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∗e-mail: zina.slama@univ-tebessa.dz; zinaslama@gmail.com

∗∗e-mail: abdelmalek.boumali@univ-tebessa.dz; boumali.abdelmalek@gmail.com

Received 7 September 2020; accepted 10 November 2020

In this paper, we consider a two-dimensional Klein-Gordon oscillator in the presence of a magnetic field in non-commutative phase space
in the framework of relativistic quantum mechanics with minimal length. The eigensolutions are found and the system is mapped to the
well-known Schr̈odinger equation in a P̈oschl-Teller potential.

Keywords: Klein-Gordon oscillator; minimal length; magnetic field; non commutative phase-space.

PACS: 03.65.Pm; 03.65.Ge; 03.65.Ca

DOI: https://doi.org/10.31349/RevMexFis.67.226

1. Introduction

The studies of the relativistic generalization of the harmonic
oscillator has drawn much attention in recent years. The well-
known relativistic model of the harmonic oscillator was re-
vived by Moshinsky and Szczepaniak [1], who gave it the
name of Dirac oscillator (DO) because, in the non-relativistic
limit, it becomes a harmonic oscillator with a very strong
spin-orbit coupling term. The Dirac relativistic oscillator is
an important potential both the theoretical and application
implications. It was for the first time studied by Itoet al. [2].
They considered a Dirac equation in which the momentum
~p is replaced by~p − imβω~r, with ~r being the position vec-
tor, m the mass of particle, andω the frequency of the os-
cillator. Physically, it can be shown that the DO interaction
represents a physical system, which can be interpreted as the
interaction of the anomalous magnetic moment with a lin-
ear electric field [3,4]. The electromagnetic potential associ-
ated with the DO has been found by Benitezet al. [5]. The
Dirac oscillator has attracted a lot of interest both because it
provides one of the examples of the Dirac’s equation exact
solvability and because of its numerous physical applications
(see [6] and references therein). Recently, Franco-Villafane
et al. [7] exposed the proposal of the first experimental mi-
crowave realization of the one-dimensional DO. The experi-
ment relies on a relation of the DO to a corresponding tight-
binding system. The experimental results obtained, concern-
ing the spectrum of the one-dimensional DO with and with-
out the mass term, are in good agreement with those obtained
in the theory. In addition, Yang and Piekarewicz [8] illus-
trate the power and flexibility of the Dirac oscillator and they
suggest extensions to the study of systems without spherical
symmetry as required in constrained calculations of nuclear
excitations. Self-consistent calculations of binding energies
and ground-state densities for a selected set of doubly-magic
magic are performed using the Dirac-oscillator basis and are
then compared against results obtained with the often-used

Rung-Kutta method. The results obtained using the Dirac
oscillator basis reproduced with high accuracy those derived
using the Rung-Kutta method.

The unification between the general theory of relativity
and the quantum mechanics is one of the most important
problems in theoretical physics. This unification predicts the
existence of a minimal measurable length on the order of
the Planck length. All approaches of quantum gravity show
the idea that near the Planck scale, the standard Heisenberg
uncertainty principle should be reformulated. The minimal
length uncertainty relation has appeared in the context of the
string theory, where it is a consequence of the fact that the
string cannot probe distances smaller than the string scale
~
√

β, whereβ is a small positive parameter called the de-
formation parameter. This minimal length can be introduced
as an additional uncertainty in position measurement, so that
the usual canonical commutation relation between position
and momentum operators becomes

[x̂, p̂] = i~
(
1 + βp2

)
. (1)

This commutation relation leads to the standard Heisenberg
uncertainty relation

4x̂4p̂ ≥ i~
(
1 + β (4p)2

)
, (2)

which clearly implies the existence of a non-zero minimal
length4xmin = ~

√
β ∼ lp wherelp is the Planck length.

This modification of the uncertainty relation is usually termed
the generalized uncertainty principle (GUP) or the minimal
length uncertainty principle [9–12]. Note here that Saavedra
and Utreras [13] were the first to propose a generalization of
the canonical commutation relations of quantum mechanics
which should be important at high energies. So a new (high
energy) uncertainty principle was obtained.

