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1. Introduction Rung-Kutta method. The results obtained using the Dirac
oscillator basis reproduced with high accuracy those derived
The studies of the relativistic generalization of the harmoniausing the Rung-Kutta method.
oscillator has drawn much attention in recent years. The well-  The unification between the general theory of relativity
known relativistic model of the harmonic oscillator was re-and the quantum mechanics is one of the most important
vived by Moshinsky and Szczepaniak [1], who gave it theproblems in theoretical physics. This unification predicts the
name of Dirac oscillator (DO) because, in the non-relativisticexistence of a minimal measurable length on the order of
limit, it becomes a harmonic oscillator with a very strong the Planck length. All approaches of quantum gravity show
spin-orbit coupling term. The Dirac relativistic oscillator is the idea that near the Planck scale, the standard Heisenberg
an important potential both the theoretical and applicatioruncertainty principle should be reformulated. The minimal
implications. It was for the first time studied by kb al.[2].  length uncertainty relation has appeared in the context of the
They considered a Dirac equation in which the momentunstring theory, where it is a consequence of the fact that the
p'is replaced by — imBw, with 7 being the position vec- string cannot probe distances smaller than the string scale
tor, m the mass of particle, and the frequency of the os- 7+/3, whereg is a small positive parameter called the de-
cillator. Physically, it can be shown that the DO interactionformation parameter. This minimal length can be introduced
represents a physical system, which can be interpreted as ths an additional uncertainty in position measurement, so that
interaction of the anomalous magnetic moment with a lin-the usual canonical commutation relation between position
ear electric field [3, 4]. The electromagnetic potential associand momentum operators becomes
ated with the DO has been found by Benitzl. [5]. The o 9
Dirac oscillator has attracted a lot of interest both because it [#,p] = ih (1 + Bp®) - @)
provides one of the examples of the Dirac's equation exacyhis commutation relation leads to the standard Heisenberg
solvability and because of its numerous physical appl'f:at'onﬁncertainty relation
(see [6] and references therein). Recently, Franco-Villafane
et al. [7] expc_)se(_:i the proposal o_f the first experimental mi? AZNp > i (1 +8 (Ap)2) 7 @)
crowave realization of the one-dimensional DO. The experi-
ment relies on a relation of the DO to a corresponding tightwhich clearly implies the existence of a non-zero minimal
binding system. The experimental results obtained, concerdength Az i, = VB ~ 1, wherel,, is the Planck length.
ing the spectrum of the one-dimensional DO with and with-This modification of the uncertainty relation is usually termed
out the mass term, are in good agreement with those obtaindde generalized uncertainty principle (GUP) or the minimal
in the theory. In addition, Yang and Piekarewicz [8] illus- length uncertainty principle [9—12]. Note here that Saavedra
trate the power and flexibility of the Dirac oscillator and they and Utreras [13] were the first to propose a generalization of
suggest extensions to the study of systems without spherictthe canonical commutation relations of quantum mechanics
symmetry as required in constrained calculations of nucleawhich should be important at high energies. So a new (high
excitations. Self-consistent calculations of binding energiegnergy) uncertainty principle was obtained.
and ground-state densities for a selected set of doubly-magic In this direction, some remarks can be made about
magic are performed using the Dirac-oscillator basis and ar&gs. (1) and ): (i) according to the woks of [14-18], one
then compared against results obtained with the often-useichportant observation was that various observable effects of
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the minimal length uncertainty relation are non-perturbative  The study of NC spaces and their implications in physics
in the deformation parametg, (i.e., contain all orders i) is an extremely active area of research. It has been argued
even thoughB appears only to linear order in Egd) @nd in various instances that nhon-commutativity should be con-
(2) [16-18] . (ii) In Ref. [15], the authors study the effect of sidered as a fundamental feature of space-time at the Planck
the minimal length on the thermal properties of a Dirac os-scale. On the other side, the study of quantum systems in
cillator when the position and momentum obey Et), and an NC space has been the subject of much interest in past
studied the possible constraint that can be placed.oBy  years, assuming that non-commutativity may be, in fact, a re-
using the properties of the Epstein zeta function, this studgult of quantum gravity effects. In these studies, some atten-
leads to a minimal length in the interval 86— < Az < tion has been paid to the models of NC quantum mechanics
10~'* m with the following physically acceptable condition (NCQM). The interest in this approach lies on the fact that
B> Bo = (1/m2c?). (iii) Kempf [10, 11, 19] has shown that NCQM is a fruitful theoretical laboratory where we can get
Eq. (1) follows naturally when the canonical commutation some insight on the consequences of non-commutativity in
relation between position and momentum operators is modifield theory by using standard calculation techniques of quan-
fied according to the Eql). So, we may select the position tum mechanics. Various NC field theory models have been
2 and momentunp operators in terms of the undeformed ob- discussed as well as many extensions of quantum mechan-
servables: andp, i.e. [z, p] = ih, as ics. Of particular interest is the so-called phase space non-
. 2 . commutativity, which has been investigated in the context of
r= (1 +6p ):c,andp =P (3) quantum cosmology, black holes physics, and the singular-
One should note that the construction of models in theséy problem. This specific formulation is necessary to im-
spaces would not be an easy task as the operatarsdp  plement the Bose—Einstein statistics in the context of NCQM
in the deformed commutation relatid) (are in general not (see [32-38]).
Hermitianz® = & 4 2iBhp andp! = p, albeit the simplified In addition, investigating the influence of the minimal
version ) still allows one operator to remain Hermitian [20]. length assumption on the energy spectrum of quantum sys-
According to the works of Bagchiet al.[21] the positivity ~ tems has become an interesting issue primarily for two rea-
of # becomes important, as it ensures the absence of singgons. First, this may help to set some upper bounds on the
larities in the metric. value of the minimal length. In this context, we can cite
According to the Kempf’s prescription [10-12, 19], the some studies of the hydrogen atom and a two dimensional
position and momentum operators satisfying Ej.dan be  Dirac equation in an external magnetic field. Moreover, the
also represented by classical limit has also provided some interesting insights into
L 2 ) L some cosmological problems. Second, it has been argued that
& =ih (1 +op ) TP p=r @) guantum mechanics with a minimal length may also be use-
where the operators andp satisfy the canonical commuta- ful to describe non-point-like particles, such as quasi- parti-
tion relatiorjz, p] = if. In this case, the internal product in cles and various collective excitations in solids, or composite

