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Laser cavity with Van der Pol dynamics
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1. Introduction is through Four-Wave Mixing (FWM), where a link is es-
tablished between two coherent optical beams propagating
Balthazar Van der Pol (1899-1959) was a Dutch electrical enin opposite directions with reversed wavefronts and identical
gineer. During the 1920s and 1930s, he worked towards thgansverse amplitude distributions [6]. In addition to FWM,
development of radio and vacuum tube technology. Accordthere are many further approaches to produce the backward
ingly, he developed an interesting mathematical model, nowWwC beam; another approach is based on a variety of backward
known as the Van der Pol equation, to describe stable osciktimulated scattering processes such as Brillouin (SBS), Ra-
lations, called limit cycles, in electrical circuits that employ man (SRS) or Kerr [7,8,9], of which the last one is based
vacuum tubes. When these circuits are driven near the limibn one-photon or multi-photon pumped backward stimulated
cycle, they become entraindd., the driving signal pulls the emission-processes. The basic characteristic of a pair of PC
current along with it. Van der Pol and his colleague, Van debeams is that the aberration influence imposed on the for-
Mark, reported that at certain drive frequencies, an irregulaward beam propagating through an inhomogeneous or dis-
noise was heard, which was later found to be the result ofurbing medium can be automatically removed for the back-
deterministic chaos [1]. Recently, Van der Pol equation hasvard beam passing through the same medium.
been used in both physical and biological sciences, among In the present work, the dynamical behavior of a beam
many other areas. For instance, Fitzhugh [2] and Nagumo [3hat spatially behaves according to a Van der Pol map, here
used the equation on a planar field to model the action poterzalled a Van der Pol beam, within a ring phase-conjugated
tial of neurons. The equation was also employed in seismoleavity is modeled. As shown, the behavior of a beam may
ogy to model the plates in a geological fault [4]. Also, Shutobe obtained by making an arbitrary well-defined chaotic map
[5] has used this equation to study cavity formation modeling10,11,12]. Particularly, the Hém [14], Bogdanov [15],
of fiber fuse in single-mode optical fibers. lkeda [16], Duffing [17,18], Standard [19] and Tinkerbell
An important research area for nonlinear optics is opticaimaps [20, 21] were employed, among others. Here, for the
phase conjugation (OPC). One possible way to obtain OPd@rst time to the best of our knowledge, a PC laser ring cavity
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is designed to produce Van del Pol beams within certain wellwhere
defined parameters. The structure of this article is as follows.

In Sec. 2, a derivation of the Van der Pol map is sketched U, =L—, (4)
following Refs. [22,23,24]. In Sec. 3, the ABCD matrix for- dr

malism is used to describe an optical cavity; as known, this i 174718

formalism is commonly used in paraxial optics [25], allowing Ur = —Roio < -3 [} > ®)
the representation of each optical component 2as<& ma-

trix. Furthermore, the two-dimensional map converted into a,,4

theoretical matrix system enables us to reproduce a complex

dynamical behavior of the Van der Pol map within a PC ring 1 i
cavity. As follows, in Subsecs. 3.1 and 3.2, a general case of T ¢ /Z "

the Van der Pol beams is approximately obtained. In Sec. 4, ) ) )
the numerically obtained results are discussed. Finally, ifVith io and R, being the current and normalized resistance,

(6)

Sec. 5, our main conclusions are given. respectively. Substituting Eqgs. (4), (5) and (6) in (3), we have
2. Van der Pol map L% R~ 0i (7—{,@] >+/¢dT:0. @)
dr o 3 |ig c

There is a large list of bi-dimensional maps (see [26], for ex- _ o .

ample), and one of them is the Van der Pol map. Itis known Differentiating Eq. (7) with respect to,

that many oscillating circuits can be modeled by a second- . o o

order differential equation of the form LL; — Ry (1 _ ’2) di i 0, 8)
P i dr i5) dr ¢
ﬁ+f(x)—+g(x):0. 1)

This differential equation is known as Lienard’s equation
[27]. Clearly, it may be interpreted as the equation of motion r=—, 9)
for a unit mass object subject to a nonlinear damping force ‘o
and a nonlinear restoring force. Lienard’s equation may alsq 4
be written in the phase plane as

{ =y t = weT, (10)

. , 2
y=—g(@) = flx)y @ _
. wherew, = 1/v/ LC, we obtain
where under appropriatg(z) and g(x), the system has a

introducing

unique, stable limit cycle [23,28,29]. This is explained in d d

the following theorem. ar Year (11)
Theorem 2.1 (Lienard’s theorem). Suppose thdtx)

and g(x) satisfy the following conditions: and
1. f(z) andg(x) are continuously differentiabléx. 2, d? (12)