In this direction, some remarks can be made about
Eqs. (1) and (2): (i) according to the woks of [14–18], one
important observation was that various observable effects of
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the minimal length uncertainty relation are non-perturbative
in the deformation parameterβ, (i.e., contain all orders inβ)
even thoughβ appears only to linear order in Eqs. (1) and
(2) [16–18] . (ii) In Ref. [15], the authors study the effect of
the minimal length on the thermal properties of a Dirac os-
cillator when the position and momentum obey Eq. (1), and
studied the possible constraint that can be placed onβ. By
using the properties of the Epstein zeta function, this study
leads to a minimal length in the interval of10−16 < ∆x <
10−14 m with the following physically acceptable condition
β > β0 = (1/m2c2). (iii) Kempf [10,11,19] has shown that
Eq. (1) follows naturally when the canonical commutation
relation between position and momentum operators is modi-
fied according to the Eq. (1). So, we may select the position
x̂ and momentum̂p operators in terms of the undeformed ob-
servablesx andp, i.e. [x, p] = i~, as

x̂ =
(
1 + βp2

)
x, andp̂ = p. (3)

One should note that the construction of models in these
spaces would not be an easy task as the operatorsx̂ and p̂
in the deformed commutation relation (1) are in general not
Hermitianx̂† = x̂ + 2iβ~p̂ andp̂† = p̂, albeit the simplified
version (3) still allows one operator to remain Hermitian [20].
According to the works of Bagchiaet al. [21] the positivity
of β becomes important, as it ensures the absence of singu-
larities in the metric.

According to the Kempf’s prescription [10–12, 19], the
position and momentum operators satisfying Eq. (1) can be
also represented by

x̂ = i~
(
1 + βp2

)
x + γp; p̂ = p, (4)

where the operatorsx andp satisfy the canonical commuta-
tion relation[x, p] = i~. In this case, the internal product in
Fourier space becomes

< φ (p)∗ ψ (p) >=
∫

φ (p)∗ ψ (p)

(1 + βp2)1−
γ
β

dp. (5)

The parameterγ appears in both Eqs. (4) and (5) is an arbi-
trary constant which does not affect the observable quantities;
its choice determines only the weight function in the defini-
tion of the scalar product [22]. In this work, we have opted
with the Kempf method, and so we choseγ = 0.

Nowadays, the reconsideration of the relativistic quantum
mechanics in the presence of a minimal measurable length
have been studied extensively. In this context, many pa-
pers were published where a different quantum system in
space with Heisenberg algebra was studied. They are: the
Abelian Higgs model [19], the thermostatics with minimal
length [23], the one-dimensional Hydrogen atom [24], the
Casimir effect in minimal length theories [25], the effect
of minimal lengths on electron magnetism [26–28], the so-
lutions of a two-dimensional Dirac equation in presence of
an external magnetic field [29], the non-commutative phase
space Schr̈odinger equation [30], and the Schrödinger equa-
tion with Harmonic potential in the presence of a magnetic
field [31].

The study of NC spaces and their implications in physics
is an extremely active area of research. It has been argued
in various instances that non-commutativity should be con-
sidered as a fundamental feature of space-time at the Planck
scale. On the other side, the study of quantum systems in
an NC space has been the subject of much interest in past
years, assuming that non-commutativity may be, in fact, a re-
sult of quantum gravity effects. In these studies, some atten-
tion has been paid to the models of NC quantum mechanics
(NCQM). The interest in this approach lies on the fact that
NCQM is a fruitful theoretical laboratory where we can get
some insight on the consequences of non-commutativity in
field theory by using standard calculation techniques of quan-
tum mechanics. Various NC field theory models have been
discussed as well as many extensions of quantum mechan-
ics. Of particular interest is the so-called phase space non-
commutativity, which has been investigated in the context of
quantum cosmology, black holes physics, and the singular-
ity problem. This specific formulation is necessary to im-
plement the Bose–Einstein statistics in the context of NCQM
(see [32–38]).

In addition, investigating the influence of the minimal
length assumption on the energy spectrum of quantum sys-
tems has become an interesting issue primarily for two rea-
sons. First, this may help to set some upper bounds on the
value of the minimal length. In this context, we can cite
some studies of the hydrogen atom and a two dimensional
Dirac equation in an external magnetic field. Moreover, the
classical limit has also provided some interesting insights into
some cosmological problems. Second, it has been argued that
quantum mechanics with a minimal length may also be use-
ful to describe non-point-like particles, such as quasi- parti-
cles and various collective excitations in solids, or composite
particles (see Ref [25] and references therein).

The purpose of this work is to investigate the formula-
tion of a two-dimensional Klein Gordon oscillator (KGO)
in the presence of a magnetic field by solving fundamental
equations in the framework of relativistic quantum mechan-
ics with minimal length in the NC space. To do this we first
mapped the problem in question into a commutative space by
using an appropriate transformations. Then, we solved it in
the presence of a minimal length.

The paper is organized as follows. In Sec. 2, we solve the
KGO in the presence of magnetic field in noncommutative
phase space. Then, in Sec. 3, we study this problem in the
framework of relativistic quantum mechanics with minimal
length. Finally, Sec. 4 will be a conclusion.

