1)

wherev = v(uc) represents the nonlinear function, which is
given by

v(uc) =
G1

2

(∣∣∣∣uc +
Vz

G1

∣∣∣∣−
∣∣∣∣uc − Vz

G1

∣∣∣∣
)

(2)

and its behavior is displayed in Fig. 1b).
The external forcing is assumed periodic given by

b sin(ωt), whereb is the amplitude. This signal is injected
into the nodeF (see Fig. 1a)). In the setup of the circuit
it is used the componentsR1 = 200 kΩ (potentiometer),
R2 = R4 = R5 = R6 = R7 = 100 kΩ, R3 = 1 kΩ
(potentiometer),RL = 1 kΩ (potentiometer),C = 100 nF,
L = 100 mH, Z1, Z2 are Zener diodes of 4.7 V,A1 andA2

are operational amplifiers (OA’s) LM741CN. These OA’s are
driven at±12 V. The OAA2 is used as unity gain, being their

FIGURE 1. a) Forced GEA circuit. b) Nonlinear function.

drivers the forcing and the output of the voltage limiter. The
output signal fromA2 is used as a feedback through a RCL
circuit as low-pass and it is injected intoA1 which acts as an
inverse gain. The gainG1 is

G1 = 1 +
R1

R2
.

The nonlinear function is due to the voltage limiter connected
to the output of the OAA1, performed by the resistorR3 and
the Zenner diodesZ1 y Z2 at 4.7 V. The maximum output
voltage of the limiter isVZ = 5.3 V, since the the Zenner
diodes operate as regulators. In Fig. 1b) is displayed the volt-
age of the limiter as function of the voltageuc on the ca-
pacitorC, for the case in whichR3 is adjusted very small
compared with respect to the others resistors in the circuit.

To carry out the dynamical analysis of the GEA circuit,
it results useful working with a mathematical model with the
minimum of parameters demanding the model describes the
same dynamics. For this propose, it is convenient transform
in Eqs. (1) and (2) into a set of dimensionless equations by
means of the following change of variables. For the dynami-
cal variables, we have:

x =
G1uc

Vz
, y =

G1iLRL

Vz
, τ =

t

RLC
, (3)

while for the constants

α1 =
R2

LC

L
, Ω1 = wRLC, γ1 =

G1b

Vz
.
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FIGURE 2. a) Attractor of the GEA system. b) Bifurcation diagram
as function of the control parameterα1.

In this manner, the dynamical system becomes

ẋ = y,

ẏ = α1 (f(x)− x− y − γ1 sin(Ω1τ)) , (4)

where the over dot stands for the derivative with respect to
theτ variable andf(x) represents the dimensionless nonlin-
ear function in Eq. (2) given by

f(x) =
G1

2
(|x + 1| − |x− 1|) . (5)

An analysis of Eq. (4) considering it as an autonomous sys-
tem (by settingγ1 = 0) shows that the system has three fixed
points, from which two are stable located at(±G1, 0). Notice
that the stable points exist ifG1 > 1. The third fixed point is
located at the origin and acts as a saddle point.

To study the evolution of the GEA circuit, we perform
numerical simulations using Eq. (4), with the following val-
ues for the parameters:α1 = 0.09, Ω1 = 0.254, γ1 = 1.14
andG1 = 3.25. In Fig. 2a) it is shown the resulting tra-
jectory in the phase space, which is a double-scroll. Fig-
ure 2b) shows the bifurcation diagram withα1 as a parameter
of control, which vary from0.04 to 0.13 with initial condi-
tionsx(0) = 0.0 andy(0) = 0.5. Looking at the bifurcation
diagram, is to see some ranges where the double-scroll struc-
ture is maintained.

