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In this paper, we discuss the fixed, time synchronization of a class of chaotic systems based on the backstepping control with disturbances.
A new and important fixed time stability theorem is presented. The upper bound estimate formulas of the settling time are also given, which
are different from the existing results in the literature. Based on the new fixed time stability theorem, a novel saturation controller for the
fixed time synchronization a class of chaotic systems is proposed via the backstepping method. Finally, the new chaotic system is taken as
an example to illustrate the applicability of the obtained theory.
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1. Introduction

Synchronization behavior is a fundamental natural phe-
nomenon widely existing in the natural world and the field
of engineering. During the past decades, chaos synchroniza-
tion has attracted considerable interest and been extensively
studied owing to its potential applications in various fields,
such as information processing, chemical reactors, physical
science, secure communication, and so on. Accordingly, var-
ious control methods have been proposed to solve the syn-
chronization problem between chaotic systems, such as lin-
ear control [1], optimal control [2], pinning control [3], slid-
ing mode control [4], and so on. So far, many interest-
ing results have been obtained for chaos synchronization [5-
9]. However, most of the researching products are based on
asymptotical synchronization, which means that chaos syn-
chronization can only be achieved when time tends to infin-
ity. As we all know that in reality, it is more valuable that the
synchronization of chaotic systems is realized in finite time
rather than infinite time. Therefore, a lot of work has been
done in the research of fixed time synchronization [10-13].
Fixed time synchronization means that chaos synchroniza-
tion can be achieved within a bounded time for any initial
value of the studied system. Compared with asymptotical
synchronization, fixed time synchronization has some excel-
lent performances, such as faster convergence speed, better
anti-interference capability, and so on. In order to observe
fixed time synchronization, the error system must be stable
within a fixed time. Although some results have been pro-
posed in the literature, the study on the fixed time stability of
chaotic systems is still in its infancy. So, it is of great signif-
icance to further establish some novel and effectively fixed
time stability criteria. On the other hand, it is well known
that the practical systems are often subject to input satura-
tion, which could cause unsatisfactory imprecision and even
instability of the controlled systems. In order to improve the

synchronization performance, the effect of saturation should
be further considered.

Based on the above mentions, the main aim of our paper
is devoted to the fixed time stability of nonlinear systems and
the fixed time synchronization of a class of chaotic systems
via the backstepping control. A new fixed time stability theo-
rem and an estimate formula of the settling time are establish
firstly. Then, a novel saturation controller for the synchro-
nization of a class of chaotic systems is derived by using the
obtained fixed time stability theory. Finally, some numerical
simulations are given to demonstrate the effectiveness and
validity of the derived method.

This article is organized as follows. In Sec. 2, the system
description and some necessary preliminaries are given. The
fixed time stability of nonlinear systems and the synchroniza-
tion of chaotic systems are investigated in Sec. 3. In Sec. 4,
some numerical simulations are presented to show the feasi-
bility of the theoretical results. Section 5 ends the article with
conclusions.

2. The system description and preliminaries

Consider a class of chaotic systems described by the follow-
ing differential equation:





ẋ1 = x2,
ẋ2 = x3,
ẋ3 = f(x) + ∆f(x),

(1)

wherex1, x2, x3 denote the state variables,f(x) is a non-
linear function,∆f(x) describes the bounded disturbance,
x = (x1, x2, x3)T .

Remark 1. The system (1) includes an extensive variety
of chaotic systems such as Genesio system [14], Rossler sys-
tem [15], Arneodo-Coullet system [16], Wei system [17], and
so on.
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Remark 2. The backstepping method, which has been
developed by Kristicet al. [27], is one of the most power-
ful nonlinear techniques of controller design. It proposes a
systematic recursive algorithm specified for the class of non-
linear systems having a lower triangular form. Note that the
structure of the considered model (1) is in the form of strict
feedback. Therefore, in this paper, we utilize the backstep-
ping control approach to investigate the fixed-time synchro-
nization of the system (1).