T2 = we—z.
. g(z) is an odd functioffor g(—z) = —g(z)). dr d
. g(z) > 0for > 0. By substituting Egs. (11) and (12) in Eqg. (8) yields

2

3

4. f(x)is an even functiofor f(—z) = f(z)). d*z C o dx
: f(l —z7)

d—'g—RO d—+x:0. (13)
. The odd function'(z) = [’ f(u)du has exactly one t t
zero atx = a, is negative and non-decreasing for

> aandlim,_.. F(z) = oo . By settingu = Ry+/C/L, Eq. (13) can be transformed

to the following form:
Then, the system (2.2) has a unique, stable limit cycle
surrounding the origin at the phase plane. di’x — (1 = 2?)
The Van der Pol oscillator is a model that was originally ae ~H “
developed to describe the behavior of nonlinear vacuum tube
circuits. In a self-maintained electricAILC' circuit, where
the capacitor” is initially charged, and? is a non-linear re-
sistance, the tension is defined as [25]

dz

= 0. 14
pri (14)

Since this differential equation is isomorphic to Lienard’s
Eqg. (1), it satisfies Eq. (1). In this sense, the Van der Pol
equation obeys Lienard’s transformation:

Upr+Ur+Uc =0, (3) T=y (15)
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and
j=p(l—a2%)y— (16)

There are many methods to numerically solve non-linear
differential equations, such as the Runge-Kutta or Euler dis- \

cretization methods. Using the last one, we rewrite the above M d/?
system as [30]

Yntl = Yn + hO — n, a7
and
9n+1 = en + h(ﬂ[l - yi]en - yn)a (18)

wherey,, andé,, are the scalar variablek,is a discretization d d
step, and. is the map parameter. This system may be written
in the matrix form of a Van der Pol map as

Yn A B Yn
(gn)-(e2)(h) o
with elements
(20a) PM

(20b) FIGURE 1. Schematic diagram of the phase conjugated ring res-
onator studied. There are two plane mirrors [M] and an ideal Phase

(20c) Conjugated Mirror [PM], separated by a distaacand chaos gen-
erating device represented by matrix §, c, e].

|
—

Q & =
[
I

=

and

D(h, pt,yn) =1+ hu(l — y?z) (20d) ( 1 d )
0 1

3. ABCD optic matrix of the Van der Pol map for the propagation through distanéeand
in a ring PC cavity ( a b )

It is known that an optical system may be described by a ¢ d

2 x 2 matrix in the paraxial optics approximation. Assuming for the chaos generating device that is located between the
cylindrical symmetry around the optical axis and defining atwo plane mirror§/] at a distancel/2.

= optical axis, both the perpendicular distance of any ray to For this system, the total transformation matrix
the optical axis and its angle to the same axis are given b4, B, C, D] for a completed round trip is:

y(z) andf(z) when the ray undergoes a transformation as it ( A B ) ( 1 ) ( d ) ( 1 0 )
- 1 1 0 1

0 1
travels through an optical system represented by the matrix \ ¢ p 0 — 0
[A, B, C, D]; the resultant values af andf are given by
(L A2 a b 1 d/2
Yntr \ _ (A B (un 21) 0 1 cd)\o 1
Ont1 C D 0, )’
For an optical system, it is possible to obtain the total trans- X ( é (1) ) ( é (11 > ; (22)
formation matrix through the product of all the matrices that
describe the elements of the optical system. In the consid- The above one round trip total transformation matrix is:
ered ring cavity shown in Fig. 1, there are two plane mirrors _
( a+ (3/2)ed b+ (3/2)d(2a + 3ed — 2e) ) (23)

[M] and an ideal PC mirror [PM], separated by a distance d. —c —(3/2)cd — e
The matrices which represent these two elements are: iden- ) o
As seen in the matrix in Eq. (23), each of the elements

tity matrix X ) .
depends on the elements of the map generating matrix device
( L0 ) [a, b, c,e]. However, if one does want a specific map to de-
01 scribe a beam within an optical cavity, then each trip of the
for mirrors[M], beam described byyf, 6,,) ought to be an iteration of the
1 0 map. Then, the matrix4, B, C, D] of the map Eq. (19) must
( 0 —1 ) be equated to the cavity matrix in Eq. (23), in order to gen-
erate a dynamic map foyy, 6,,) in accordance with the Van
for the ideal PC mirrof/], der Pol map.
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Notice that result Eq. (23) is only valid for a smalli.e., b ~ 0. This is because before and after the chaos generating
element §, b, ¢, ¢], we have a propagation distancedy®2. For a general case, we have:

(& 5)=0 5) o D) V) o )0 a) (0 3
(0 1)(0 1) @)

Then, the complete round trip transformation matrix in the general case is

( a+(c/2)(b—3d) (1/4)(b%c — 2b[—2 + a + 3cd — €] + 3d[2a + 3cd + 2¢)) ) (25)
—c (1/2)(bc — 3cd — 2e)
Thus, matrix (23) describes a simplified ideal case
whereas matrix (25) describes a general case, more compll’md
and realistic. 1
e= 5(f2 — 3dh — 2hp + 2hy? ). (27d)

3.1. Van der Pol beams

Matrix (23) describes a round trip total transformation. Each3‘2' Van der Pol beams: general case

round trip within the cavity is determined by the iteration pa-
rameters,, 6,,), providing the dynamics of the system. In
order to have a system that exhibits Van der Pol behavior, an
therefore, that of Van der Pol beams, the B, C, D] matrix
(19) must be equated to (23). Hence,

As mentioned before, a particular case is when the optical
Ifingth of the chaos generator device is negligible (approxi-
ately zero). In the general casezan take any value within

the limitations of the parametéri.e., b < d.
Both matrices (19) and (25) must be equated, giving rise

ot ;cd _1 (26a) to the following system of eqcuations:
3 9 3 a——(b—-3d) =1, (28a)
0d +b+ Jed® + Sed=h, (26b) 1 2
c=h, (26¢) 1(520 —2b[—2+a+ 3cd — €
and +3d[2a + 3cd + 2¢]) = h, (28b)
—%cd —e=1+hp(l—y2). (26d) c=bh, (28c)

These equations define a system with variahles, c, The solution of this system is as follows:

e, which guarantee the behavior of a beam, ¢,,), governed
by Van der Pol map. Obtaining solutions, these elements may
be written in terms of the map’s parametgrandh, and of

1
=78+ 2hu— 2hy? + P), (29a)

4+ 6dh + 2hp — 2hy2p+ P

variablesy,, andd,,, as: b ST (29b)
a= %(2 — 3dh), (27a) c=h, (29¢)
1
b= 1 (4h+9dh + 6dhu — 6dhyp), (27p) and
1
c=h, 27¢) d =5 (=hp+ hysp+ Q), (29d)
| where
P = /(=4 — 6dh — 2hp + 2hy2 j1)2 — 4h(4h + 9d2h + 6dhp — 6dhy2 ). (30)
and

Q = /4 + 12dh — 4h2% + 4hu — 4hy? p + h2p? — 2h2y2 12 + h2y 2. (31)
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4. Numerical experiment tion distancel in the cavity at every iteration. These condi-
] ] o tions ensure that the trajectories are on the real phase plane
The dynamic behavior of the PC cavity in phase space wagnq within a stable trajectory, given that theelement is re-

studied through numerical iteration of the obtained matri-jateq to the total distance traveled by the Van der Pol beam
ces describing the system. In order to find valid trajectoriesyjithin the cavity.

there are considerations that have to be taken into account.

The phase plane values fg; andd,, must be real numbers The iterations were carried out for different valuesuof

at every iteration; diverging trajectories are only mathematiandh. As it was statedy represents a non-linearity term of
cal possibilities, since they cannot be related to any physicdhe Van der Pol map; we will explore values for this param-
sense. Also, thé,, intracavity element from the matrices eter around zero. The stability and chaos of the Van der Pol

must be greater than zero and smaller than the mirror separgiap in terms of the parametgrand step are presented in

Phase diagram (a) Phase diagram (b) Phase diagram (c)
0.10 = AT | k ' i !
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°

FIGURE 2. Phase spacey, 6,,) trajectories for parameters a)= —1.5 h = 0.0250, b) x = —0.5 h = 0.1196, ¢) u = 0 h = 0.0923,
d)yp=02h=0.0282€)u=0.2h=0.0846, f) u = 0.5 h = 0.0250. In all cases] = 1.