3. Proposed nonlinear oscillator

Taking into account the GEA circuit previously described,
we propose a nonlinear oscillator based on the same nonlin-
ear function of this circuit. The difference of the resulting
nonlinear oscillator consists in the fact that it has two nonlin-
ear piecewise functions with different amplitudes and slopes
corresponding toε1g(u) andε2g(u) functions (see Eq. (6)),
which give rise to an oscillator with a more complex dynam-
ics. The advantage of the two piecewise functions, when we
implement the synchronization with the GEA circuit, consists
in that the system now comprises of three piecewise func-
tions with different amplitudes and slopes, namely:ε1g(u),
ε2g(u) andα1f(x). The schematic diagram of the new cir-
cuit is shown in Fig. 3a). The dynamics is governed by the
equations:

u̇ = v − ε1g(u),

v̇ = −α2u + ε2g(u) + γ2 sin(Ω2τ), (6)

being the nonlinear functiong(u), the same as the given in
Eq. (5), but, in general, with different gainG2:

g(u) =
G2

2
(|u + 1| − |u− 1|) . (7)

We calculate the fixed points of (6), by considering the sys-
tem as an autonomous one (by settingγ2 = 0). The resulting

FIGURE 3. a) Used nonlinear oscillator. b) Attractor of the nonlin-
ear oscillator.
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sulting system presents three fixed points, from which two
of them are stable and located at(±(ε2G2/α2),±ε1G2).
Again, these points exist ifG2 > 1. Again, these points
exist if G2 > 1. The third fixed point is located at the origin
and, as in the case of the GEA system, it is a saddle point.

In order to study the dynamical behavior of the proposed
system, we perform numerical simulations using the follow-
ing values for the parameters:

α2 = 0.712, ε1 = 0.12, ε2 = 0.171,

Ω2 = 0.113, γ2 = 0.769, G2 = 9.5

With these particular values, the system presents the solution
presented in Fig. 3b), which is also a double-scroll attractor.

4. Synchronization of the nonlinear oscillators

In this section we propose a different manner of coupling
chaotic systems to reach the unidirectional coupling, this is
done for the nonlinear oscillators previously studied. Let
us stress that the synchronization between coupled forced
systems has been hardly studied [29, 30], because there are
few low-dimensional chaotic systems known in the litera-
ture. Three of the most studied oscillators are the Duffing,
van der Pol, and Rayleigh, since much of the dynamical fea-
tures embedded in the physical systems can be realized in
these systems [31–33]. One important implication is that a
two-dimensional continuous dynamical system cannot give
rise to a strange attractor. In particular, chaotic behavior only
arise in continuous dynamical systems whose phase space
has three or more dimensions. Most of the research on syn-
chronization is based on autonomous systems that satisfy the
Poincaŕe-Bendixson theorem.

The dynamics of the resulting coupled system is governed
by

ẋ = y + K(u− x),

ẏ = α1 (f(x)− x− y − γ1 sin(Ω1t)) + K(v − y),

u̇ = v − ε1g(u) + H(x− u),

v̇ = −α2u + ε2g(u) + γ2 sin(Ω2t) + H(y − v), (8)

where the nonlinear functionsf(x) and g(u) are given in
Eqs. (5) and (7), respectively, and we uset instead of the
τ parameter. Firstly, notice that the coupling in Eq. (8) is
between different dynamical systems. Secondly, the systems
in question are under an external forcing. Finally, and more
importantly, is that the way of coupling the circuits in this
work is new: instead of using one coupling constant, we use
two, namely:K andH. This way of coupling has the advan-
tage that allows to choose one of the systems as the master
and the other as the slave or conversely by putting one of the
constantsK or H to zero. ForK = H = 0 case, both os-
cillators decouple. The coupling employed in the system is a
kind of linear feedback that can be seen as a perturbation for

each oscillator proportional to the difference of the position
(elastic coupling) and the velocity (dissipative coupling). Let
the system evolve toward a chaotic region. We will study the
dynamical evolution.

In first place, we setH = 0 and takeK as the param-
eter to be varied. In this case, we have an unidirectional
coupling because the proposed nonlinear circuit acts as the
master while the GEA circuit will act as slave. The synchro-
nization scheme introduced here is indeed a modified version
of the classical master-slave synchronization. The key dif-
ference is that we have two couplings, the elastic one cor-
responds toK(u − x), and the dissipative one represented
by K(v − y). In this instance the synchronization scheme is
given by

Master :

{
u̇ = v − ε1g(u)
v̇ = −α2u + ε2g(u) + γ2 sin(Ω2t),

(9)

Slave :





ẋ = y + K(u− x)
ẏ = α1

(
f(x)− x− y

−γ1 sin(Ω1t)
)

+ K(v − y),
(10)

In general, the synchronization problem reduces to find-
ing a suitable value of the coupling strengthK, (denoted by
K∗) being in the rangeK ≥ K∗ > 0, such that the master
and slave systems synchronize. Thus, for a coupling strength
K∗, when the synchronization is reached, the error function
goes to zero:

lim
t→∞

| u(t)− x(t) |= lim
t→∞

| v(t)− y(t) |= 0. (11)

For certain systems, it is not possible to achieve synchro-
nization when using the classic master-slave system. Specifi-
cally, there are cases for which it is impossible to find a value
of coupling strengthK∗ such that the systems achieve the
synchronization [34]. This work elaborates on a possible so-
lution for the problem above described. In particular, we con-
sider a modified master-slave scheme which may induce syn-
chronization even in cases where the classical master-slave
synchronization fails.