Suppose the above system is viewed as the drive system,
then the response system, which may be different from the
drive system (1), is given as:





ẏ1 = y2,
ẏ2 = y3,
ẏ3 = g(y) + ∆g(y) + u,

(2)

wherey1, y2, y3 denote the state variables,g(y) is a nonlinear
function,∆g(y) describes the bounded external disturbance,
y = (y1, y2, y3)T . u is the saturation control input which is
defined by:

u =





u0, v ≥ u0,
v, −u0 < v ≤ u0,
−u0, v ≤ −u0.

(3)

The saturation controlleru can also be written as:

u = v − φ(v),

where

φ(v) =





v − u0, v ≥ u0,
0, −u0 < v ≤ u0,
v + u0, v ≤ −u0.

If the error between the drive system (1) and the response
system (2) is defined ase = y − x, then the error system can
be obtained:





ė1 = e2,
ė2 = e3,
ė3 = g(y) + ∆g(y)− f(x)−∆f(x) + u.

(4)

Definition 1 [10]. The origin of system (4) can achieve
finite-time stability, if there exists a constantT (e(0)) > 0
such thatlimt→T (e(0)) ||e(t)|| = 0 and ||e(t)|| = 0 for any
t > T (e(0)), whereT (e(0)) is called the settling time.

Definition 2 [11]. The origin of system (4) is said to be
fixed time stable if it is globally finite-time stable and the set-
tling time T (e(0)) is bounded for anye(0) ∈ R3, i.e., there
existsTmax > 0 such thatT (e(0)) ≤ Tmax for e(0) ∈ R3.

This paper aims at designing a robust reliable controller
u to synchronize the drive system (1) and response system
(2) in a fixed time. Based on Definition 2, we only need to
design proper controlleru such that the origin of system (4)
is fixed time stable.

Lemma 1 [19]. If α1, α2, · · · , αn ≥ 0, 0 ≤ ξ ≤ 1, µ >
1, then we get

n∑

i=1

αξ
i ≥

(
n∑

i=1

αi

)ξ

,

n∑

i=1

αµ
i ≥ n1−µ

(
n∑

i=1

αi

)µ

. (5)

Lemma 2 [11]. If there exists a continuous, positive def-
inite, and radially unbounded functionV (e(t)) : Rn → R
such that any solutione(t) of (4) satisfies the following two
conditions:

(i) V (e(t)) = 0 ⇔ e(t) = 0,

(ii)
dV (e(t))

dt
≤ −(aV ξ(e(t)) + bV η(e(t)))k

for somea, b, η, ξ, k > 0 andηk > 1, ξk < 1, then the ori-
gin of system (4) is fixed time stable, and the settling time
T (e(0)) is estimated by

T (e(0)) ≤ T 1
max =

1
ak(1− ξk)

+
1

bk(ξη − 1)
.

3. The synchronization scheme

In this section, the synchronization scheme between systems
(1) and (2) is investigated, and some new criteria are given.

Theorem 1. If there exists a continuous, positive definite
and radially unbounded functionV (e(t)) : Rn → R such
that any solutione(t) of (4) satisfies the following two con-
ditions:

(i) V (e(t)) = 0 ⇔ e(t) = 0,

(ii)
dV (e(t))

dt
≤ −aV ξ(e(t))− bV η(e(t))− cV (e(t))

for somea, b, c, η, ξ > 0 andη > 1, ξ < 1, then the origin of
system (4) is fixed time stable, and the settling timeT (e(0))
is estimated by

T (e(0)) ≤ T 2
max =

1
c(1− ξ)

ln
(

1 +
c

a

[a

b

](1−ξ/η−ξ)
)

+
1

c(η − 1)
ln

(
1 +

c

b

[a

b

](1−η/η−ξ)
)

Proof. Since

dV (e(t))
dt

≤ −aV ξ(e(t))− bV η(e(t))

− cV (e(t)) < −aV ξ(e(t))− bV η(e(t)),

based on Lemma 2, we know that the origin of system (4) can
achieve fixed time stability.
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In the following, we estimate the settling time:

T (e(0)) =

V (e(0))∫

0

1
awξ + bwη + cw

dw ≤
∞∫

0

1
awξ + bwη + cw

dw =

γ∫

0

1
awξ + bwη + cw

dw

+

∞∫

γ

1
awξ + bwη + cw

dw ≤
γ∫

0

1
awξ + cw

dw +

∞∫

γ

1
bwη + cw

dw

a) Lets = w1−ξ, thends = (1− ξ)w−ξdw which implies thatdw = (1/[1− ξ]w−ξ)ds. Thus, we have

γ∫

0

1
awξ + cw

dw =

γ∫

0

1
wξ(a + cw1−ξ)

dw =

γ1−ξ∫

0

1
(1− ξ)(a + cs)

ds

=
1

c(1− ξ)
ln(a + cs)

∣∣γ1−ξ

0
=

1
c(1− ξ)

ln
(
1 +

c

a
γ1−ξ

)
.

b) Lets = w1−η, thends = (1− η)w−ηdw which means thatdw = (1/[1− η]w−η)ds. Thus, we get

∞∫

γ

1
bwη + cw

dw =

∞∫

γ

1
wη(b + cw1−η)

dw =

0∫

γ1−η

1
(1− η)(b + cs)

ds

= − 1
c(1− η)

ln(b + cs)
∣∣γ1−η

0
=

1
c(η − 1)

ln
(
1 +

c

b
γ1−η

)
.

By a), b) we obtain

T (e(0)) ≤ 1
c(1− ξ)

ln
(
1 +

c

a
γ1−ξ

)
+

1
c(η − 1)

ln
(
1 +

c

b
γ1−η

)
.

In order to find the optimal estimation ofT (e(0)), set

φ(γ) =
1

c(1− ξ)
ln

(
1 +

c

a
γ1−ξ

)
+

1
c(η − 1)

ln
(
1 +

c

b
γ1−η

)
.

Then

dφ(γ)
dγ

=
1

c(1− ξ)
1

1 + c
aγ1−ξ

c

a
(1− ξ)γ−ξ +

1
c(η − 1)

1
1 + c

bγ1−η

c

b
(1− η)γ−η =

1
aγξ + cγ

− 1
bγη + cγ

.

Let dφ(γ)/dγ = 0, we haveaγξ + cγ = bγη + cγ, i.e. aγξ − bγη = 0. By solving this equation, one can getγ1 = 0,
γ2 = (a/b)(1/η−ξ).

If γ = 0, thenφ(γ) = ∞, which implies that the minimalT 2
max is equal toφ(γ2), i.e.

T (e(0)) ≤ T 2
max =

1
c(1− ξ)

ln
(

1 +
c

a

[a

b

] 1−ξ
η−ξ

)
+

1
c(η − 1)

ln
(

1 +
c

b

[a

b

] 1−η
η−ξ

)
.

Remark 3. Some fixed time stability theorems have been proposed in papers [18-20] without considering the term
cV (e(t)). The termcV (e(t)) is important since it can help to improve the convergence performances. Thus, Theorem 1
given in our paper is the extension of the fixed time stability theorems presented in papers [18-20].

Remark 4. A theorem similar to theorem 1 is investigated in paper [21]. However, the upper bound estimate formula of
the settling time given in paper [21] is obtained by settingγ = 1, which means that the upper bound estimation is not optimal.
Note that the upper bound of the settling time proposed in our paper is optimal, which implies that compared with the paper
[21], Theorem 1 can give the settling time a more accurate estimate. Therefore, in terms of applicability, Theorem 1 has some
advantages over that presented in the paper [21].

Theorem 2.For the error system (4). If

v = −g(y) + f(x)− aξ(ξ − 1)eξ−2
1 e2

2 − aξeξ−1
1 e3 − be3 − aξēξ−1

2
˙̄e2 − b ˙̄e2 − aēξ

3 − bē3 − (c + M)sign(ē3), (6)
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then there exists fixed timeT (e(0)) ≤ Tmax such thatlimt→Tmax ei = 0 andei = 0, i = 1, 2, 3 for t ≥ Tmax, where

Tmax = min

(
3

2b
[
1− 1

2

] ln

[
1 +

2b√
2c

{ √
2c

2
1+ξ
2 a

} 1
ξ
]