Matrix element b (a) Matrix element b (b) _Matrix element b (c)
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FIGURE 3. Time series of intracavity elemeby, for 2000 iterations for parameters@)= —1.5 h = 0.0250, b) x = —0.5 h = 0.1196, c)
pu=0h=0.0923,d)u =0.2 h=0.0282,e)u = 0.2 h = 0.0846, f) x = 0.5 h = 0.0250. In all cases] = 1.
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Phase diagram (b)
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FIGURE 4. Phase spaceyf, 0,,) for the Van der Pol Map general case for constants &) 0 andh = 0.1, (b) » = 0 andh = 0.0001. In
all casesl = 1.
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FIGURE 5. Computer calculation of the magnitude of matrix elentgnof the Van der Pol Map generating device for a resonator aith 1

and Van der Pol parametersa)= 0 andh = 0.1, (b) u = 0 andh = 0.0001, for 3000 round trips.

n

the phase diagrams (Figs. 2 and 4). Value h was varied faistability); this would require for a physical implementa-
positive numbers till zero, whilg was taken within a range tion such that the physical length of the device, its refractive
of —1.5 < u < 1.5. Forthel < h < Orange, there are stable index, or a combination of both change in time.

trajectories, and the values &f are positive and within the The phase diagrams for the general case are shown in
limit of the mirror distance. In the figures below, the valuesFigs. 4 and 5. The process of selectionhofnd i was the

of ;- andh are not unigue, and there are other allowed combisame as stated above. Valid trajectories were difficult to find
nations. Figure 2 shows the phase-space plots correspondingthis case due to the matrix complexity; however, as it was
to different values of parametersandh. For example, for  found fory = 0 and h near zero, the trajectories are not stable
parameterg. = —1.5 andh = 0.0250, there are no stable and increase on each round trip. Notwithstanding the behav-
states (Fig. 2a)), whereas for = —0.5 andh = 0.1196, ior observed in Figs. 5a) and 5b) for matrix eleménafter
there is a stable fixed point (Fig. 2(b)). In Figs. 2(c-f), we a few iterations, the device’s optical thickness remains con-
present the cases of the stable limit cycle. stant, which should make it easier to achieve a physical im-
plementation of this device. Note that in Fig. 5b), the thick-

The time series of the matrix elemehis presented in g wvibe. : )
ness is near zero, while in Fig. 5a), the thickness is around

Fig. 3. The behavior is quite interesting since different dy-
namical regimes are observed. The numerical simulation8-3-

were performed for 2000 iterations for matrix elemeérdf

the Van der Pol map generating device for a cavity of uni-5.  Conclusions

tary length ¢ = 1) and map parameter close to zero. Figures

3(a-c) show damping transients to a stable equilibrium, whildn this paper, a matrix transformation over the Van der Pol
Figs. 3(d-f) show others to a stable periodic orbit. One carmap has been proposed to obtain an intracavity element that
see from Figs. 3(d-f) how the optical length of the map gen-can yield the same rich, dynamical behavior within a ring
erating device varies on each round trip in the periodic fornphase-conjugated ring cavity. We began our study by ob-
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taining the Van der Pol map through the use of the Euletow the intracavity elemerit, to reach one value to be stable
method for discretization; then, we introduced the paraxialrefer to Figs. 3a) and 3b)). However, we have also found sta-
matrix analysis (or ABCD propagation law), which was doneble trajectories (Figs. 2d), 2e) and 2f)), which translates into
in order to simplify the analysis, enabling us to express thidistability of the intracavity element, and the optical length
system as a simple dynamical matrix Equation (3.1). The soef the map generating device varies on each round trip in a
called “Van der Pol beams” (beams that are produced withimperiodic form; see Figs. 3d), 3e) and 3f). In Fig. 2(c), the
an optical cavity undergoing Van der Pol map dynamics)trajectory is completely stable, and the parameter of the non-
were obtained, and they were studied assuming a negliglinearity term is zero; this allows the elemédnt to remain

ble thickness of the intracavity element, as well as the geneonstant along with the iterations, which allows for easy im-
eral case. Numerical calculations were carried out to obtairplementation of the device.

within the parameter space, combinations of parameters that Next, we moved on to the general case, where the thick-
yield stable trajectories; this is not an easy task, as the staess of the intracavity element is greater than zero. Even
bility of the trajectories is also dependent on the initial valuethough the trajectory is not stable because of the increasing
(y»), and therefore, the trajectories often do not have physivalues of {,,, 6,,) (See Fig. 4), the elemenf, reaches one
cal meaning. It is important to remark that we analyzed validvalue (See Fig. 5), making it possible for the optical length to
intervals of the system parameters k, andd). be constant on each round trip.

The range of thg, parameter was selected based on the  Based on the behavior observed, we conclude that the ma-
meaning of the Van der Pol equation, which determines thérix transformation used was successful in generating a dy-
non-linearity term. However, if one takes valuesajreater  namic system that preserves the main structures found in the
than 1.5 or lower than-1.5 for any values of, the trajec-  Van der Pol map. The practical implementation of an intra-
tories, and the intracavity element have no physical meaningavity element is a complex technical challenge far beyond
Then, for values ofu within this range, we took different the aim of this work.
values for h and obtained different results with no physical
meaning, except for those varying within the< h < 0
range. Acknowledgments
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