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Fixed time synchronization of a class of chaotic
systems based via the saturation control
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In this paper, we discuss the fixed, time synchronization of a class of chaotic systems based on the backstepping control with disturbances
A new and important fixed time stability theorem is presented. The upper bound estimate formulas of the settling time are also given, which
are different from the existing results in the literature. Based on the new fixed time stability theorem, a novel saturation controller for the
fixed time synchronization a class of chaotic systems is proposed via the backstepping method. Finally, the new chaotic system is taken a:
an example to illustrate the applicability of the obtained theory.
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1. Introduction synchronization performance, the effect of saturation should
be further considered.
Synchronization behavior is a fundamental natural phe- Based on the above mentions, the main aim of our paper
nomenon widely existing in the natural world and the fieldis devoted to the fixed time stability of nonlinear systems and
of engineering. During the past decades, chaos synchronizéhe fixed time synchronization of a class of chaotic systems
tion has attracted considerable interest and been extensivelya the backstepping control. A new fixed time stability theo-
studied owing to its potential applications in various fields,rem and an estimate formula of the settling time are establish
such as information processing, chemical reactors, physicédirstly. Then, a novel saturation controller for the synchro-
science, secure communication, and so on. Accordingly, vamization of a class of chaotic systems is derived by using the
ious control methods have been proposed to solve the symbtained fixed time stability theory. Finally, some numerical
chronization problem between chaotic systems, such as lirsimulations are given to demonstrate the effectiveness and
ear control [1], optimal control [2], pinning control [3], slid- validity of the derived method.
ing mode control [4], and so on. So far, many interest-  This article is organized as follows. In Sec. 2, the system
ing results have been obtained for chaos synchronization [Sdescription and some necessary preliminaries are given. The
9]. However, most of the researching products are based dixed time stability of nonlinear systems and the synchroniza-
asymptotical synchronization, which means that chaos syrtion of chaotic systems are investigated in Sec. 3. In Sec. 4,
chronization can only be achieved when time tends to infinsome numerical simulations are presented to show the feasi-
ity. As we all know that in reality, it is more valuable that the bility of the theoretical results. Section 5 ends the article with
synchronization of chaotic systems is realized in finite timeconclusions.
rather than infinite time. Therefore, a lot of work has been

done in the research of fixed time synchronization [10-13]. Th t d it d liminari
Fixed time synchronization means that chaos synchronizaz' € System descriplion and prefiiminaries

tioln car; bhe achide_vzd within a gounded éimghfor any init_ia;fonsider a class of chaotic systems described by the follow-
value of the studied system. Compared with asymptotic ng differential equation:

synchronization, fixed time synchronization has some excel-

lent performances, such as faster convergence speed, better & = T,
anti-interference capability, and so on. In order to observe & = T3, (1)
fixed time synchronization, the error system must be stable i3 = f(z) + Af(z),

within a fixed time. Although some results have been pro-

posed in the literature, the study on the fixed time stability ofwherex;, x5, z3 denote the state variableg(z) is a non-
chaotic systems is still in its infancy. So, it is of great signif- linear function, A f(x) describes the bounded disturbance,
icance to further establish some novel and effectively fixedr = (z1, 22, 3)7.

time stability criteria. On the other hand, it is well known Remark 1. The system (1) includes an extensive variety
that the practical systems are often subject to input saturasf chaotic systems such as Genesio system [14], Rossler sys-
tion, which could cause unsatisfactory imprecision and eveem [15], Arneodo-Coullet system [16], Wei system [17], and
instability of the controlled systems. In order to improve theso on.
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Remark 2. The backstepping method, which has been Lemma 1l [19]. If oy, a2, -+ ,a, > 0,0 <& < 1,u >
developed by Kristieet al. [27], is one of the most power- 1, then we get
ful nonlinear techniques of controller design. It proposes a ¢ .
systematic recursive algorithm specified for the class of non- " n n n
linear systems having a lower triangular form. Note that the Zaf 2 (Z ai) ) Zaf >nth (Z ai) - ()
structure of the considered model (1) is in the form of strict =! i=1 i=1 i=1
feedback. Therefore, in this paper, we utilize the backstep- Lemma 2 [11]. If there exists a continuous, positive def-
ping control approach to investigate the fixed-time synchro-mite, and radially unbounded functidri(e(t)) : R* — R

