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3d Monte Carlo analysis on photons step
through turbid medium by Mie scattering
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Photon scattering profiles in a turbid media were investigated through numerical simulation based on the Monte Carlo-Mie method at
this present work, using Wolfram Mathematics in the program algorithm. Photon scattering was treated using electromagnetic spherical
harmonics waves in three-dimensional scattering. The proposal, as an alternative to the Henyey-Greenstein phase approximation, was
defining a unit vector that represents a phase distribution, as an equivalent function with three vector components, within the turbid media.
Associating the step component, as projection using Legendre polynomials and for the transverse plane components were defining as vector
bases in terms of Legendre-Hankel functions, according to Gustav Mie’s theory. This composite vector was defined as a step function and
was evaluated within the Monte Carlo algorithm, obtaining simulations of light scattering. Backscatter profiles were compared for different
geometric dimensions of the spherical particles within the turbid media, including validation of the model with an experimental Lidar signal
from low clouds, obtaining physical properties of the turbid media by the proposed theoretical model.
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1. Introduction

A scientist community that involves in scattering light stud-
ies, today they offer to present many scattering light mod-
els, increasingly developed in order to obtain and identify,
through the study of properties, some different atmospheric
elements of our planet and outer space. This is an important
contribution of these scattering light models about climate
change and environmental sustainability to the planet. Now-
days in Mexico, there are not many registers of scattering
light works by research groups; that is why this work presents
the development and testing of one combined Monte Carlo-

Mie model, being careful with the focus on special functions
of scatterer unit vector from the proposed work. This work
was successful thanks to the actual current computer tools.

Some works reported by researchers as L.R. Bissonnette,
et al., Wu Zhensenet al., P. F. Liaparinos, and Yuzaho Ma
et al. use within their modeling an approximate simplified
phase function called the Henyey-Greenstein function. It is
applied to scatterer particles with spherical symmetry, [1-4].
In this work, the authors have developed a physical model in
one simplified algorithm considering a completely analytical
dominium and testings to get theoretical results according to
spherical harmonics and Lidar theory.
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2. Development of the Monte Carlo Mie model

This section is a review of spherical harmonics for scattered
waves. Emphasis was being placed on handling special func-
tions that make up the electromagnetic fields with spherical
symmetry.

In the second part, the principal concepts are analyzed
about handling the statistic-numerical Monte Carlo method.
Finally, the purpose of fuse both of them in one combined
model is exposed.

2.1. Amplitude of scattering waves

The outer/inner relation of the electromagnetic fields, from
the interaction of electromagnetic radiation with a spherical
scatterer of radius a, is defined as

(Ein + Esc − Ei)× êeer = (Hin + Hsc − Hi)× êeer = 0, (1)

Defining as:Ein incident electric field,H in incident mag-
netic field,Ei inner electric field,Hi inner magnetic field,Esc

scattering electric field, andHsc scattering magnetic field.
These fields were proposed by Mie [5]. For this work the
most important fields are the scattered fields, these are written
as Hankel special functions, which convergence at infinity.

A set of equations resulting from boundary conditions of
Eq. (1), solving these equations for the scattered fields and
finish getting the Mie Coefficients (an, bn), which are related
with the amplitude of scattering waves as:

an =
mψn(mx)ψ′n(x)− ψn(x)ψ′n(mx)
mψn(mx)ξn′(x)− ξn(x)ψ′n(mx)′

, (2)

bn =
ψn(mx)ψ′n(x)−mψn(x)ψ′n(mx)
ψn(mx)ξn′(x)−mξn(x)ψ′n(mx)

. (3)

As Mie’s theory establishes, the scattering electric field
can be possible to define by two orthogonal vector compo-
nents (Escθ , Escφ ) to produce a transverse plane, which is per-
pendicular to the scattering direction. From the definition of
scalar scattering electric field, it is obtained [5]

Escθ = Escθ + Escφ (4)

and

Escθ =
cosφ

ρ

∞∑
n=1

En(ianξ′nτn − bnξnπn), (5)

Escφ =
cosφ

ρ

∞∑
n=1

En(bnξnτn − ianξ′nπn).∆ (6)

Noting thatρ = kr, k is the wavenumber andr is the
distance of the scattering wave from the scatterer.