2. The solutions within habitual quantum me-
chanics in NC space

To begin with, we note that the non-commutative phase space
is characterized by the fact that their coordinate operators sat-
isfy the equation [33–38]
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[
x(NC)

ν , x(NC)
µ

]
= iΘµν ,

[
p(NC)

µ , p(NC)
ν

]
= 0,

[
x(NC)

µ , p(NC)
ν

]
= i~δµν , (6)

whereΘµν is an antisymmetric tensor of space dimension. In
order to obtain a theory which includes the aspects of being
unitary and causal, we chooseΘ0ν = 0 , which implies that
the time remains as a parameter and the non-commutativity
affects only the physical space. The noncommutative models
specified by Eq. (1) can be realized in terms of a?-product:
the commutative algebra of functions with the usual product
f(x)g(x) is replaced by the?-product Moyal algebra [37]:

(f ? g) (x) = exp
[

i

2
θ̃ab∂xa

∂yb

]
f (x) g (y) |x=y. (7)

Since the system in which we study is two-dimensional,
we limit our analysis to thexy plane, where the noncommu-
tative algebra is written by

[
x

(NC)
i , x

(NC)
j

]
= iΘεij ,

[
p
(NC)
i , p

(NC)
j

]
= 0,

[
x

(NC)
i , p

(NC)
j

]
= i~δij , (i, j = 1, 2) , (8)

whereεij is the two-dimensional Levi-civita tensor. Instead
of solving the NC Klein-Gordon equation by using the star
product procedure, we use Bopp’s shift method, that is, we
replace the star product by the usual product by making a
Bopp’s shift

x
(NC)
i = xi − 1

2~
Θµνεijpj , p

(NC)
i = pi. (9)

Hence, in the two dimensional non-commutative phase-
space, Eq. (9) becomes

x(NC) = x− Θ
2~

py, y(NC) = y +
Θ
2~

px, p(NC)
x

= px, p(NC)
y = py. (10)

In this case, the two-dimensional Klein-Gordon oscillator
, in commutative space, which is written by
{

(px+im0ωx) (px−im0ωx) + (py+im0ωy) (py−im0ωy)

− E2 −m2
0c

4

c2

}
ψKG = 0, (11)

is modified and transformed into{
(p̂x + im0ωx̂) (p̂x − im0ωx̂)︸ ︷︷ ︸

∪

+ (p̂y + im0ωŷ) (p̂y − im0ωŷ)︸ ︷︷ ︸
∩

− E2 −m2
0c

4

c2

}
ψKG = 0. (12)

with

∪ = (px + im0ωx) (px − im0ωx) = p2
x + m2

0ω
2x2

+ im0ω (xpx − pxx)−m2
0ω

2

(
Θ

~

)
xpy, (13)

∩ = (py + im0ωy) (py − im0ωy) = p2
y + m2

0ω
2y2

+ im0ω (ypy − pyy) + m2
0ω

2

(
Θ

~

)
ypx. (14)

Here we have used that

x̂ = x− Θ

2~
py, ŷ = y +

Θ

2~
px,

p̂x = px, p̂y = py. (15)

In the literature (see Ref [6] and references therein), the
upper bound on the value of the coordinate commutator found
is Θ ≤ 4×10−40 m2. So, as an approximation, all terms with
the square ofΘ have been neglected.

Now, by putting Eqs. (13) and (14) in (12), we obtain
[
p2

x + p2
y + m2

0ω
2
(
x2 + y2

)
+ im0ω [x, px]

+ im0ω [y, py]−m2
0ω

2 Θ

~
(xpy − ypx)

− E2 − (
m0c

2
)2

c2

]
ΨKG = 0 (16)

In order to solve the last equation, and for the sake of
simplicity, we bring the problem into the momentum space.

Recalling that

x̂ = i~
∂

∂p̂x
, ŷ = i~

∂

∂p̂x
, (17)

p̂x = px, p̂y = py, (18)

and when passing onto polar coordinates [9]

px = p cos θ, py = p sin θ, with p2 = p2
x + p2

y, (19)

Eqs. (17) and (18) become

x = i~
∂

∂px
= i~

(
cos θ

d

dp
− sin θ

p

d

dθ

)
, (20)

y = i~
∂

∂py
= i~

(
sin θ

d

dp
+

cos θ

p

d

dθ

)
. (21)

Putting Eqs. (20) and (21) in Eq. (16), the last equation can
be written explicitly in polar coordinates by