nization of the system (1). o _ such that any solution(t) of (4) satisfies the following two
Suppose the above system is viewed as the drive systergyngitions:

then the response system, which may be different from the

drive system (1), is given as: (i) V(e(t)) =0 e(t) =0,
{ " @ Gy ) < (v (o) + v e
s = 9(y) + Ag(y) + u,

for somea, b,n, &,k > 0 andnk > 1,£k < 1, then the ori-

wherey:, y2, y; denote the state variablegy) is anonlinear  gin of system (4) is fixed time stable, and the settling time
function, Ag(y) describes the bounded external disturbanceT(e(o)) is estimated by

y = (y1,%2,93)T. u is the saturation control input which is

defined by: T(e(0) <L — 1 n 1
— “max k L .
v, v, ak(1—¢&k) ~ bE(En—1)
u = v, —ug < v < Uug, (3) . .
{ —up, v < —ug. 3. The synchronization scheme
The saturation controller can also be written as: In this section, the synchronization scheme between systems
(1) and (2) is investigated, and some new criteria are given.
u=0v-—¢(v), Theorem 1.1f there exists a continuous, positive definite
where and radially unbounded functioW (e(t)) : R® — R such
that any solutiore(¢t) of (4) satisfies the following two con-
{ U — U, V= o, ditions:
p(v) =19 0, —up < v < up,
vt uo, v S —up. (i) V(e() =0 e(t) =0,
If the error between the drive system (1) and the response dv(e(t)) .
system (2) is defined as= y — z, then the error system can ~ (#)  ——— < —aV*(e(t)) = bV (e(t)) — cV(e(t))
be obtained:
. for somea, b, ¢,n, £ > 0andn > 1,£ < 1, then the origin of
{ Zl = 22’ @ system (4) is fixed time stable, and the settling tiff{e(0))
2 = €3, i i
és = 9(y) + Agly) — (@) = Af(@) +u. ' estimated by

Definition 1 [10]. The origin of system (4) can achieve  T(¢(0)) <72, = ;ln (1 I c {g} <1—£/n—£))

finite-time stability, if there exists a constaf{e(0)) > 0 (1 -9 b

such thaflim, 7. (0y) |le(t)|| = 0 and|le(t)|| = 0 for any 1 ¢ ra1(=n/n—8)

t > T(e(0)), whereT'(¢(0)) is called the settling time. + mln <1 Ty [g} )
Definition 2 [11]. The origin of system (4) is said to be

fixed time stable if it is globally finite-time stable and the set-  Proof. Since

tling time T'(¢(0)) is bounded for any(0) € R3, i.e, there

existSTax > 0 such thatl’(e(0)) < Tiax for e(0) € R3. dVi(e(t)) < —aV&(e(t)) — bV (e(t))
This paper aims at designing a robust reliable controller dt
u to synchronize the drive system (1) and response system —cV(e(t)) < —aV(e(t)) — bV (e(t)),

(2) in a fixed time. Based on Definition 2, we only need to
design proper controllek such that the origin of system (4) based on Lemma 2, we know that the origin of system (4) can
is fixed time stable. achieve fixed time stability.
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In the following, we estimate the settling time:

V(e(0)) s v

7o) = [ ;dwg/;dw:/ 1

awé + bw" + cw aws + bw" + cw awé + bw" + cw
0

(e}

oo oo

1 1
—d
+/ wf—i—bw"—l—cw / w§—|—cw +/bw"+cw v
0

ol ol
a) Lets = w!'~¢, thends = (1 — &)w~*dw which implies thatlw = (1/[1 — £Jw¢)ds. Thus, we have

o v s

[oemito= [ o= [ s
awt +cw ) wi(a+cwl=€) (1-9&(a+cs)
0 0 0
1 717 1 C 1—
=—1 = ———In(1+-~"¢).
c(1—¢) n(a+es)l c(1—§)n( T3 )
b) Lets = w'~", thends = (1 — n)w~"dw which means thafw = (1/[1 — nJw~")ds. Thus, we get
00 o0 0
| wrrate= w= | wara
bw”+cw wn b+cw1 ) v (1 —=n)(b+ cs) s
v el yl=n