Applying the optical theorem that defines one transversal
section of extinction (σ) as the relation between the extinct
total energyWtotal (sum of absorption and scattering ener-
gies) and the incident irradiance [5]. It is possible to get one

transversal scattering section as,

σ =
4π

k2
Re{S(00)} =

2π

k2

×
{ ∞∑

n=1

(2n + 1)Re(an + bn)

}
, (7)

normalizing Eq. (7) to one geometric area, then

σ

π(a)2
=

2
(ka)2

{ ∞∑
n=1

(2n + 1)Re(an + bn)

}
. (8)

To get the scattering transversal sectionσs, it is necessar-
ily integrated the total scattering power over a solid angle4π,
as [6]

σs =
2π

k2

π∫

0

sen θdθ(|S1(θ)|2 + |S2(θ)|2), (9)

normalizing Eq. (9) with one geometric area, then

σs

π(a)2
=

2
(ka)2

∞∑
n=1

(2n + 1)(|an|2 + |bn|2) (10)

Finally, by energy conservation, it is possible to get,

σ = σs + σc. (11)

In other words, the transversal section of extinction from
one scatterer particle, it is conforming by the sum of the
transversal section of scatteringσs and the transversal sec-
tion of absorptionσc.

The volumetric coefficient of extinction in the turbid me-
dia is defined by,

β = N(z)σ, (12)

Noting that,N(z) is the normalized concentration of par-
ticles, from turbid media, in one illuminated unit volume by
one incident pulse of light.

2.2. Monte Carlo Method

One synthetized explanation of the terms involved in the sim-
ulation in relation to a distribution of particles inside of turbid
medium, by Monte Carlo then is given.

Suppose a representation of one turbid medium with a
hypotetical homogeneous thickh (0 < x < h) and walls
of infinite areas whereωk photons from a gaussian pulse of
energy are impacted.

Considering Eqs. (8), (10) and (11), there is the probabil-
ity (σs/σ), that an average of photons is in scattering process
and the weightening them being defined by [7],

ωk(σs/σ), (13)

there is also the probability (σc/σ) that an average of pho-
tons is in absorption process and the weightening them being
defined by,

ωk(σc/σ). (14)
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The free path (λ), between the present and the next pho-
ton train scattering event, is proposed with an exponential
distribution density (γ), and is defined by the equation,

λ = − 1
σ

ln(γ). (15)

Calculating the abscissa at the next collision point, results

xk+1 = xk + λkµk, (16)

with µk = cos θ. It represents the new direction of the rest of
the train, once it has already collided.

2.3. Monte Carlo-Mie model

Noting explanation from Secs. 2.1 and 2.2. Based on those
observations, the following is proposed:

1.- Associate vector bases of the Mie model with the step
function of the classic Monte Carlo model (Eq. (16)),
generating a new unit vector of spatial advance and
projected as spherical harmonics. Where the radial
component has been projected from one polar axis, in-
side of turbid media, in this case it is not used the pro-
jection functionµk = cos θ. Instead can be proposed
one spherical harmonic function as Legendre spatial
functions, choosing one orderm = 1 to ensure az-
imuthal symmetry [5,8] as

µk1 = P 1
n(cos θk). (17)

Now for the second and third components from
unit vector, they are proposed as vector components
from Mie scattering electric field: parallel component
E‖s[N

(3)
P1n] and perpendicular componentE⊥s[M

(3)
I1n].

Where the parallel componentE‖s is linked with the
unit vectorêθ, taking the scalar component as

µk2 = {iτξ′n − πnξn}cos ψ

ρ
, (18)

the perpendicular componentE⊥s is linked with êϕ,
taking the scalar component as

µk3 = {iπnξ′n − τnξn} sin ψ

ρ
. (19)

FIGURE 1. Reference system ofr vector tok vector, expanding in
spherical harmonics.

