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Laser cavity with Van der Pol dynamics
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1. Introduction

Balthazar Van der Pol (1899-1959) was a Dutch electrical en-
gineer. During the 1920s and 1930s, he worked towards the
development of radio and vacuum tube technology. Accord-
ingly, he developed an interesting mathematical model, now
known as the Van der Pol equation, to describe stable oscil-
lations, called limit cycles, in electrical circuits that employ
vacuum tubes. When these circuits are driven near the limit
cycle, they become entrained,i.e., the driving signal pulls the
current along with it. Van der Pol and his colleague, Van der
Mark, reported that at certain drive frequencies, an irregular
noise was heard, which was later found to be the result of
deterministic chaos [1]. Recently, Van der Pol equation has
been used in both physical and biological sciences, among
many other areas. For instance, Fitzhugh [2] and Nagumo [3]
used the equation on a planar field to model the action poten-
tial of neurons. The equation was also employed in seismol-
ogy to model the plates in a geological fault [4]. Also, Shuto
[5] has used this equation to study cavity formation modeling
of fiber fuse in single-mode optical fibers.

An important research area for nonlinear optics is optical
phase conjugation (OPC). One possible way to obtain OPC

is through Four-Wave Mixing (FWM), where a link is es-
tablished between two coherent optical beams propagating
in opposite directions with reversed wavefronts and identical
transverse amplitude distributions [6]. In addition to FWM,
there are many further approaches to produce the backward
PC beam; another approach is based on a variety of backward
stimulated scattering processes such as Brillouin (SBS), Ra-
man (SRS) or Kerr [7,8,9], of which the last one is based
on one-photon or multi-photon pumped backward stimulated
emission-processes. The basic characteristic of a pair of PC
beams is that the aberration influence imposed on the for-
ward beam propagating through an inhomogeneous or dis-
turbing medium can be automatically removed for the back-
ward beam passing through the same medium.

In the present work, the dynamical behavior of a beam
that spatially behaves according to a Van der Pol map, here
called a Van der Pol beam, within a ring phase-conjugated
cavity is modeled. As shown, the behavior of a beam may
be obtained by making an arbitrary well-defined chaotic map
[10,11,12]. Particularly, the Henón [14], Bogdanov [15],
Ikeda [16], Duffing [17,18], Standard [19] and Tinkerbell
maps [20, 21] were employed, among others. Here, for the
first time to the best of our knowledge, a PC laser ring cavity
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is designed to produce Van del Pol beams within certain well-
defined parameters. The structure of this article is as follows.
In Sec. 2, a derivation of the Van der Pol map is sketched
following Refs. [22,23,24]. In Sec. 3, the ABCD matrix for-
malism is used to describe an optical cavity; as known, this
formalism is commonly used in paraxial optics [25], allowing
the representation of each optical component as a2 × 2 ma-
trix. Furthermore, the two-dimensional map converted into a
theoretical matrix system enables us to reproduce a complex
dynamical behavior of the Van der Pol map within a PC ring
cavity. As follows, in Subsecs. 3.1 and 3.2, a general case of
the Van der Pol beams is approximately obtained. In Sec. 4,
the numerically obtained results are discussed. Finally, in
Sec. 5, our main conclusions are given.

2. Van der Pol map

There is a large list of bi-dimensional maps (see [26], for ex-
ample), and one of them is the Van der Pol map. It is known
that many oscillating circuits can be modeled by a second-
order differential equation of the form

d2x

dt2
+ f(x)

dx

dt
+ g(x) = 0. (1)

This differential equation is known as Lienard’s equation
[27]. Clearly, it may be interpreted as the equation of motion
for a unit mass object subject to a nonlinear damping force
and a nonlinear restoring force. Lienard’s equation may also
be written in the phase plane as

{
ẋ = y

ẏ = −g(x)− f(x)y , (2)

where under appropriatef(x) and g(x), the system has a
unique, stable limit cycle [23,28,29]. This is explained in
the following theorem.