[
p2 − λ2

(
∂2

∂p2
+

1
p

∂

∂p
+

1
p2

∂2

∂θ2

)

+ m2
0ω

2Θ

(
i

∂

∂θ

)
− 2λ− ς

]
ΨKG = 0, (22)
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where

λ = m0ω~, (23)

ς =
E2 −m2

0c
4

c2
. (24)

With the help of the following relation [39]

ψKG (p, θ) = f (p) ei|l|θ, (25)

Eq. (22) is transformed into
(

d2f (p)
dp2

+
1
p

df (p)
dp

− l2

p2
f (p)

)

+
(
κ2 − k2p2

)
f (p) = 0, (26)

with

κ2 =
m2

0ω
2Θl + 2λ + ς

λ2
, k2 =

1
λ2

. (27)

Now, noting that [39]

f (p) = p|l|e−
k
2 p2

F (p) , (28)

then the differential equation

F
′′

+
(

2 |l|+ 1
p

− 2kp

)
F
′

− [
2k (|l|+ 1)− κ2

]
F = 0, (29)

is transformed into the Kummer equation

t
d2F

dt2
+{|l|+ 1− t} dF

dt
− 1

2

{
|l|+ 1− κ2

4k

}
F = 0, (30)

which by using, instead ofp, the variablext = kp2. The solu-
tion of this equation is the confluent series1F1 (a; |l|+ 1; t),
with

a =
1
2

(|l|+ 1)− κ2

4k
. (31)

The confluent series becomes a polynomial if and only if
a = −n, (n = 0, 1, 2, ).

Thus, following this, we have the solutions

ψKG (p, θ) = Cn,|l|p|l|e−
k
2 p2

× 1F1

(−n; |l|+ 1; kp2
)
ei|l|θ, (32)

En = ±m0c
2

√
1 + 2rN − ω2Θ

c2
l, (33)

with N = 2n + |l| is the principal quantum number, andr =
(~ω/m0c

2) the parameter that controls the non-relativistic
limit.

We can see that the presence of the parameterΘ, in the
spectrum of energy, breaks the degeneracy of the energy lev-
els. Furthermore, by taking thatΘ = 0 , we reach the ex-
act result of the two-dimensional Klein-Gordon oscillator in
Minkowski space-time

En = ±m0c
2
√

1 + 2rN. (34)

This form of energy is in a good agreement with that ob-
tained in the literature (see Ref. [37]).

3. The solutions in the presence of a minimal
length

In the minimal length formalism, the Heisenberg algebra is
given by [11–22]

[x̂i, p̂i] = i~δij

(
1 + βp2

)
, (35)

where0 < β ≤ 1 is minimal length andp is magnitude of
the momentum. When the energy is much smaller than the
Planck mass,β goes to zero and we recover Heisenberg un-
certainty principle.

A representation of̂xi and p̂i which satisfies Eq. (35),
may be taken as

x̂ = i~
(
1 + βp2

) d

dpx
, p̂x = px, (36)

ŷ = i~
(
1 + βp2

) d

dpy
, p̂y = py. (37)

By using the Eqs. (36) and (37), Eq. (16) becomes

[
p2 − λ2

(
1 + βp2

)2
(

∂2

∂p2
+

1
p

∂

∂p
+

1
p2

∂2

∂θ2

)

− 2λ
(
1 + βp2

)− 2λ2
(
1 + βp2

)
βp

∂

∂p

+
(
1 + βp2

)
m2

0ω
2Θ

(
i

∂

∂θ

)
− ς

]
ΨKG = 0. (38)

Now, when we put that

ψKG = h(p)ei|j|θ, (39)

with j = 0,±1,±2, . . ., the Eq. (38) is transformed into

{
−a(p)

∂2

∂p2
+ b(p)

∂

∂p
+ c(p)− ς

}
h(p) = 0, (40)

with

a(p) = a (p) = λ2
(
1 + βp2

)2
,

b(p) = −λ2
(
1 + βp2

)2

p
− 2βλ2

(
1 + βp2

)
p

c(p) = p2 + λ2

(
1 + βp2

)2
j2

p2
− 2λ

(
1 + βp2

)

− (
1 + βp2

)
m2

0ω
2Θj. (41)
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In order to solve Eq. (40), we adopt the following substi-
tution as used by Janaet al.,[38]

h(p) = ρ(p)ϕ(p), q =
∫

1√
a(p)

dp, (42)

ρ(p) = exp
(∫

χ(p)dp

)
, χ (p) =

2b + a′

4a
= − 1

2p
. (43)

After these susbsitutions, Eq. (40) becomes
[
−d2ϕ(p)

dq2
+ V (p)