The complete expression of one unit vector, expanded
on spherical harmonics, is

v = êrrk+1 + êθθk+1 + êϕϕk+1 = êr(rk + λkµk1

+ êθ(θk + λkradµk2) + êϕ(ψk + λkradµk3). (20)

With the distribution function of free path between dif-
ferent scattering events, inside the medium, as

λk = − 1
σk

ln(γ). (21)

And the distribution function of free angular directions,
as

λkrad = − 1
σkrad

ln(γrad). (22)

One graphic representation in the space, is shown in
the Fig. 1.

The vector proposed at Eq. (20) is similar to the pro-
posed by Badrinathet al., [9]. The difference in this
work was that the authors have proposed a projection
in spherical harmonics.

2.- The amplitudes of scattering waves, associated to Mie
coefficients (Eqs. (2) and (3)) are linked to the scatter-
ing and absorption probabilities inside turbid media.

3.- The incident theoretical light pulse proposed must has
a gaussian shape to be closer a real light pulse.

3. Algorithm flow chart

Algorithm flow chart is composed by three blocks, which are:
Block 1. It is declared: turbid medium thickness, the co-

efficients of: scattering, absorption and extinction; the proba-
bilities of: scattering, absorption and extinction; the numbers
of: scattering events and photons.

This block generate:
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a) The probability distribution function, is the list of val-
ues resulting from convolution between the probability
of total energy and the gaussian probability function of
the incident pulse.

b) The position photonic function, that identifies the po-
sition of photons train, while it goes through the tur-
bid medium. The position photonic function chooses
the average probability photon values from the scat-
tering profile distribution list [wCC(R, λ)] generated,
according to the position photon train.

c) The scattering photonic function, that identifies the
photons train leaving the turbid medium in the forward
direction. The scattering photonic function chooses
the average probability photon values from the scat-
tering profile distribution list [wCC(R, λ)] generated,
according to the scattering position photon train.

d) The backscattering photonic function, that identi-
fies the photons train leaving the turbid medium in
the backward direction. The backscattering pho-
tonic function chooses the average probability pho-
ton values from the scattering profile distribution list
[wCC(R, λ)] generated, according to the backscatter-
ing position photon train.

e) A 3D step functionv, which it is composed by:λk

value, it means a exponential distribution function of
free paths between scattering events,λkrad value, it
means a exponential distribution function of free di-
rections between scattering events,µ value, it means
all random data with polar angles,ψ value, it means all
random data in relation to azimuthal angles.

Block 2. Execution of photon step function, which is de-
fined as a state vector:

v =
{ {(λk, θk, ϕk)}, if µk1 = 1, ψ = 0
{Re[(rk + λkµk1)]}, {Arg[(θk + λkradµk2)], Arg[(ψk + λkradµk3)]}, if µk1 6= 1, ψ 6= 0 . (23)

This block generate a list of all random trajectories in
function of the number of scattering events and the photons
number declared [7,10]. It results in a list of three elements;
first for position and two for directions (θk, ψk). From the
list [wCC(R, λ)] generated, can be obtain another new list
[wCC(R, λ)FOV ] that includes the average probability pho-
ton values that are trapped inside the Field Of View (FOV)
of a virtual photodetector, located at (−R, 0, 0) position, as is
shown in Fig. 2.

The listwCC(R, λ)FOV is the photon backscattering av-
erage probability located within the field of view of the tele-
scope (FOV) whose value variation depends on the wave-
length and also depends of the convergent exponential dis-
tribution function.

The algorithm of photon step through turbid media is
shown in Fig. 3,

Block 3. Photons are counted and averaged in the pho-
todetector. Besides they are shown in the screen editor as
position profiles graphic.

FIGURE 2. Backscatterig detection at(−R00) direction.