+
3

2b
[
1+ξ
2 − 1

] ln

[
1 +

2b

2
1+ξ
2 a

{ √
2c

2
1+ξ
2 a

} 1−ξ
ξ

]
,

1
2b

[
1− 1

2

] ln

[
1 +

2b√
2c

{ √
2c

2
1+ξ
2 3

1−ξ
2 a

} 1
ξ
]

+
1

2b
[
1+ξ
2 − 1

] ln

[
1 +

2b

2
1+ξ
2 3

1−ξ
2 a

{ √
2c

2
1+ξ
2 3

1−ξ
2 a

} 1−ξ
ξ

])
, (7)

anda, b, c are positive constants,ξ = (q/p) > 2, p, q > 0 are odd integers,̄e2, ē3, M are defined by (9), (12), (14),
respectively.

Proof: After observing system (4) we know that if there exists fixed timeT such thatlimt→T e1 = 0 ande1 = 0 for
t ≥ T , thenlimt→T ė1 = 0 which implies thatlimt→T e2 = 0. Furthermore we getlimt→T ė2 = 0 which means thate3 = 0
for t ≥ T . Therefore, in order to prove Theorem 2, we only need to design suitable controlleru such that there existsT that
satisfieslimt→T e1 = 0 ande1 = 0 for t ≥ T .

In the following, we use the backstepping method to prove Theorem 2.
If e2 = −aeξ

1 − be1 − csign(e1), then according to the first equation of system (4), we have

ė1 = −aeξ
1 − be1 − csign(e1).

Let
V1 =

1
2
e2
1.

Its derivative about timet is

V̇1 = e1ė1 = e1(−aeξ
1 − be1 − csign(e1)) = −ae1+ξ

1 − be2
1 − c|e1| = −2

1+ξ
2 aV

1+ξ
2

1 − 2bV1 −
√

2cV
1
2

1 .

Because of Theorem 1, we know there exists a fixed time

T1 =
1

2b(1− 1
2 )

ln


1 +

2b√
2c

[ √
2c

2
1+ξ
2 a

] 1
ξ


 +

1

2b
(

1+ξ
2 − 1

) ln


1 +

2b

2
1+ξ
2 a

[ √
2c

2
1+ξ
2 a

] 1−ξ
ξ


 (8)

such thatlimt→T1 e1 = 0 ande1 = 0 for t ≥ T1.
In order to gete2 = −aeξ

1 − be1 − csign(e1), we define

ē2 = e2 + (aeξ
1 + be1 + csign(e1)). (9)

Then we have

˙̄e2 = ė2 + aξeξ−1
1 e2 + be2 = e3 + aξeξ−1

1 e2 + be2. (10)

If

e3 = −aξeξ−1
1 e2 − be2 − aēξ

2 − bē2 − csign(ē2), (11)

then according to (10) and (11), we obtain

˙̄e2 = −aēξ
2 − bē2 − csign(ē2).

Based on Theorem 1, we know that there exists fixed timeT1 such thatlimt→T1 ē2 = 0 andē2 = 0 for t ≥ T1.
To make (11) works well, we set

ē3 = e3 + aξeξ−1
1 e2 + be2 + aēξ

2 + bē2 + csign(ē2). (12)

Then

˙̄e3 = ė3 + aξ(ξ − 1)eξ−2
1 e2

2 + aξeξ−1
1 e3 + be3 + aξēξ−1

2
˙̄e2 + b ˙̄e2, = g(y) + ∆g(y)− f(x)

−∆f(x) + v − φ(v) + aξ(ξ − 1)eξ−2
1 e2

2 + aξeξ−1
1 e3 + be3 + aξēξ−1

2
˙̄e2 + b ˙̄e2. (13)
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Now we assume that∆g(y), ∆f(x) are bounded which means that there exists constantM > 0 such that

| − φ(v) + ∆g(y)−∆f(x)| ≤ M. (14)

Putting (6) into (13), yields

˙̄e3 = −φ(v) + ∆g(y)−∆f(x)− aēξ
3 − bē3 − csign(ē3)−Msign(ē3).