The bifurcation diagrams are obtained through the solu-
tions of x(t), y(t), u(t), v(t), | u(t) − x(t) | and | v(t) −
y(t) |, takingK as a control parameter which is varied in very
small steps from 0 to 50. As it can be observed from Figs. 4a)
and b), the bifurcation diagrams for the variablesx(t) and
u(t) coincide in most part of the range of the parameterK.
This indicates that the systems are synchronized, except for
values ofK close to zero, for which the systems are par-
tially synchronized. Notice that the coincidence is not only
in the magnitude of the variables but also in the number of
curves. The very same coincidence occurs in the bifurcation
diagrams for the variablesy(t) andv(t) shown in Figs. 4c)
and d). As before, the coincidence is better for larger values
of K. This means that the systems are coupled unidirection-
ally. In addition, it is observed that the synchronization is
realized in both thex−u and they−v channels. In the men-
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FIGURE 4. Bifurcation diagrams, the control parameter isK. a) The solutionx(t) represents the function of GEA oscillator. b) The function
u(t) is for the proposed oscillator. In c) and d) the bifurcations diagrams for they andv variables are shown.

FIGURE 5. Bifurcation diagrams for the error signals: in a) is presented| u(t)− x(t) |, and in b) the| v(t)− y(t) | function.

tioned cases the synchronization is complete. However, in
practical applications, such as the sending information, the
channelx− u has a larger range of control [2].

As it is well known, one of the most used ways of proving
whether two dynamical systems are synchronized is through
the error function. The bifurcation diagrams for the error
functions| u(t) − x(t) | and| v(t) − y(t) | allow us to find
the range of values ofK for which the synchronization of the
x − u andu − y channels take place, as it can be observed
from Figs. 5a) and b).

In order to corroborate the fact that the level of synchro-
nization can be analyzed through bifurcation diagrams, let

us consider the graphs shown in Fig. 6, that were obtained
by taking the valueK = 50. For this value the master sys-
tem (the proposed circuit) is in the regime of a double-scroll
attractor. From this figure, it can be appreciated that in chan-
nelsx − u andy − v the dynamics of the GEA oscillator is
controlled by the proposed oscillator and that the systems in
these channels, according to in Figs. 6c) and d), are synchro-
nized.

Let us now takeK = 0 in Eq. (8) and consider as con-
trol variable the couplingH. In this instance, we have an
unidirectional coupling where the GEA oscillator acts as the
master system and the proposed oscillator as the slave.

Rev. Mex. Fis.67 (2) 334–342
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FIGURE 6. Unidirectional coupling, by using the parameter controlK = 50. In a) it is displayed the double-scroll attractor for the proposed
nonlinear oscillator. In b) is presented the corresponding attractor for the GEA circuit, while in c) and d) are shown the synchronization
signals in thex− u andy − v channels.

FIGURE 7. Bifurcation diagrams. The control parameter in this case isH. a) The functionx(t) represents to the GEA nonlinear oscillator.
b) The functionu(t) represents proposed nonlinear oscillator. In c) and d) the bifurcations diagrams for they andv channels are shown.
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Master :

{
ẋ = y

ẏ = α1 (f(x)− x− y − γ1 sin(Ω1t)) ,
(12)

Slave :





u̇ = v − ε1g(u) + H(x− u)
v̇ = −α2u + ε2g(u)

+γ2 sin(Ω2t) + H(y − v)
, (13)

The elastic coupling corresponds toH(x− u), and the dissi-
pative one toH(y− v). As before, the synchronization prob-
lem reduces to look for a suitable value of coupling strength
(denoted in this case asH∗), with H ≥ H∗ > 0 such that the

master and slave systems synchronize. For this case the error
functions read as

lim
t→∞

| u(t)− x(t) |= lim
t→∞

| v(t)− y(t) |= 0. (14)

Again, the bifurcation diagrams, withH as control parame-
ter, are obtained through the functionsx(t), y(t), u(t), v(t),
| u(t)−x(t) | and| v(t)− y(t) | by varyingH in small steps
along the interval from0 to 50.