Theorem 2.1 (Lienard’s theorem). Suppose thatf(x)
andg(x) satisfy the following conditions:

1. f(x) andg(x) are continuously differentiable∀x.

2. g(x) is an odd function(or g(−x) = −g(x)).

3. g(x) > 0 for x > 0.

4. f(x) is an even function(or f(−x) = f(x)).

5. The odd functionF (x) =
∫ x

0
f(u)du has exactly one

zero at x = a, is negative and non-decreasing for
x > a andlimx→∞ F (x) = ∞ .

Then, the system (2.2) has a unique, stable limit cycle
surrounding the origin at the phase plane.

The Van der Pol oscillator is a model that was originally
developed to describe the behavior of nonlinear vacuum tube
circuits. In a self-maintained electricalRLC circuit, where
the capacitorC is initially charged, andR is a non-linear re-
sistance, the tension is defined as [25]

UL + UR + UC = 0, (3)

where

UL = L
di

dτ
, (4)

UR = −R0i0

(
i

i0
− 1

3

[
i

i0

]3
)

, (5)

and

Uc =
1
c

∫
idτ, (6)

with i0 andR0 being the current and normalized resistance,
respectively. Substituting Eqs. (4), (5) and (6) in (3), we have

L
di

dτ
−R− 0i0

(
i

i0
− 1

3

[
i

i0

]3
)

+
1
c

∫
idτ = 0. (7)

Differentiating Eq. (7) with respect toτ ,

L
d2i

dτ2
−R0

(
1− i2

i20

)
di

dτ
+

i

c
= 0, (8)

introducing

x =
i

i0
, (9)

and

t = ωeτ, (10)

whereωe = 1/
√

LC, we obtain

d

dτ
= ωe

d

dt
, (11)

and

d2

dτ2
= ω2

e

d2

dt2
. (12)

By substituting Eqs. (11) and (12) in Eq. (8) yields

d2x

dt2
−R0

√
C

L
(1− x2)

dx

dt
+ x = 0. (13)

By settingµ = R0

√
C/L, Eq. (13) can be transformed

to the following form:

d2x

dt2
− µ(1− x2)

dx

dt
+ x = 0. (14)

Since this differential equation is isomorphic to Lienard’s
Eq. (1), it satisfies Eq. (1). In this sense, the Van der Pol
equation obeys Lienard’s transformation:

ẋ = y (15)
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and

ẏ = µ(1− x2)y − x. (16)

There are many methods to numerically solve non-linear
differential equations, such as the Runge-Kutta or Euler dis-
cretization methods. Using the last one, we rewrite the above
system as [30]

yn+1 = yn + hθ − n, (17)

and

θn+1 = θn + h(µ[1− y2
n]θn − yn), (18)

whereyn andθn are the scalar variables,h is a discretization
step, andµ is the map parameter. This system may be written
in the matrix form of a Van der Pol map as

(
yn+1

θn+1

)
=

(
A B
C D

)(
yn

θn

)
, (19)

with elements

A = 1, (20a)

B = h, (20b)

C = −h, (20c)

and

D(h, µ, yn) = 1 + hµ(1− y2
n). (20d)

3. ABCD optic matrix of the Van der Pol map
in a ring PC cavity

It is known that an optical system may be described by a
2× 2 matrix in the paraxial optics approximation. Assuming
cylindrical symmetry around the optical axis and defining a
z optical axis, both the perpendicular distance of any ray to
the optical axis and its angle to the same axis are given by
y(z) andθ(z) when the ray undergoes a transformation as it
travels through an optical system represented by the matrix
[A,B, C, D]; the resultant values ofy andθ are given by

(
yn+1

θn+1

)
=

(
A B
C D

)(
yn

θn

)
, (21)

For an optical system, it is possible to obtain the total trans-
formation matrix through the product of all the matrices that
describe the elements of the optical system. In the consid-
ered ring cavity shown in Fig. 1, there are two plane mirrors
[M] and an ideal PC mirror [PM], separated by a distance d.
The matrices which represent these two elements are: iden-
tity matrix

(
1 0
0 1

)

for mirrors[M ],
(

1 0
0 −1

)

for the ideal PC mirror[M ],

FIGURE 1. Schematic diagram of the phase conjugated ring res-
onator studied. There are two plane mirrors [M] and an ideal Phase
Conjugated Mirror [PM], separated by a distanced, and chaos gen-
erating device represented by matrix [a, b, c, e].