ChoosingV2 = (1/2)ē2
3, we have

V̇2 = ē3(−φ(v) + ∆g(y)−∆f(x)− aēξ
3 − bē3 − csign(ē3)−Msign(ē3))

≤ ē3(−aēξ
3 − bē3 − csign(ē3)) + |ē3|| − φ(v) + ∆g(y)− f(x)| −M |ē3| ≤ −2

1+ξ
2 aV

1+ξ
2

2 − 2bV2 −
√

2cV
1
2

Based on Theorem 1, we know there existsT1 such thatlimt→T1 ē3 = 0 andē3 = 0 for t ≥ T1.
From the proof process of Theorem 2, it is easy to see that whent ≥ 3T1 we havee1 = 0. Thus, the setting time should be

T (e(0)) ≤ 3T1.
In order to find the optimal setting time, we chose the final Lyapunov candidate as:

V3 =
1
2
(e2

1 + ē2
2 + ē2

3).

Taking the derivation ofV3 results in

V̇3 ≤
(
− 2

1+ξ
2 a

[
1
2
e2
1

] 1+ξ
2

− 2b

[
1
2
e2
1

]
−
√

2c

[
1
2
e2
1

] 1
2
)

+

(
− 2

1+ξ
2 a

[
1
2
ē2
2

] 1+ξ
2

− 2b

[
1
2
ē2
2

]
−
√

2c

[
1
2
ē2
2

] 1
2
)

+

(
− 2

1+ξ
2 a

[
1
2
ē2
3

] 1+ξ
2

− 2b

[
1
2
ē2
3

]
−
√

2c

[
1
2
ē2
3

] 1
2
)

.

By using Lemma 1, one gets

V̇3 ≤ −2
1+ξ
2 × 3

1−ξ
2 aV

1+ξ
2

3 − 2bV3 −
√

2cV
1
2

3 .

By Theorem 1, we know that the setting timeT (e(0)) should be

T (e(0)) ≤ 1
2b(1− 1

2 )
ln


1 +

2b√
2c

[ √
2c

2
1+ξ
2 3

1−ξ
2 a

] 1
ξ


 +

1
2b

(
1+ξ
2 − 1

) ln


1 +

2b

2
1+ξ
2 3

1−ξ
2 a

[ √
2c

2
1+ξ
2 3

1−ξ
2 a

] 1−ξ
ξ


 .

Therefore, the setting timeT (e(0)) should be satisfiedT (e(0)) ≤ Tmax, where

Tmax = min

(
3

2b
[
1− 1

2

] ln
[
1 +

2b√
2c

{ √
2c

2
1+ξ
2 a

} 1
ξ
]

+
3

2b
[
1+ξ
2 − 1

] ln
[
1 +

2b

2
1+ξ
2 a

{ √
2c

2
1+ξ
2 a

} 1−ξ
ξ

]
,

1
2b

[
1− 1

2

] ln
[
1 +

2b√
2c

{ √
2c

2
1+ξ
2 3

1−ξ
2 a

} 1
ξ
]

+
1

2b
[
1+ξ
2 − 1

] ln
[
1 +

2b

2
1+ξ
2 3

1−ξ
2 a

{ √
2c

2
1+ξ
2 3

1−ξ
2 a

} 1−ξ
ξ

])
.

Remark 5. Papers [21-23] have investigated the fixed time control or synchronization of nonlinear systems and proposed
some control schemes without considering the input saturation. Since in the practical systems, input saturation is often en-
countered, so these drawbacks of the control schemes given in papers [21-23] will limit their range of application and effect of
use.

Remark 6. In the literature, some papers have considered the control or synchronization of the system (1). For example,
paper [24] has investigated the adaptive robust synchronization of then-dimensional system (1) based on the Lyapunov theory.
Paper [25] has studied the control of the fractional-order system (1) via the reduced-order method. It is easy to see that the
synchronization and stabilization in papers [24-25] will be achieved when time goes infinity. However, in our paper, the
synchronization time is bounded by a constant which is independent with regard to the initial values. In addition, papers
[24-25] have not taken account of the input saturation.
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FIGURE 1. x1 − x2, x1 − x3, x2 − x3 andx2 − x1 − x3 phase portraits of chaotic system (15).