Fourier space becomes particles (see Ref [25] and references therein).
. ¢ (p)* ¥ (p) The purpose of this work is to investigate the formula-
<¢(p) ¢ (p) >= / Wﬁiﬂ (5)  tion of a two-dimensional Klein Gordon oscillator (KGO)

in the presence of a magnetic field by solving fundamental
The parametety appears in both Eqs4)and 6) is an arbi-  equations in the framework of relativistic quantum mechan-
trary constant which does not affect the observable quantities¢s with minimal length in the NC space. To do this we first
its choice determines Only the Welght function in the dEfini-mapped the prob|em in question into a commutative space by
tion of the scalar product [22]. In this work, we have optedysing an appropriate transformations. Then, we solved it in
with the Kempf method, and so we ChOﬁe: 0. the presence of a minimal |ength_

Nowadays, the reconsideration of the relativistic quantum 1,4 paper is organized as follows. In Sec. 2, we solve the

mechanics in the presence of a minimal measurable 1engiRGo in the presence of magnetic field in noncommutative
have been studied extensively. In this context, many Pahhase space. Then, in Sec. 3, we study this problem in the

pers were puplished where a different q_uantum system irﬁ'amework of relativistic quantum mechanics with minimal
space with Heisenberg algebra was studied. They are: th@ngth. Finally, Sec. 4 will be a conclusion.

Abelian Higgs model [19], the thermostatics with minimal

length [23], the one-dimensional Hydrogen atom [24], the

Casimir effect in minimal length theories [25], the effect i o i

of minimal lengths on electron magnetism [26-28], the so2- 1 he solutions within habitual quantum me-
lutions of a two-dimensional Dirac equation in presence of chanics in NC space

an external magnetic field [29], the non-commutative phase

space Sclirdinger equation [30], and the Sékiinger equa- To begin with, we note that the non-commutative phase space
tion with Harmonic potential in the presence of a magneticis characterized by the fact that their coordinate operators sat-
field [31]. isfy the equation [33-38]
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with
[xl(/NC)7 fELNC)} = iguvv [pLNC)vpl(/NC)] = 07 U= (pm + imowl') (pcv - imowx) = pi + m%meQ
[mch)7p,(ch)} = ihd,, (6) + imow (Tps — pa) — Maw? (2) TPy, (13)