As it can be observed in Figs. 7a) and b), the bifurcation
diagrams for thex(t) andu(t) variables, which are functions
of H, coincide as the intensity of couplingH is increased.

FIGURE 8. Bifurcation diagrams for the error functions as a function ofH parameter. In a) it is shown| u(t) − x(t) |, while b) shows the
| v(t)− y(t) | function.

FIGURE 9. Unidirectional coupling for the valueH = 50. In a) it is shown the double-scroll attractor generated by the GEA circuit and in
b) it is shown the corresponding attractor for the proposed circuit. In c) and d) the corresponding synchronization signals of thex − u and
they − v channels are shown respectively.
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These functions agree not only in the respective values of
the functions but also in the number of lines. Nevertheless,
the bifurcation diagrams for they(t) andv(t) functions coin-
cide partially, as it can be appreciated from Figs. 7c) and d).
The coincidence is better as the intensity of the coupling in-
creases, being practically the same functions for rather larger
values ofH. Notice that, in this case, the number of lines
generated does not coincide. This means that there exists
only partial synchronization. The bifurcation diagrams of the
error functions| u(t) − x(t) | and | v(t) − y(t) | allow us
to find the range of values ofH for which the synchroniza-
tion of thex − u andy − v channels take place, as it can be
observed from Figs. 8a) and b). Figure 8b) we can see that
the error function is not zero, which implies that there is only
partial synchronization in they − v channel.

In order to corroborate that in thex − u channel it is
reached the complete synchronization, while in they − v
channel there is only partial synchronization, let us observe
the double-scroll attractors for the GEA circuit and for the
proposed circuit in Figs. 9a) and b) respectively. In Figs. 9c)
and d) are displayed the corresponding error functions. Let
us mention that for plotting these figures we have taken the
valueH = 50. Thus, we conclude that it is more simple to
reach synchronization by coupling the position than coupling
of the velocities.

5. Final remarks and outlook

The most common and used way of synchronization between
nonlinear systems is through the analysis of the phase space
in the channels to be studied by demanding that the corre-
sponding error functions to be zero. In this work, a modified
version of the classical master-slave synchronization scheme
has been proposed, in which the synchronization can be in-
duced in the slave system by using a first order dynamic con-
troller. Therefore, in the proposed scheme, the master and
slave systems have an indirect interaction, through the elas-
tic and dissipative couplings. The study of synchronization

through the bifurcation diagrams for thex(t), y(t), u(t), v(t),
| u(t) − x(t) | and| v(t) − y(t) | functions, taking as a pa-
rameter the coupling constants, helps to identify the regions
where there is a complete or a partial synchronization. To do
that, we introduced a nonlinear oscillator based on the GEA
oscillator and used two coupling constants instead of only
one. We coupled both oscillators unidirectionally and iden-
tified the channels where it is obtained total synchronization.
Whenever the proposed oscillator acts as the master there ex-
ists total synchronization in thex − u andy − v channels.
Nevertheless, when the GEA nonlinear oscillator acts as the
master, there only exists partial synchronization in thex− u
channel. One important feature to be remarked is the fact that
the synchronization is favored for rather larger values of the
coupling. Accordingly, the employ of bifurcation diagrams
to analyze the level of synchronization could be of worth. Up
to our knowledge, this way of study the synchronization, al-
though rather graphical, has not been previously reported in
the literature. Finally, we will like to comment that this way
of synchronize has been carried out successfully for others
nonlinear systems. Moreover, with the way of coupling the
dynamical systems, we have achieved bidirectional coupling.
Our results will be presented in a separated communication.
A potential application of the results presented here is in se-
cure communication systems. For example, it is well known
that a message can be encrypted at the transmitter by mixing
it with a chaotic signal, in order to decode the message the
receiver should be synchronized with the transmitter.

Finally, let us stress that the way of coupling presented
in this work can also useful in systems such as the classi-
cal master-slave where it is used only one coupling and the
synchronization cannot be reached. Further study in this di-
rection will presented in future papers.
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