]
ϕ(p) = ςϕ(p), (44)

with

V (p) = p2 − 2λ
(
1 + βp2

)
+ βλ2

(
1 + βp2

)

+
λ2

(
1 + βp2

)2

p2

(
j2 − 1

4

)

− (
1 + βp2

)
m2

0ω
2Θj, (45)

with ρ(p) = p−1/2.
In order to simplify the functionV (p), we use the change

of variable

p =
1√
β

tan
(
qλ

√
β
)

. (46)

In this case, the formV (p) with the new variableq becomes

V (q) = − 1
β

+ βλ2

︸︷︷︸
U0

×
(

1
β2λ2− 2

βλ+j2+ 3
4−m2

0ω
2Θ j

βλ2

cos2 αq
+

j2− 1
4

sin2 αq

)
. (47)

Consequently, the final form of our differential equation is
{
− d2ϕ(p)

dq2
+

U0

2

×
(

1
β2λ2 − 2

βλ + j2 + 3
4 −m2

0ω
2Θ j

βλ2

cos2 αq

+
j2 − 1

4

sin2 αq

)}
ϕ(p) = ς̄ϕ(p), (48)

where

ς̄ = ς +
1
β

. (49)

Thus, Eq. (48) is brought to
{
− d2ϕ(p)

dq2
+

U0

2

×
(

ζ1 (ζ1 − 1)
cos2 αq

+
ζ2 (ζ2 − 1)

sin2 αq

) }
ϕ(q) = ς̄ϕ(q), (50)

with

V (q) = − 1
β

+ βλ2

{
ζ1 (ζ1 − 1)
sin2 (αq)

+
ζ2 (ζ2 − 1)
cos2 (αq)

}
, (51)

and where

ζ1 (ζ1 − 1) = j2 − 1
4
, (52)

ζ2 (ζ2 − 1) =
1

β2λ2
− 2

βλ
+ j2 +

3
4
−m2

0ω
2Θ

j

βλ2
. (53)

Finally, we have
(
− d2

dq2
+

1
2
U0

{
ζ1 (ζ1 − 1)
sin2 (αq)

+
ζ2 (ζ2 − 1)
cos2 (αq)

})

× ϕ (q) = ξ̄2ϕ (q) , (54)

whereU0 = α2 with α = λ
√

β.
In this stage, we can see that Eq. (54) is the well-known

Schr̈odinger equation in a P̈oschl-Teller potential with the
following potential [39]

U =
1
2
U0

{
ζ1 (ζ1 − 1)
sin2 (αq)

+
ζ2 (ζ2 − 1)
cos2 (αq)

}
, (55)

and where we have the conditions that(ζ1, ζ2) > 1.
By comparing Eq. (48) with Eq. (54), we obtain

ζ1 = |j| ± 1
2
, (56)

ζ2=
1
2
±

√(
1+

1
β2λ2

− 2
βλ

+j2−m2
0ω

2Θ
j

βλ2

)
(57)

Now, in order to solve Eq. (48), we introduce the new vari-
able

z = sin2 (αq) . (58)

In this case, Eq. (48) can be rewritten as

z (1− z)ϕ
′′

+
(

1
2
− z

)
ϕ
′
+

1
4

{
ξ̄2

α2

− ζ1 (ζ1 − 1)
z

− ζ2 (ζ2 − 1)
1− z

}
ϕ = 0. (59)

With the new wave functionϕ, defined by

ϕ = z
ζ1
2 (1− z)

ζ2
2 Ψ(z) , (60)

we arrive at

z (1− z)Ψ
′′

+
[(

ζ1 +
1
2

)
− z (ζ1 + ζ2 + 1)

]
Ψ
′

+
1
4

{
ξ̄

α
− (ζ1 + ζ2)

2

}
Ψ = 0. (61)

The general solution of this equation is

Ψ = C1 2F1 (a′; b′; c′; z)

+ C2 z1−c
2F1 (a′ + 1− c′; b′ + 1− c′; 2− c; z) , (62)
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with

a′ =
1
2

(
ζ1 + ζ2 +

ξ̄

α

)
,

b′ =
1
2

(
ζ1 + ζ2 − ξ̄

α2

)
, c′ = ζ1 +

1
2
. (63)

With the conditiona′ = −n, we obtain

ξ̄2 = α2 (ζ1 + ζ2 + 2n)2 . (64)

In order to obtain the energy spectrum, it should be noted that
in the limit β → 0, the energy spectrum should regenerate to
the no-GUP result.