where®,,,, is an antisymmetric tensor of space dimension. In

— ; . 2 2,22
order to obtain a theory which includes the aspects of being " = (py + imowy) (py — imowy) = p, + mow~y
unitary and causal, we choo&®, = 0, which implies that ) 5 o [ O
the time remains as a parameter and the non-commutativity + imow (ypy — pyy) + mow (h) YPz- (14)
affects only the physical space. The noncommutative models
specified by Eq. (1) can be realized in terms ofproduct: Here we have used that
the commutative algebra of functions with the usual product A o) . e
f(x)g(x) is replaced by the-product Moyal algebra [37]: T=r=5Py, Y=Y + o P

i pr = Ty py = . 15
(720) (@) =59 | 502,00 | F D)5 )| ecse D) be=pes By =Py 15)

In the literature (see Ref [6] and references therein), the
'upper bound on the value of the coordinate commutator found
iSO < 4x10749m?2. So, as an approximation, all terms with
the square 06 have been neglected.

Since the system in which we study is two-dimensional
we limit our analysis to they plane, where the noncommu-
tative algebra is written by

{xz(NC)yx;NC)] = iOcy;, {pf;Nc)vpch)} —0, Now, by putting Egs./23) and [L4) in (12), we obtain
wheree;; is the two-dimensional Levi-civita tensor. Instead o
of solving the NC Klein-Gordon equation by using the star + imow [y, py] — mgw? — (xp, — yp.)
product procedure, we use Bopp’s shift method, that is, we h
replace the star product by the usual product by making a E? — (m062)2
Bopp's shift - Urga =0 (16)
(NC) _ Lo (NC) _ 9 .
i = i T 5 PuCijPys b; =pi. (9 In order to solve the last equation, and for the sake of

Hence, in the two dimensional non-commutative phase—s'mpl'c'ty’.We bring the problem into the momentum space.
Recalling that

space, Eq/9) becomes

© O . .. 0 . .. 0
wey_. O owney_, O (ne £ = i, — i 17
2N =z = py, gD =yt e S 5. §=ihgs- (17)
= Dz, pl(lNC) = py. (20) Dz = Da, Dy = Py, (18)

In this case, the two-dimensional Klein-Gordon oscillatorand when passing onto polar coordinates [9]

, iIn commutative space, which is written by ) ) ) ) )
pz =pcost, p, =psind, with p*=p7 +p,, (19)

{ (Pxtimowz) (pz—imowz) + (py+imowy) (Py—imowy)  Eqs. 17) and 1L8) become

0 d sinf d

E?2 —m2 xihih(cosﬁ ), 20

- cgnoc}wKG =0, (11) Opz dp p db (20)
. 0 ) . d cosf d

is modified and transformed into Y= zha— =1h <s1n 0— + ) . (21)
py dp P df

Putting Egs.20) and R1) in Eq. (16), the last equation can
be written explicitly in polar coordinates by

{(ﬁx +imowz) (P — imowt)

+ (ﬁy + imowy) (Zsy — imowy) p2 — )2 <822 + 12 4 1282)
N Op pdp  p2? 062
2 2.4
- EC;”OC}WG = 0. (12) + m2w?0 (ig’g) —N—¢|Uke =0,  (22)
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where
A = mowh, (23)
2 2.4
¢ = EC# (24)
With the help of the following relation [39]
Vi (p,0) = f ()’ (25)
Eq. 22) is transformed into
d*f (p)  1df (p) 7ﬁf( )
? " p dp 'V
+ (v = K*p%) f (p) = 0, (26)
with 2L201 + 2\ 1
5  Mgw +2A4+¢ 4
= 2 , ke = - (27)
Now, noting that [39]
) =ple 3" F (p), (28)
then the differential equation
1" 2 1 /
F'+ (”Jr - 2k’p) F
p
—[2k(l|+1)—K*] F =0, (29)
is transformed into the Kummer equation
d*F dFr 1 K2
t— Il+1—t}——=<|l|+1—-—=, F= 30
Gt -0 - i r—o @o

which by using, instead gf, the variablert = kp?. The solu-
tion of this equation is the confluent serigs, (a; |I| 4+ 1;t),
with )