(
1 d
0 1

)

for the propagation through distanced, and(
a b
c d

)

for the chaos generating device that is located between the
two plane mirrors[M ] at a distanced/2.

For this system, the total transformation matrix
[A,B, C,D] for a completed round trip is:(

A B
C D

)
=

(
1 0
0 −1

)(
1 d
0 1

)(
1 0
0 1

)

×
(

1 d/2
0 1

)(
a b
c d

)(
1 d/2
0 1

)

×
(

1 0
0 1

)(
1 d
0 1

)
; (22)

The above one round trip total transformation matrix is:(
a + (3/2)cd b + (3/2)d(2a + 3cd− 2e)

−c −(3/2)cd− e

)
(23)

As seen in the matrix in Eq. (23), each of the elements
depends on the elements of the map generating matrix device
[a, b, c, e]. However, if one does want a specific map to de-
scribe a beam within an optical cavity, then each trip of the
beam described by (yn, θn) ought to be an iteration of the
map. Then, the matrix [A,B, C, D] of the map Eq. (19) must
be equated to the cavity matrix in Eq. (23), in order to gen-
erate a dynamic map for (yn, θn) in accordance with the Van
der Pol map.
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Notice that result Eq. (23) is only valid for a smallb, i.e., b ≈ 0. This is because before and after the chaos generating
element [a, b, c, e], we have a propagation distance ofd/2. For a general case, we have:

(
A B
C D

)
=

(
1 0
0 −1

)(
1 d
0 1

)(
1 0
0 1

)(
1 (d− b)/2
0 1

)(
a b
c d

)(
1 (d− b)/2
0 1

)

×
(

1 0
0 1

)(
1 d
0 1

)
; (24)

Then, the complete round trip transformation matrix in the general case is
(

a + (c/2)(b− 3d) (1/4)(b2c− 2b[−2 + a + 3cd− e] + 3d[2a + 3cd + 2e])
−c (1/2)(bc− 3cd− 2e)

)
(25)

Thus, matrix (23) describes a simplified ideal case,
whereas matrix (25) describes a general case, more complex
and realistic.

3.1. Van der Pol beams

Matrix (23) describes a round trip total transformation. Each
round trip within the cavity is determined by the iteration pa-
rameters (yn, θn), providing the dynamics of the system. In
order to have a system that exhibits Van der Pol behavior, and
therefore, that of Van der Pol beams, the [A,B, C,D] matrix
(19) must be equated to (23). Hence,

a +
3
2
cd = 1, (26a)

3
2
ad + b +

9
4
cd2 +

3
2
ed = h, (26b)

c = h, (26c)

and

−3
2
cd− e = 1 + hµ(1− y2

n). (26d)

These equations define a system with variablesa, b, c,
e, which guarantee the behavior of a beam (yn, θn), governed
by Van der Pol map. Obtaining solutions, these elements may
be written in terms of the map’s parametersµ andh, and of
variablesyn andθn, as:

a =
1
2
(2− 3dh), (27a)

b =
1
4
(4h + 9d2h + 6dhµ− 6dhy2

nµ), (27b)

c = h, (27c)

and

e =
1
2
(−2− 3dh− 2hµ + 2hy2

nµ). (27d)

3.2. Van der Pol beams: general case

As mentioned before, a particular case is when the optical
length of the chaos generator device is negligible (approxi-
mately zero). In the general case,b can take any value within
the limitations of the parameterd, i.e., b < d.