]. 'yl_n ]. C 1—
=———  In(b =—In(14+-7""7).
e(l—n) 2 +cs)|0 ce(n—1) n( + b )

By a), b) we obtain

c(1-¢)

In order to find the optimal estimation @f(e(0)), set

o(7) = c(%g)ln (1+5779) + c(nl_ i (1+7).

Then

do(y) 1 1 c
dy  c(1—& 1+ Sq1-¢ a

1 1 c 1 1

(1 =m)y =

1— —£
(1=8) +c(n71)1+%71*ﬁb

ayi+ey byl +ey

Let do(vy)/dy = 0, we haveay® + ¢y = by + ¢y, i.e. ay® — by = 0. By solving this equation, one can get = 0,
vo = (a/b)(t/1=8),
If v = 0, then¢(v) = oo, which implies that the minimal’2 . is equal tag(2), i.e

T(e(0) < T2, = ﬁm (1 + 2 {%} 2) + (:(Tinln (1 + g [%} 2) .

Remark 3. Some fixed time stability theorems have been proposed in papers [18-20] without considering the term
cV(e(t)). The termcV (e(t)) is important since it can help to improve the convergence performances. Thus, Theorem 1
given in our paper is the extension of the fixed time stability theorems presented in papers [18-20].

Remark 4. A theorem similar to theorem 1 is investigated in paper [21]. However, the upper bound estimate formula of
the settling time given in paper [21] is obtained by setting 1, which means that the upper bound estimation is not optimal.
Note that the upper bound of the settling time proposed in our paper is optimal, which implies that compared with the paper
[21], Theorem 1 can give the settling time a more accurate estimate. Therefore, in terms of applicability, Theorem 1 has some
advantages over that presented in the paper [21].

Theorem 2. For the error system (4). If

v=—g(y)+ f(x) — al(& — ) -2 €3 — a§e1 Les — bes — afég_lég — béy — aég —bes — (c+ M)sign(es),  (6)
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then there exists fixed timB(e(0)) < Tinax such thatim;_.r,

max

e; =0ande; =0,i =1, 2, 3fort > T,,.«, Where

1-£
14 2b V2¢ ¢
255 | 25* ’

a 2.a

3 2 [ V2e |° 3
Thax =min [ ————=In|1+ —< ——— + ————In
(21;[1—;} ﬂc{glﬁa} 1 2b[ 15 — 1]
1-¢

2 2 ¢ 1 2 2 <
L+ —= Jiig + Tln I+ e 1+2f16—§ ) )
2c| 2237 a 20[55 — 1] 223zal2237a

anda, b, c are positive constantg, = (¢/p) > 2, p, ¢ > 0 are odd integersze, e3, M are defined by (9), (12), (14),
respectively.

Proof: After observing system (4) we know that if there exists fixed tifheuch thaflim; .- e; = 0 ande; = 0 for
t > T, thenlim;_,7 ¢; = 0 which implies thalim; .7 e5 = 0. Furthermore we gétm;_,7 é; = 0 which means thats = 0
fort > T. Therefore, in order to prove Theorem 2, we only need to design suitable contralleh that there existg that
satisfiedim;_,re; = 0ande; = 0fort > T.

In the following, we use the backstepping method to prove Theorem 2.

If e; = —ae§ — be; — csign(ey), then according to the first equation of system (4), we have

€1 = —aei — bey — csign(ey).
Let
L,
1= 561
Its derivative about timeis
. 1te 1
Vi=e1é1 = 61(—ae§ —bey — csign(eyr)) = —ae%Jr£ - be? —clei| = —212jaV1 2 —2bV; — \/§CV12.