K

- (31)

1
== (| +1
a=3(l+1)

The confluent series becomes a polynomial if and only if

a=-n,(n=0,1,2,).
Thus, following this, we have the solutions

Yra (p,0) = Cn,|z|;0”|6_§1”2

x 1Py (—n; || + 1;kp%) 11?0 (32)
2

E, = :I:mOCQ\/l LN -0 (@)
C

with N = 2n + |!| is the principal quantum number, and-

229

3. The solutions in the presence of a minimal
length

In the minimal length formalism, the Heisenberg algebra is
given by [11-22]

[#i,p:] = ihdy; (1+ Bp?) . (35)
where0 < 8 < 1 is minimal length ang is magnitude of
the momentum. When the energy is much smaller than the

Planck massj? goes to zero and we recover Heisenberg un-
certainty principle.

A representation of;; and p; which satisfies Eq.35),
may be taken as

9 =1ih (1+ﬂp2) %aﬁy = Py- (37)
By using the Eqs/36) and B37), Eq. (16) becomes
92 10 1 62
2 _\2(1 nN2(9 19 1O
lp F ) (3192 pip P 392)
0
—2X (1+8p*) —2X% (1 + Bp?) ﬂpa—p
2 2 2 a
+ (1 + Bp )mow ] <289> —¢|Yke =0. (38)
Now, when we put that
e = h(p)el?, (39)

with j = 0,£1,£2, ..., the Eq.[88) is transformed into

0? 0

(hw/moc?) the parameter that controls the non-relativistic with

limit.
We can see that the presence of the parantfen the

spectrum of energy, breaks the degeneracy of the energy lev-

els. Furthermore, by taking th& = 0, we reach the ex-
act result of the two-dimensional Klein-Gordon oscillator in
Minkowski space-time

E, = +myc®v1+ 2rN.

This form of energy is in a good agreement with that ob-
tained in the literature (see Ref. [37]).

(34)
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{—a<p>ap2 b0 5+ ) - c} hp) =0,  (40)
a(p) = a(p) = N> (1+ %)%,
2
bp) =~ 53 (11 g7y
2 .
c(p) =p* + w LB 7 61272) o (1+ p%)
— (1 + ﬁpQ) miw?Oj. (41)
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In order to solve Eq/40), we adopt the following substi- with

tution as used by Jare al.,[38] 1 (GG -1)  G(Ge-1)
V(q)__*—kﬂ . 92 P} ) (51)
hp) = / 42) Ié) sin” (aq) cos? (aq)
plp N2 . and where
2b+a’ 1 C(C_l)_'Q_l
— — - 1 (61 =] , (52)
p(p) = exp ( / X(p)dp) , X (p) 1 o (43) 4
1 2 3
After these susbsitutions, E@Q) becomes G(G-1)= 3 CAY +2+ 1 WOWQQW (53)
d?*p Finally, we have
S v e = sl @9 2
¢ d 1 GG -1  Ge-1)
——=+ ;U3 +
with dg? 2 sin” (aq) cos? (aq)
2
V(p) = p* — 2X (1+ Bp?) + BA% (1 + 3p?) X p(q) =& (q), (54)
) o 2 wherel, = a? with a = M\/j.
+ M (j2 _ 1> In this stage, we can see that EB4)is the well-known
p? 4 Schibdinger equation in a &chl-Teller potential with the
~(1+ Bp?) m2w26y, (45) following potential [39]
1 —1 —1
with p(p) = p~1/2. U =50 {C;I(lil (aq)) + CCZO(SCQQ(aq)) } . (55)
In order to simplify the functio’V (p), we use the change
of variable and where we have the conditions that, ¢») > 1.
p= o (q)\\/g) ‘ (46) By comparing Eq.48) with Eq. 54), we obtain
VB . 1
In this case, the fornv (p) with the new variable becomes G == 9’ (56)
1 1 12
Vig) = -3+ B\ =+ (1t _m3weL_ 57
e “73 Y e o) 6D
. Now, in order to solve Eq4@), we introduce the new vari-
3_ 2 1 ¢
a2ty Sl J; My g G (47) able
cos®aq sin” aq z = sin? (aq) . (58)
Consequently, the final form of our differential equation is In this case, Eq48) can be rewritten as
d*p(p) , U 1-2¢ + (2 e
R V2 2-2)¢ +{5-2) ¢+ o?
dg? 2
: j -1 —1
<[321>\2—[32A+j2+i—m(2)w29ﬂ3)\2 _C1(<1 )_<2(<2 )}<p:0. (59)
X 2 z 1—2z
COs“ aq
o With the new wave functiorp, defined by
J— 3 _
+ = , 48 g 2
sin? aq) }(p(p) () (48) p=z2 (1-2)2 ¥ (z), (60)
where we arrive at
1
~ — " 1 !’
C=ot g (49) 2(1—2)0 +Kcl+2>—z(cl+@+1)}\p