Both matrices (19) and (25) must be equated, giving rise
to the following system of equations:

a− c

2
(b− 3d) = 1, (28a)

1
4
(b2c− 2b[−2 + a + 3cd− e]

+3d[2a + 3cd + 2e]) = h, (28b)

c = h, (28c)

The solution of this system is as follows:

a =
1
4
(8 + 2hµ− 2hy2

n + P ), (29a)

b =
4 + 6dh + 2hµ− 2hy2

nµ + P

2h
, (29b)

c = h, (29c)

and

d =
1
2
(−hµ + hy2

nµ + Q), (29d)

where

P =
√

(−4− 6dh− 2hµ + 2hy2
nµ)2 − 4h(4h + 9d2h + 6dhµ− 6dhy2

nµ). (30)

and

Q =
√

4 + 12dh− 4h2 + 4hµ− 4hy2
nµ + h2µ2 − 2h2y2

nµ2 + h2y4
nµ2. (31)
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4. Numerical experiment

The dynamic behavior of the PC cavity in phase space was
studied through numerical iteration of the obtained matri-
ces describing the system. In order to find valid trajectories,
there are considerations that have to be taken into account.
The phase plane values foryn andθn must be real numbers
at every iteration; diverging trajectories are only mathemati-
cal possibilities, since they cannot be related to any physical
sense. Also, thebn intracavity element from the matrices
must be greater than zero and smaller than the mirror separa-

tion distanced in the cavity at every iteration. These condi-
tions ensure that the trajectories are on the real phase plane
and within a stable trajectory, given that thebn element is re-
lated to the total distance traveled by the Van der Pol beam
within the cavity.

The iterations were carried out for different values ofµ
andh. As it was stated,µ represents a non-linearity term of
the Van der Pol map; we will explore values for this param-
eter around zero. The stability and chaos of the Van der Pol
map in terms of the parameterµ and steph are presented in

FIGURE 2. Phase space (yn, θn) trajectories for parameters a)µ = −1.5 h = 0.0250, b) µ = −0.5 h = 0.1196, c) µ = 0 h = 0.0923,
d) µ = 0.2 h = 0.0282, e)µ = 0.2 h = 0.0846, f) µ = 0.5 h = 0.0250. In all casesd = 1.

FIGURE 3. Time series of intracavity elementbn for 2000 iterations for parameters a)µ = −1.5 h = 0.0250, b) µ = −0.5 h = 0.1196, c)
µ = 0 h = 0.0923, d) µ = 0.2 h = 0.0282, e)µ = 0.2 h = 0.0846, f) µ = 0.5 h = 0.0250. In all casesd = 1.
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FIGURE 4. Phase space (yn, θn) for the Van der Pol Map general case for constants a)µ = 0 andh = 0.1, (b) µ = 0 andh = 0.0001. In
all casesd = 1.

FIGURE 5. Computer calculation of the magnitude of matrix elementbn of the Van der Pol Map generating device for a resonator withd = 1

and Van der Pol parameters a)µ = 0 andh = 0.1, (b) µ = 0 andh = 0.0001, for 3000 round trips.

the phase diagrams (Figs. 2 and 4). Value h was varied for
positive numbers till zero, whileµ was taken within a range
of−1.5 < µ < 1.5. For the1 < h < 0 range, there are stable
trajectories, and the values ofbn are positive and within the
limit of the mirror distance. In the figures below, the values
of µ andh are not unique, and there are other allowed combi-
nations. Figure 2 shows the phase-space plots corresponding
to different values of parametersµ andh. For example, for
parametersµ = −1.5 andh = 0.0250, there are no stable
states (Fig. 2a)), whereas forµ = −0.5 andh = 0.1196,
there is a stable fixed point (Fig. 2(b)). In Figs. 2(c-f), we
present the cases of the stable limit cycle.