Thus, the exact form ofζ1 andζ2 are

ζ1 = |j|+ 1
2
, (65)

ζ2 =
1
2
+

√(
1+

1
β2λ2

− 2
βλ

+j2−m2
0ω

2Θ
j

βλ2

)
. (66)

wherej 6= 0.

With the aid of Eqs. (56), (57) and (64), we obtain the final form of the spectrum of energy: it is expressed explicitly by

E2 = m2
0c

4



1− 1

(m0c)
2
β

+
βλ2

(m0c)
2

(
|j|+ 1 + 2n +

√(
1 +

1
β2λ2

− 2
βλ

+ j2 −m2
0ω

2Θ
j

βλ2

))2


 (67)

From Eq. (67), the presence of bothβ andΘ breaks the degeneracy of our spectrum of energy. In addition, the presence of
the spectrum of energy with the parameterβ, contrarily to the case ofΘ, leads to the dependence of the energy levels onn2:
as mentioned by Nouicer [27], this dependence onn2 is a feature of hard confinement. Finally, in the limit whereβ → 0, we
reach the following equation

En = ±m0c
2

√
1 + 2rN − ω2Θ

c2
l, (68)

which has the same form as the Eq. (33). The corresponding wave function is

ψKG = Nnormei|j|θp−
1
2 z

ζ1
2 (1− z)

ζ2
2

2F1 (−n; b′; c′; z) . (69)

with Nnorm is the constant of normalization.

4. The solutions in the presence of a magnetic field

In a magnetic field, when we choose the potential vectors as

A =
(
−B

2
y,

B

2
x, 0

)
, (70)

the two-dimensional Klein-Gordon oscillator in non-commutative space is
[ (

p̂x − eAx

c
+ im0ωx̂

)(
p̂x − eAx

c
− im0ωx̂

)
+

(
p̂y − eAy

c
+ im0ωŷ

)(
p̂y − eAy

c
− im0ωŷ

)

− E2 − (
m0c

2
)2

c2

]
ΨKG = 0 (71)

or in the explicit form as
[(

p̂x +
eB

2c
ŷ + im0ωx̂

)(
p̂x +

eB

2c
ŷ − im0ωx̂

)

︸ ︷︷ ︸
t

+
(

p̂y − eB

2c
x̂ + im0ωŷ

)(
p̂y − eB

2c
x̂− im0ωŷ

)

︸ ︷︷ ︸
u

− E2 − (
m0c

2
)2

c2

]
ΨKG = 0. (72)

By using Bopp’s shift method, Eq. (72) is transformed into
{(

1 +
eBΘ

4~c

)2 (
p2

x + p2
y

)
+

(
m2

0ω
2 +

(
eB

2c

)2
)

(
x2 + y2

)
+ im0ω

(
1 +

eBΘ

2~c

)
[x, px] +
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+im0ω

(
1 +

eBΘ

2~c

)
[y, py]−

{(
1 +

eBΘ

4~c

)
eB

c
+ m2

0ω
2 Θ

~

}
(xpy − ypx)︸ ︷︷ ︸

Lz

−E2 − (
m0c

2
)2

c2





ΨKG = 0. (73)

Putting Eqs. (36), (37) and (39) in (73), we obtain
{(

1 +
eBΘ

4~c

)2

p2 −
(

λ2 + ~2

(
eB

2c

)2
)

(
1 + βp2

)2
(

∂2

∂p2
+

1
p

∂

∂p
− j2

p2

)
− 2

(
λ2 + ~2

(
eB

2c

)2
)

(
1 + βp2

)
βp

∂

∂p

−2λ
(
1 + βp2

) (
1 +

eBΘ

2~c

)
− (

1 + βp2
){
~

(
1 +

eBΘ

4~c

)
eB

c
+ m2

0ω
2Θ

}
|j| − ς2

}
ΨKG = 0. (74)

with ς2 = (E2 − (
m0c

2
)2

/c2). Following the same procedure as in the above section, we have

[
−d2ϕ(p)

dq2
+ V (p)

]
ϕ(p) = ς ′ϕ(p), (75)

or with the new variableq,
{
−d2ϕ(p)

dq2
+

U0

2

(
ζ ′1 (ζ ′1 − 1)

cos2 αq
+

ζ ′2 (ζ ′2 − 1)
sin2 αq

)}
ϕ(q) = ς̄ ′ϕ(q).