Because of Theorem 1, we know there exists a fixed time

T1—2b(11_%)1n 1+5§C[2‘€Ca] +2b(1_;£1>1n 1+22+2al2\€j 8)
such thalim; _.p, e; = 0 ande; = 0 fort > 1.
In order to gek, = —ae§ — bey — csign(ey), we define
€y =e2+ (ae§ + bey + csign(er)). 9
Then we have
€y = é9 + afef_leg + bey = e3 + afel e + bes. (10)
If
e3 = —a§e§_162 — bey — aég — bey — csign(es), (11)
then according to (10) and (11), we obtain
€y = faég — bég — csign(és).
Based on Theorem 1, we know that there exists fixed #imsuch thatim,_,r, é; = 0 andey = 0 for ¢ > T7.
To make (11) works well, we set
€3 = ez + CL§6§_162 + bey + aég + bés + csign(es). (12)
Then
&5 = é3 + af (£ — 1)ed 262 + acel es + bes + ates ' éy + béy, = g(y) + Ag(y) — f(z)
— Af(@) +v — o) + at(€ — 1)e§ 262 + atel es + bes + afes ' éy + bés. (13)
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Now we assume thakg(y), Af(x) are bounded which means that there exists condtant 0 such that
| = ¢(v) + Agly) — Af(z)] < M. (14)
Putting (6) into (13), yields
€ = —0(v) + Agly) — Af(w) — ae§ — bes — csign(es) — Msign(es).
ChoosingV, = (1/2)e3, we have
Vo = e3(—0(v) + Agly) — Af(x) — ag§ — bes — csign(es) — Msign(es))
< e3(—ae§ — bes — csign(@s)) + [esl| — ¢(v) + Ag(y) — f(x)| — Mles| < _21#@‘/2# —2bVs — V2eV'?

Based on Theorem 1, we know there exiBtsuch thatim;_,, é5 = 0 andesz = 0 for ¢ > T3.

From the proof process of Theorem 2, it is easy to see that wheBI; we havee; = 0. Thus, the setting time should be
T(e(0)) < 371

In order to find the optimal setting time, we chose the final Lyapunov candidate as:

1
V=L@ raa,

Taking the derivation of/5 results in

14¢

1 1+¢ 1
. e [1 = 1 1 3 e [1..]72 1. 1.]2
Vs < (—2 2 a{Qeﬂ —Qb[QB%] —\/ic{Qeﬂ ) + (—2 2 a{Qeg] —2b[2e§} —\/§C|:2€%:| >
1,175 1 1,]%
14¢ _ _ _
+ (2 2 aLeg] 2b[26§:| \/§C|:2€§] >

By using Lemma 1, one gets

1+¢ 1—-¢

. 1+€ 1
V< —27% x37aVy? —2bVs—V2eVi2.

By Theorem 1, we know that the setting tirfiée(0)) should be

1 2 V2e |° 1 % 2 | °
Te(0) < ——In |1+ — + ——In |1+ — —
O = = Voo leéglfa] (I 1) ST [2”5312a]

Therefore, the setting tinfB(e(0)) should be satisfied'(e(0)) < Tyax, Where

, 3 % [ V2 }f] 3 [ % { % }f]
Tmax = min In|1+ |14 — ,
<2b[1— %] |: \/50{21;&@ 2[)[%5 —1] 2%@ 2%@

L [1+ 2% { Ve }é]+ L {1+ 2% { Vae }lf}
—= 1N e n .
2b[1 — 1] V2e | 2555355 2b[ 15 — 1] 2% 35 0 125535

Remark 5. Papers [21-23] have investigated the fixed time control or synchronization of nonlinear systems and proposed
some control schemes without considering the input saturation. Since in the practical systems, input saturation is often en-
countered, so these drawbacks of the control schemes given in papers [21-23] will limit their range of application and effect of
use.

Remark 6. In the literature, some papers have considered the control or synchronization of the system (1). For example,
paper [24] has investigated the adaptive robust synchronization efdimensional system (1) based on the Lyapunov theory.
Paper [25] has studied the control of the fractional-order system (1) via the reduced-order method. It is easy to see that the
synchronization and stabilization in papers [24-25] will be achieved when time goes infinity. However, in our paper, the
synchronization time is bounded by a constant which is independent with regard to the initial values. In addition, papers
[24-25] have not taken account of the input saturation.