Thus, Eq.48) is brought to

1(¢ 2}
+ 282 (G + T =0. 61
{ B d2g0(p) N U() 4 {a (Cl CQ) ( )

dg? 2 The general solution of this equation is

(Cl (Cl—l) C2(<2—1)> ( ) 3 ( ) (50) \1’2012F1 (a/;b’;c/;2>
; q) = sp\q),
cos? agq sin® ag v 4 +Cy2 T (a1 -0 +1 -2 —¢2), (62)
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with In order to obtain the energy spectrum, it should be noted that
1 ¢ in the limit 5 — 0, the energy spectrum should regenerate to
o = 3 <g‘1 + (o + ) , the no-GUP result.
@ Thus, the exact form af; and(, are
1 3 1
[ — 5 ) .= —. 63 g, 1
2<<1+C2 a2>,0 <1+2 ( ) <-1:|]|_’_57 (65)
With the conditiona’ = —n, we obtain 1 1 5 J
_ = [ 1+t —+ '2—m2w29>. 66
& =0?(C+G+2n)°. (64) “73 \/( P o) 69
| wherej # 0.

With the aid of Egs.%6), (57) and 64), we obtain the final form of the spectrum of energy: it is expressed explicitly by

1 2 1 2 ;
E? = m2c 1—( )QHJF(BA)2 <|j|+1+2n+\/<1+ﬁ2)\2—+j2—m%w28j>> (67)
mopcC mopcC

From Eq. 67), the presence of both and© breaks the degeneracy of our spectrum of energy. In addition, the presence of
the spectrum of energy with the parametercontrarily to the case o, leads to the dependence of the energy levela‘on

as mentioned by Nouicer [27], this dependence:diis a feature of hard confinement. Finally, in the limit whére= 0, we

reach the following equation

2
E, = :I:moc2\/1 Loy O

. (68)

which has the same form as the E83), The corresponding wave function is

<

VYrG = Nnormei'jw;f%z%1 (1— 2)72 oFy (—n3b'5 5 2). (69)
with Nnorm is the constant of normalization.
4. The solutions in the presence of a magnetic field
In a magnetic field, when we choose the potential vectors as
B B
A= <_2ya 51’7 0> ) (70)

the two-dimensional Klein-Gordon oscillator in non-commutative space is

R eA; . R R eA; . R R eA, . . R ed, . .
Pe — — + 1mow | | P — — 1MW | + ( Py — T +imowy | | Py — —~ Mmowy

E? — (moc? 2
- % Ve =0 (71)
or in the explicit form as
. eB . . R . eB . . . R eB . . R . eB . . N
Pz + — Y +1mowx Pe + =Y —tmowT | + | Py — 5—T + 1mowy Dy — 7T — 1Mowy
2c 2c 2c 2c
U n

E? — (m002)2

By using Bopp’s shift method, Ec72) is transformed into
eBO\? 9 9 9 9 eB\? 9 9 . eBO
{<1+ 4hc> (pz +py) + | mow +<20> (@® +y%) + imow (14‘2%) [z, pa] +

Rev. Mex. Fis67 (2) 226-237
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, ¢BO ¢BO\ eB 6 E? — (moc?)”
LZ

Putting Eqs.86), (37) and B9) in (73), we obtain
2

63922 9 2632 w2 (0% 109 j 9 2632 9 0
(22 (s (2) )0 (21 2) (o (2) )

_ 2 eBO . 2 eBO @ 2 2 g2 _
2)\(1+ﬁp)<1+ 2hc> (1+ﬂp){h<1+ e ) o Tmew O il = <" Ve = 0. (74)

with ¢2 = (E? — (m()02)2/02). Following the same procedure as in the above section, we have