4. Simulation results

In this section, some numerical simulations by using the Wei
system [18] as an example are given to demonstrate the ef-
fectiveness of the proposed design schemes.

The Wei system [18] is described by:





ẋ1 = −x2,

ẋ2 = b1x1 + x3,

ẋ3 = b2x
2
2 + x1x3 − b3 + ∆f(x),

(15)

whereb1, b2, b3 are the system’s parameters,∆f(x) is the
bounded disturbance. Whenb2 = 3, b1 = 1, b3 = 0
and ∆f(x) = 0 system (15) is the Sprott D [26]; when
b2 = b3, b1 = 0 and∆f(x) = 0 system (15) is topologi-
cally equivalent to the Falkner-Skan system [17]. Especially,
when(b2, b1, b3) = (2, 1, 0.35) and∆f(x) = 0, system (15)
is chaotic and has a single-scroll attractor with no equilib-
ria. The phase portraits ofx1 − x2, x1 − x2, x1 − x2 and
x2 − x1 − x3 are shown in Fig. 1.

Suppose system (15) is the drive system, then the re-
sponse system is constructed as:





ẏ1 = −y2,

ẏ2 = b1y1 + y3,

ẏ3 = b2y
2
2 + y1y3 − b3 + ∆g(y) + u,

(16)

whereu is the controller.
Based on (15) and (16), the error dynamic system is




ė1 = −e2,

ė2 = b1e1 + e3,

ė3 = b2y
2
2 + y1y3 − b3 + ∆g(y)

−(b2x
2
2 + x1x3 − b3 + ∆f(x)) + u.

(17)

It is easy to see that the structure of the system (17)
is different from that of the system (4). In order to take
advantage of the obtained results, we setê2 = −e2 and
ê3 = −(b1e1 + e3). Then, system (17) can be translated into
the following system:




ė1 = ê2,

˙̂e2 = ê3,

˙̂e3 = h(e)− u,

(18)

whereh(e) = b1e2− (b2y
2
2 + y1y3− b3 +∆g(y))+ (b2x

2
2 +

x1x3 − b3 + ∆f(x)).

Rev. Mex. Fis.67041201 1–8
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FIGURE 2. Fixed time synchronization errore1 between the drive
system (15) and the response system (16).

FIGURE 3. Fixed time synchronization errore2 between the drive
system (15) and the response system (16).

FIGURE 4. Fixed time synchronization errore3 between the drive
system (15) and the response system (16).

In the numerical simulation process, we suppose
(b2, b1, b3) = (2, 1, 0.35) so that system (15) has chaos at-
tractor. The disturbances∆f(x) and∆g(y) are assume to

FIGURE 5. The time response of input signalu.

be (1/2) sin(t) and (1/2) sin(t) cos(t), respectively. The
controller u is designed based on (3) and (6), wherea =
b = 1, c = 0.01 and ξ = 3, M = 30, u0 = 50. Ac-
cording to Theorem 2, systems (15) and (16) can be syn-
chronized in fixed time. The initial conditions of simula-
tion are taken as(x1(0), x2(0), x3(0), y1(0), y2(0), y3(0)) =
(2, 1,−4, 4,−1, 3). The trajectories of variablese1, e2, and
e3 are depicted in Figs. 2-4. By computation, theTmax de-
fined in (7) isTmax = min{12.4619, 12.1307} = 12.1307.
However, from Figs. 2-4, it is easy to see that the synchro-
nization between systems (15) and (16) can be achieved in 6
seconds which is less thanTmax = 12.1307. The simulation
results are in accord with the theory, which demonstrates the
effectiveness of our proposed design schemes.

5. Conclusions

In this paper, we propose a new fixed time stability criterion
in which the fixed time estimation formula is different from
those obtained in the literature. With the assistance of the
novel fixed time stability criterion, the fixed time synchro-
nization of a class of chaotic systems is investigated by the
backstepping procedure. Based on the practical application,
the disturbances and input saturation are taken into considera-
tion in this paper. Numerical simulations demonstrate the fast
convergence and robust performance of the presented con-
troller.
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