In this case, the form ofV is

V (p) =
(

1 +
eBΘ

4~c

)2

p2 +

{
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(
eB

2c

)2
}

(
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)2 1
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4
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− 2λ
(
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)(
1 +

eBΘ

2~c

)
− ~ (

1 + βp2
){(

1 +
eBΘ

4~c

)
eB

c
+ m2

0ω
2Θ

}
|j|+

{
λ2 + ~2

(
eB

2c

)2
}

(
1 + βp2

)
β,

or with the variableq

V (q) = − 1
β

+ βλ2

{
ζ ′1 (ζ ′1 − 1)
sin2 (αq)

+
ζ ′2 (ζ ′2 − 1)
cos2 (αq)

}
,

whereζ ′1 andζ ′2 are defined by

ζ ′1 (ζ ′1 − 1) = j2 − 1
4
, (76)

ζ ′2 (ζ ′2 − 1) =

(
1 + eBΘ

4~c
)2

β2
(
λ2 + ~2

(
eB
2c

)2
) +

(
j2 +

3
4

)
− 2λ

(
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2~c
)

β
(
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eB
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4~c
)

eB
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} |j|
β
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eB
2c

)2
) . (77)

Finally, our differential equation can be written as
(
− d2

dq2
+

1
2
U0

{
ζ ′1 (ζ ′1 − 1)
sin2 (αq)

+
ζ ′2 (ζ ′2 − 1)
cos2 (αq)

})
ϕ (q) = ξ̄′2ϕ (q) , (78)

whereU0 = α2 and ξ̄′2 = ς ′2 + (1 + [eBΘ/4~c])2 (1/β) with α =
√

β (λ2 + ~2[eB/2c]2).
As in the above case, Eq. (78) is the well-known Schr̈odinger equation in a P̈oschl-Teller potential [39]. with the constraint

that(ζ ′1, ζ
′
2) > 1, the exact form ofζ1 andζ2 are

ζ ′1 = |j|+ 1
2
, (79)

ζ ′2 =
1
2

+

√√√√√

1 +

(
1 + eBΘ

4~c
)2

β2
(
λ2 + ~2

(
eB
2c
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) + j2 − 2λ

(
1 + eBΘ
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)

β
(
λ2 + ~2

(
eB
2c

)2
) −

{
~

(
1 + eBΘ

4~c
)

eB
2c + m2

0ω
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} |j|
β

(
λ2 + ~2

(
eB
2c

)2
)


. (80)
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So, the general solution of Eq. (78) is

Ψ = C1 2F1 (a′; b′; c′; z) + C2 z1−c
2F1 (a′ + 1− c′; b′ + 1− c′; 2− c; z) , (81)

with z = sin2 (αq) and where

a′ =
1
2

(
ζ1 + ζ2 +

ξ̄

α

)
, b′ =

1
2

(
ζ1 + ζ2 − ξ̄

α2

)
, c′ = ζ1 +

1
2
. (82)

With the conditiona′ = −n, and by using Eq. (64), we obtain.

ξ̄2 = β

(
λ2 + ~2

(
eB

2c

)2
)

(ζ1 + ζ2 + 2n)2 =
E2 − (

m0c
2
)2

c2
+

(
1 +

eBΘ

4~c

)2 1
β

. (83)

Now, from Eq. (83) the final form of the spectrum of energy is

En = ±m0c
2

√√√√
1−

(
1 + eBΘ

4~c
)2

(m0c)
2
β

+
β

(
λ2 + ~2

(
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)

(m0c)
2 {|j|+ 1 + 2n + Ξ ′}2, (84)

with

Ξ ′ =
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)

β
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) −
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(
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)
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0ω
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)


 (85)

Also, we can see that the presence of both parametersβ and
Θ with a magnetic field breaks the degeneracy of the spec-
trum of energy. In addition, the presence of a term onn2

shows the existence of hard confinement. This dependence is
only clear when we introduce minimal length in the problem
in question.

Finally, the corresponding wave function is

ψKG = Nnormei|j|θp−
1
2 z

ζ1
2 (1− z)

ζ2
2

2

× F1 (−n; b′; c′; z) . (86)

with Nnorm the constant of normalization.
Now, to achieve a deeper understanding of our spectrum

of energy presented by Eq. (84), we have plotted the variation
of the positive energyE with quantum numbern and mag-
netic fieldB for different various situations. As the spectrum
of energy is symmetric, any comments on the case of the pos-
itive energy can be extended to the case of the negative en-
ergy.

Figure 1 shows the behavior of the spectrum of energy
versusn by changing the three parameters appearing in the
expression for the energy spectrum,i.e, the magnetic fieldB,
the NC parameterθ and the minimal lengthβ. This figure has
been depicted for two cases:j = 0 andj = 1. Here, three
remarks can be made

• When varying only the magnetic field, one observes
that the allure of the spectrum of energy tends to be-
come linear in the high magnetic field regime.