(75)

-Ca V)| ) = ol

or with the new variable,

{d%(p) LU <Ci (G-1) G- 1)> } o(q) = Zo(q).

dg? 2 cos? aq sin? ag

In this case, the form of is
eBO\” , s o [eB\’ w2l [, 1
Vip)=(1+ R (1+ﬂp)P -3

4hc
2
—2X (14 6p%) (1 + eQBhC@) — (1 + Bp?) {(1 + eﬁf) ? +m3w29} ]+ {A2 + 1 (Zf) } (1+ Bp?) B,

or with the variabley ( ) ( )
. 7l 2 Ci Ci -1 Cé Cé —1
Vig) = 3 + BA { sin? (aq) T cos? (aq) }7

where¢; and(} are defined by

1
GG-n=5-7 (76)
Gg-n-—rE) (4o2) 202 P ELeniloll o
g2 (N2 + 2 (£)%) g (e +ne(2)°) s (1 m(2))
Finally, our differential equation can be written as
@ 1[G -D GG -1) _
<d(]2 iUO { sin? (aq) + cos? (aq) }) vla) = (a), (78)

wherelUy = o2 and &2 = 2 + (1 + [eBO/4hc])? (1/5) with a = /B (X2 + h2[eB/2d]?).
As in the above case, E®8) is the well-known Schirdinger equation in adachl-Teller potential [39]. with the constraint

that (¢, ¢4) > 1, the exact form of; and(; are

r e L
a=1il+3 (79)
gl (e (e L s (e @ embelil) g
’ eeem()?) T seen(R))  s(eer())

Rev. Mex. Fis67 (2) 226—-237



TWO-DIMENSIONAL BOSON OSCILLATOR UNDER A MAGNETIC FIELD IN THE PRESENCE OF A MINIMAL.... 233
So, the general solution of E8) is
U =CyoF (a50;¢52) +Co 2 7 CoF (d/ +1 -0 +1 -2 —¢2), (81)

with z = sin? (agq) and where

1 1 3 1
a/:2<C1+C2+§),b/=2(C1+§2—O§2>7C/=C1+2~ (82)
With the conditiona’” = —n, and by using Eq|64), we obtain.
2 2 2\ 2 2
2 g ( 2 B2 (moc?)” cBO\" 1
3 _B<)\ + h (20>>(<1+<2+2n) = 3 + 1+ 7 5 (83)

Now, from Eq. i83) the final form of the spectrum of energy is

(s epe)? 502+ (2))

E, = +mgc®y| 1 — Ahc i+ 1+ 2n+ 52, 84
moc o) 8 T {171 n+Z'} (84)
with
e 2 e e e .
(e Lm0 o Lempeelin) o
- 2 ()\2+h2 (@)2) ﬁ()\Q—i-hQ (@)2) 6()\2_;'_52 (@)2)
2c 2c 2c

Also, we can see that the presence of both paramgtarsi
O with a magnetic field breaks the degeneracy of the spec-
trum of energy. In addition, the presence of a termngn
shows the existence of hard confinement. This dependence is
only clear when we introduce minimal length in the problem
in question.

Finally, the corresponding wave function is

e From the variation of3 only, we can see that for each
value of 3 we have two regions: first region, the values
of the energy are zero until a specific number where
the spectrum begin grows. According to this figure,
this specific number depends inversely with

e Now, when varying), we see that all curves coincide.

s
o

iljle, -1 %
KG = Nn 2 - 2
Ve = Nporme 171 p 2z72 (1—2)

x Fy (—n;b'5c52). (86)

o)

In Fig. 2, we represent the variation of the positive energy
levels with magnetic field for four levels = 0,1, 2,3. For
each level of energy, we have choges 0, 1,2, 3. With the
rﬁxception of the casg= 0, every curve show approximately
a linear form with a magnetic fiel@.

Finally, in order to show that the problem in question has
relevance from a physical point of view, we make the fol-
g_)wing remarks. Firstly, we can mention some studies that

itive energy can be extended to the case of the negative e howed the exstgnce of a close relation between graphene
ergy. and the Dirac oscillator model. [6,40-42].

Figure 1 shows the behavior of the spectrum of energé Bastoset al., [33] consider a hon-commutative descrip-

with Nnorm the constant of normalization.