The time series of the matrix elementb is presented in
Fig. 3. The behavior is quite interesting since different dy-
namical regimes are observed. The numerical simulations
were performed for 2000 iterations for matrix elementb of
the Van der Pol map generating device for a cavity of uni-
tary length (d = 1) and map parameter close to zero. Figures
3(a-c) show damping transients to a stable equilibrium, while
Figs. 3(d-f) show others to a stable periodic orbit. One can
see from Figs. 3(d-f) how the optical length of the map gen-
erating device varies on each round trip in the periodic form

(bistability); this would require for a physical implementa-
tion such that the physical length of the device, its refractive
index, or a combination of both change in time.

The phase diagrams for the general case are shown in
Figs. 4 and 5. The process of selection ofh andµ was the
same as stated above. Valid trajectories were difficult to find
in this case due to the matrix complexity; however, as it was
found forµ = 0 and h near zero, the trajectories are not stable
and increase on each round trip. Notwithstanding the behav-
ior observed in Figs. 5a) and 5b) for matrix elementb, after
a few iterations, the device’s optical thickness remains con-
stant, which should make it easier to achieve a physical im-
plementation of this device. Note that in Fig. 5b), the thick-
ness is near zero, while in Fig. 5a), the thickness is around
0.3.

5. Conclusions

In this paper, a matrix transformation over the Van der Pol
map has been proposed to obtain an intracavity element that
can yield the same rich, dynamical behavior within a ring
phase-conjugated ring cavity. We began our study by ob-
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taining the Van der Pol map through the use of the Euler
method for discretization; then, we introduced the paraxial
matrix analysis (or ABCD propagation law), which was done
in order to simplify the analysis, enabling us to express this
system as a simple dynamical matrix Equation (3.1). The so-
called “Van der Pol beams” (beams that are produced within
an optical cavity undergoing Van der Pol map dynamics)
were obtained, and they were studied assuming a negligi-
ble thickness of the intracavity element, as well as the gen-
eral case. Numerical calculations were carried out to obtain,
within the parameter space, combinations of parameters that
yield stable trajectories; this is not an easy task, as the sta-
bility of the trajectories is also dependent on the initial value
(yn), and therefore, the trajectories often do not have physi-
cal meaning. It is important to remark that we analyzed valid
intervals of the system parameters (µ, h, andd).

The range of theµ parameter was selected based on the
meaning of the Van der Pol equation, which determines the
non-linearity term. However, if one takes values ofµ greater
than 1.5 or lower than−1.5 for any values ofh, the trajec-
tories, and the intracavity element have no physical meaning.
Then, for values ofµ within this range, we took different
values for h and obtained different results with no physical
meaning, except for those varying within the1 < h < 0
range.

In a simple case of “Van der Pol Beams”, we have found
trajectories which began in one value and finished around an-
other (refer to Figs. 2a) and 2b)); these types of trajectories al-

low the intracavity elementbn to reach one value to be stable
(refer to Figs. 3a) and 3b)). However, we have also found sta-
ble trajectories (Figs. 2d), 2e) and 2f)), which translates into
bistability of the intracavity element, and the optical length
of the map generating device varies on each round trip in a
periodic form; see Figs. 3d), 3e) and 3f). In Fig. 2(c), the
trajectory is completely stable, and the parameter of the non-
linearity term is zero; this allows the elementbn to remain
constant along with the iterations, which allows for easy im-
plementation of the device.

Next, we moved on to the general case, where the thick-
ness of the intracavity element is greater than zero. Even
though the trajectory is not stable because of the increasing
values of (yn, θn) (See Fig. 4), the elementbn reaches one
value (See Fig. 5), making it possible for the optical length to
be constant on each round trip.

Based on the behavior observed, we conclude that the ma-
trix transformation used was successful in generating a dy-
namic system that preserves the main structures found in the
Van der Pol map. The practical implementation of an intra-
cavity element is a complex technical challenge far beyond
the aim of this work.
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