The calculus of the average probability photon values in-
side the photodetector was possible because of the complex
vector components definition of the transverse plane, that is
generated by the photon step function. The complex defini-
tion of parallel component, is

cosφ

ρ
{iτnξ′n + πnξn}êθ, (24)

and perpendicular component, is

sin φ

ρ
{iπnξ′n + τnξn}êϕ. (25)

As a result of this, the authors propose associate a cou-
ple of ortogonal semicomplex planes, and from that it could
be possible to get measures of angular values in relation to
the polar and azimuthal directions, at the moment of pho-
tons backscattering. The average probability photon val-
ues caught is depending of a solid angle from photodetector
(FOV), which has semiangle of

βββ = tan−1 y

R
. (26)

Equation (26) has a direct relation with the photodetector
light acceptance cone (aperture of telescope). The numerator
y, represent one aperture radius of telescope and the denomi-
natorR, represent the distance of photodetector to the turbid
medium border. Another perspective is shown in the Fig. 4.

4. Results of simulations

It is made simulations, considering a turbid media not
absorbent, with the following parameters: an incident light

Rev. Mex. F́ıs. 67 (2) 292–298
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FIGURE 3. Flow chart.

FIGURE 4. Backscattering inside of field of view (FOV).

pulse composed by population of5.5×105 photons, 100 scat-
tering events, 532 nm of wavelength,h = 2 m thickness of
turbid media,r = 8.65 µm,r = 10 µm y r = 12.5 µm radius
dimension of scatterers and one refractive index of 1.33.

4.1. Comparing average result and space distributions

Tables I, II, III shown the average of: backscattered photons
probability, transmitted photons probability and caught pho-
ton probability through out one turbid media composed by
spherical scatterers. Plotting their spatial profiles of each of
them.

Noting that when the physical parameters as: scatterer
radius and refractive index are used into the scattering coeffi-
cient and absorption coefficient and considering the Mie

FIGURE 5. Spatial distribution profiles, from droplets water tur-
bid media of 2 m of thickness, with relative refractive index of
n = 1.33 and radius of: a)r = 8.65 µm, b) r = 10 µm and
c) r = 12.5 µm.

vector bases into state function. Scattering light is observed
with an increasingly forward direction (toward direction of
incident pulse) and less in backward direction, it happen ev-
ery time that scatterers size is increasing. The last concept
is checked with the results of the photon concentrations in
forward, backward and trapped cases, given by the program
in relation to turbid media as it is shown in Tables I, II and
III. Also, the scattering spatial distribution is similar to the
frontal lobe of radiation from the Mie phase function [5].

4.2. Comparison of backscattered photons as a func-
tions of distance

The profile of distance distributions of backscattered photons
probability is calculated from 5 to 50 m, by steps of 5 m. Fig-
ure 6, shows the profile of average probability photon values
versus distance. Forr = 8.65, 10 and 12.5µm of scatterer.

Comparing5.5 × 105 of photons hitting the turbid me-
dia (Fig. 6), from each distance, the exponential distribution
profiles again shows a strong dependence of the size of the
scatterer in relation with backscattering photons probability.

FIGURE 6. Profiles in the FOV.

Rev. Mex. F́ıs. 67 (2) 292–298
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TABLE I. Scatterer radius (r = 8.65 µm)

Incident Photons wavelength Caught Photons Transmitted Photons Backscattering Photons

average (nm) average average average

5.5× 105 532 4.430× 10−16 0.9710 0.00957

TABLE II. Scatterer radius (r = 10 µm)

Incident Photons wavelength Caught Photons Transmitted Photons Backscattering Photons

average (nm) average average average

5.5× 105 532 3.383× 10−18 0.9713 0.00925

TABLE III. Scatterer radius (r = 12.5 µm)

Incident Photons wavelength Caught Photons Transmitted Photons Backscattering Photons

average (nm) average average average

5.5× 105 532 3.439× 10−18 0.9742 0.00637

5. Validation of the model with an experimen-
tal lidar signal

The Monte Carlo-Mie model was performed to represent a
distance profile of experimental data, provided by courtesy
of THE FRENCH AEROSPACE LAB (ONERA). Referring
to a backscattered Lidar signal from turbid media in clouds
located at a minimum height of one thousands sixty meters
with a thickness of one hundred meters.