Now, to achieve a deeper understanding of our spectru
of energy presented by E@®4), we have plotted the variation
of the positive energy with quantum number, and mag-
netic field B for different various situations. As the spectrum
of energy is symmetric, any comments on the case of the po

versusn by changing the three parameters appearing in th :22 ?grgézpshs?gses. gi?:ﬂgrsnirig);fnIﬁgn:(';::ig;%ﬁg;:i‘é?:
expression for the energy spectrum, the magnetic field3, P

the NC parametet and the minimal lengtf#. This figure has rections, which are treated in the presence of an external
been depicted for two cases:= 0 and j : 1 Here. three magnetic field. They argue that, being a two-dimensional

remarks can be made Dirac system, graphgne is particularly interesting to test non-
ommutativity. They find that momentum non-commutativity
e When varying only the magnetic field, one observesaffects the energy levels of graphene and they obtain a bound
that the allure of the spectrum of energy tends to befor the momentum non-commutative parameter. Their results
come linear in the high magnetic field regime. show that momentum non-commutativity yields interesting
results
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FIGURE 1. The positive energy eigenvalues as a function of the quantum numbey b) Variation with respect aB for fixed value of
0 = 0.00 and3 = 0.005; c, d) variation with respect gf for fixed values ofB = andd = 0.005; e, f) variation with respect of for fixed
value of B = 0.1 and3 = 0.005.

also at low-energies and that its implications are not restricted  Jallel [44] describes the lattice deformation in graphene
to quantum cosmology and black holes physics. under strain effect by considering the spacial-moment coordi-
In the same context, Falomat al. [43] employ a sim- nates do not commute. Within such framework, he (i) build a
ple nonrelativistic model to describe the low-energy excita-new model describing Dirac fermions interacting with an ex-
tion of graphene. The model is based on a deformation ofernal source that is non commutative parameter dependent,
the Heisenberg algebra which makes the commutator of maand (ii) the eigenvalues are showing Landau levels in similar
menta proportional to the pseudo-spin. As a result, the resulivay to the case of a real magnetic field applied to graphene.
ing Hall conductivity is consistent with the anomalous integer  lorio and Pais [45], in their paper “Generalized uncer-
guantum Hall effect found in graphene. tainty principle in graphene” showed that, by going beyond
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FIGURE 2. The positive energy eigenvalues as a function of the magneticBidad n = 0,1, 2, 3.

the low-energy approximation for which the dispersion rela-length in the problem in question. This introduction has been
tions of graphene are linear, the corresponding emergent fielshaking as follows: (i) we write the coordinates of the non-
theory is a specific generalization a Dirac field theory. Thecommutative space with those in commutative space by using
generalized Dirac Hamiltonians one obtains are those conthe Bopp shift approximation, and (ii) then we introduce the
patible with specific generalizations of the uncertainty prin-minimal length in our equation. By these, the problem in
ciple. They also comment on the compatibility of the latterquestion is identified with adchl-Teller potential.
with non-commuting positions, and on their possible physical  The eigensolutions of the problem in question in a mag-
realization. netic field are obtained in the presence of a minimal length in
Thus, following these works and maybe others which arenon-commutative space. The dependence on theses eigenso-
not cited here, we can expect that our study can be regardedtions with the minimum length and the non-commutative
as a contribution to the case of graphene by introducing thearameters is very clear. Furthermore, by comparing the
minimal length in the commutations rules of Heisenberg.  spectrum of energy obtained in our case with those of the
same problem in the flat space-time, we can see that the pres-
5. Conclusion ence of both parameters breaks the degeneracy of the spec-
trum of energy. In addition, the presence of a terrmdrin
In this paper, we have exactly solved the KGO in two di-the form of the spectrum of energy shows the existence of
mensions in the presence of an external magnetic field in theard confinement. This dependence is only clear when we
framework of relativistic quantum mechanics with minimal introduce minimal length in the problem in question. Finally,
length and in the NC space. Firstly, by adopting the samén the limit where3 — 0 and® — 0 tend to zero, we recover
procedure used by Menculiet al. [9], we have solved the Wwell the results obtained in the literature.
problem only in the case of non-commutative space. The
results found are in good agreement with those obtained in
the literature. After that, we have introduced the minimal
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