Rev. Mex. Fis67041201 1-8
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e e
i 4
3
X
FIGURE 1. 1 — x2, x1 — =3, 2 — x3 andxs — x1 — x3 phase portraits of chaotic system (15).
4. Simulation results
1= —Y2,
In this section, some numerical simulations by using the Wei U2 = by + us, (16)

system [18] as an example are given to demonstrate the ef-
fectiveness of the proposed design schemes.

The Wei system [18] is described by:

Us = bays + y1ys — bz + Ag(y) + u,
whereu is the controller.
Based on (15) and (16), the error dynamic system is
. €1 = —ea,
Tl = —T2,

€2 = breg + e3,
:f,’g = blibl + x3, (15) ? o ’ (17)

- és = bays +y1ys —bs + A
i3 = boxd + x173 — b3 + Af(x), 3 Qyz Yiys — 03 9(v)
—(boxs + x123 — bs + Af(x)) + u.

whereb,, by, by are the system's parametets f(z) is the It is easy to see that the structure of the system (17)
bounded disturbance. When — 3.b; — 1.b; — o IS different from that of the system (4). In order to take

and Af(z) = 0 system (15) is the Sprott D [26]; when szdvantage of the obtained results, we &et= —ey; and
by = b3, by = 0andAf(x) = 0 system (15) is topologi-

és = —(b1e1 + e3). Then, system (17) can be translated into
cally equivalent to the Falkner-Skan system [17]. Especiallytn€ following system:

when(bg, b1, bs) = (2,1,0.35) andA f(x) = 0, system (15) é1 = éa,
is chaotic and has a single-scroll attractor with no equilib- b= (18)
ria. The phase portraits af, — x5, 1 — x2, 1 — 22 and .2 >
29 — x1 — x3 are shown in Fig. 1. és = h(e) —u,

Suppose system (15) is the drive system, then the rewhereh(e) = bies — (bay3 +y1y3 — bz + Ag(y)) + (bax3 +
sponse system is constructed as: x1x3 — by + Af(x)).

Rev. Mex. Fis67041201 1-8
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time(s)

FIGURE 2. Fixed time synchronization errer between the drive
system (15) and the response system (16).
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FIGURE 3. Fixed time synchronization errer between the drive

system (15) and the response system (16).
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FIGURE 4. Fixed time synchronization erreg between the drive
system (15) and the response system (16).

In the numerical simulation process,

L L L L L L
(o] 1 2 3 4 5 6 7
time(s)

FIGURE 5. The time response of input signal

be (1/2)sin(t) and (1/2)sin(t) cos(t), respectively. The
controller v is designed based on (3) and (6), where=
b=1,c=00land¢é = 3, M = 30, ug = 50. Ac-
cording to Theorem 2, systems (15) and (16) can be syn-
chronized in fixed time. The initial conditions of simula-
tion are taken aér1(0), x2(0), 23(0), y1(0),y2(0), y3(0)) =
(2,1,—4,4,—1,3). The trajectories of variables, e, and

es are depicted in Figs. 2-4. By computation, the,, de-
fined in (7) isTmax = min{12.4619,12.1307} = 12.1307.
However, from Figs. 2-4, it is easy to see that the synchro-
nization between systems (15) and (16) can be achieved in 6
seconds which is less than,., = 12.1307. The simulation
results are in accord with the theory, which demonstrates the
effectiveness of our proposed design schemes.

5. Conclusions

In this paper, we propose a new fixed time stability criterion
in which the fixed time estimation formula is different from
those obtained in the literature. With the assistance of the
novel fixed time stability criterion, the fixed time synchro-
nization of a class of chaotic systems is investigated by the
backstepping procedure. Based on the practical application,
the disturbances and input saturation are taken into considera-
tion in this paper. Numerical simulations demonstrate the fast
convergence and robust performance of the presented con-
troller.
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