• From the variation ofβ only, we can see that for each
value ofβ we have two regions: first region, the values
of the energy are zero until a specific number where
the spectrum begin grows. According to this figure,
this specific number depends inversely withβ.

• Now, when varyingθ, we see that all curves coincide.

In Fig. 2, we represent the variation of the positive energy
levels with magnetic field for four levelsn = 0, 1, 2, 3. For
each level of energy, we have chosenj = 0, 1, 2, 3. With the
exception of the casej = 0, every curve show approximately
a linear form with a magnetic fieldB.

Finally, in order to show that the problem in question has
relevance from a physical point of view, we make the fol-
lowing remarks. Firstly, we can mention some studies that
showed the existence of a close relation between graphene
and the Dirac oscillator model. [6,40–42].

Bastoset al., [33] consider a non-commutative descrip-
tion of graphene. This description consists of a Dirac equa-
tion for massless Dirac fermions plus non-commutative cor-
rections, which are treated in the presence of an external
magnetic field. They argue that, being a two-dimensional
Dirac system, graphene is particularly interesting to test non-
ommutativity. They find that momentum non-commutativity
affects the energy levels of graphene and they obtain a bound
for the momentum non-commutative parameter. Their results
show that momentum non-commutativity yields interesting
results
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FIGURE 1. The positive energy eigenvalues as a function of the quantum numbern. a, b) Variation with respect ofB for fixed value of
θ = 0.00 andβ = 0.005; c, d) variation with respect ofβ for fixed values ofB = andθ = 0.005; e, f) variation with respect ofθ for fixed
value ofB = 0.1 andβ = 0.005.

also at low-energies and that its implications are not restricted
to quantum cosmology and black holes physics.

In the same context, Falomiret al. [43] employ a sim-
ple nonrelativistic model to describe the low-energy excita-
tion of graphene. The model is based on a deformation of
the Heisenberg algebra which makes the commutator of mo-
menta proportional to the pseudo-spin. As a result, the result-
ing Hall conductivity is consistent with the anomalous integer
quantum Hall effect found in graphene.

Jallel [44] describes the lattice deformation in graphene
under strain effect by considering the spacial-moment coordi-
nates do not commute. Within such framework, he (i) build a
new model describing Dirac fermions interacting with an ex-
ternal source that is non commutative parameter dependent,
and (ii) the eigenvalues are showing Landau levels in similar
way to the case of a real magnetic field applied to graphene.

Iorio and Pais [45], in their paper “Generalized uncer-
tainty principle in graphene” showed that, by going beyond
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FIGURE 2. The positive energy eigenvalues as a function of the magnetic fieldB for n = 0, 1, 2, 3.

the low-energy approximation for which the dispersion rela-
tions of graphene are linear, the corresponding emergent field
theory is a specific generalization a Dirac field theory. The
generalized Dirac Hamiltonians one obtains are those com-
patible with specific generalizations of the uncertainty prin-
ciple. They also comment on the compatibility of the latter
with non-commuting positions, and on their possible physical
realization.

Thus, following these works and maybe others which are
not cited here, we can expect that our study can be regarded
as a contribution to the case of graphene by introducing the
minimal length in the commutations rules of Heisenberg.

5. Conclusion

In this paper, we have exactly solved the KGO in two di-
mensions in the presence of an external magnetic field in the
framework of relativistic quantum mechanics with minimal
length and in the NC space. Firstly, by adopting the same
procedure used by Menculiniet al. [9], we have solved the
problem only in the case of non-commutative space. The
results found are in good agreement with those obtained in
the literature. After that, we have introduced the minimal

length in the problem in question. This introduction has been
making as follows: (i) we write the coordinates of the non-
commutative space with those in commutative space by using
the Bopp shift approximation, and (ii) then we introduce the
minimal length in our equation. By these, the problem in
question is identified with a P̈oschl-Teller potential.

The eigensolutions of the problem in question in a mag-
netic field are obtained in the presence of a minimal length in
non-commutative space. The dependence on theses eigenso-
lutions with the minimum length and the non-commutative
parameters is very clear. Furthermore, by comparing the
spectrum of energy obtained in our case with those of the
same problem in the flat space-time, we can see that the pres-
ence of both parameters breaks the degeneracy of the spec-
trum of energy. In addition, the presence of a term onn2 in
the form of the spectrum of energy shows the existence of
hard confinement. This dependence is only clear when we
introduce minimal length in the problem in question. Finally,
In the limit whereβ → 0 andΘ → 0 tend to zero, we recover
well the results obtained in the literature.
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5. J. Beńıtez, R. P. Mart́ınez y Romero, H. N. Núez-Yépez, and
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