For that testing, the Monte Carlo-Mie algorithm used the
following parameters, to fit the experimental profile: one
thickness of turbid mediumh = 100 m, an energy laser pulse
of 50 mJ, assuming just5.5× 105 incident photons. Number
of scattering events 100. A wavelength of 355 nm. A pho-
todetection gain of eight times, this gain is assigned due to
the limitations in the computer equipment used in this work,
the5.5×105 photons is a minimal energy fraction equivalent
in order to femtojoules. Because of this, the authors assigned
that gain compensation. One aperture radius of telescope of
0.1 m which it is located for each corresponding variation
distance at (-R 0 0). A relative refractive indexnr = 1.9996
from turbid media [5,11,12,13]. And a radius of the droplets
water from low ionizationr = 10 µm [14].

The algorithm started, while varying the distance of pho-
todetector from 10650 to 1147.5 m by steps of 7.5 m. Simu-
lating the light pulse step through turbid media and for each
step was necessary to make a numerical fit (factor fit). The
factor fit applied to the total backscatterig list was proposed
as Trasmittance factor [15]. As it is shown in Fig. 7.

Considering that factor fit, the authors getting sucsses-
fully modeling the experimental profile from backscattering
power. Figure 8 shows theoretical and experimental power
backscattering.

FIGURE 7. Trasmittance profile T(R).

FIGURE 8. Theoretical and experimental backscattering power
P(R), profiles.
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6. Conclusions

In scattering and quantification simulations of expanding as
spherical harmonics waves, the authors are concluded:

Referring to Fig. 7, one factor fit is proposed, it was asso-
ciate to this disturbance as a physical relation of the transmit-
tance factorT (R), that relates to the extinction coefficient
at distance R. And it is applied at photodetector measure-
ments, specific for each height over an interval from 1065 to
1147.5 m. As a result of this, an experimental and theoretical
signals lidar are closely fitted, as it is shown in Fig. 8. The
success of this modeling is due to the turbid medium is being
composed of spherical scatterers (water drops), with an av-
erage radius size of 10µm and the Monte Carlo-Mie model
is based on vector bases that represents scattering spherical

harmonic and consequently the authors proposed an empir-
ical equation that represents the backscattering power as a
function of the height. It is defined as [15].

P (R, λ) = P0〈wCC(R, λ)FOV〉T (R). (27)

With P0, is the power value of incident pulse [J/s].
wCC(R, λ)FOV, is the photon backscattering average [di-
mensionless].

T (R) = exp


−2

r∫

0

αt,λ(x)dx


 ,

is the transmittance factor [dimensionless].
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para aplicaciones en arqueologı́a y en patrimonio hist́orico-
artı́stico, (2001), p. 206. ISBN: 846996884X.

14. T. Y. Nakajima, K. Suzuki, G. L. Stephens, Droplet Growth in
Warm Water Clouds Observed by the A-Train. Part I: Sensitiv-
ity Analysis of the MODIS-Derived Cloud Droplet Sizes,Jour-
nal of the Atmospheric Sciences, 67 (2009) 1884-1896, DOI:
10.1175/2009JAS3280.1

15. C. Weitkamp,Lidar Range-Resolved Optical Remote Sensing
of the Atmosphere, (Springer series in Optical Science, 2005),
pp. 6-11. ISBN 0-387-40075-3.

Rev. Mex. F́ıs. 67 (2) 292–298

https://doi.org/10.1007/BF01082271�
https://doi.org/10.1007/BF01082271�
https://doi.org/10.1007/BF01009622�
http://dx.doi.org/10.1118/1.4821089�
http://dx.doi.org/10.1118/1.4821089�
10.1007/s10043-017-0352-9�
10.1007/s10043-017-0352-9�
http://dx.doi.org/10.7149/OPA.47.3.177�
http://dx.doi.org/10.7149/OPA.47.3.177�
https://www.vaxasoftware.com/doc_edu/fis/inrefraccion.pdf�
https://www.vaxasoftware.com/doc_edu/fis/inrefraccion.pdf�
https://www.vaxasoftware.com/doc_edu/fis/inrefraccion.pdf�
10.1175/2009JAS3280.1�

