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By combining the variational principle with Heisenberg uncertainty principle in an effective Hamiltonian for heavy flavored mesons, we
introduce a framework to estimate masses and radii of these states from an analytical constraint. In a novel manner, a model for quark
velocity and a model for quark momentum width are introduced. These kinematical model parameters are obtained as analytical functions of
inter quark separation in heavy quarkonia. The values of such quark parameters are then used in the calculation ofS-wave annihilation decay
rates ofcc̄ andbb̄. To test the accuracy of our technique we first calculate the spin averaged masses, scalar radii and annihilation decay rates
of charmonium and bottomonium without and with relativistic corrections by solving the Schrödinger wave equation with the appropriate
parametrization of the Song-Lin potential. The Schrödinger wave equation is solved numerically with the matrix Numerov method and
we observe a good agreement with the experimental measurements and other theoretical calculations and extract strong running coupling
constant forcc̄ andbb̄ systems. In non-relativistic settings, heavy meson spectra have been obtained and extended to rather higher excited
states within our framework by using bare masses ofc andb quarks which we have extracted from analysis of experimental data.
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1. Introduction

The study of heavy quarkonia in quantum chromodynamics
(QCD) is a field theoretical non-perturbative problem which
has promoted the development of several techniques appro-
priate to address this issue. Under certain considerations,
it can be simplified to a non-relativistic (NR) quantum me-
chanical problem by exploring the interaction strength be-
tween quarks inside hadrons in the static limit of the inter-
action potential (SLIP) between quarks. Lattice QCD simu-
lations [1, 2] suggest for this potential a Coulombic term at
short distances plus a linearly rising part at large inter quark
separations, which to-date has motivated a large number of
phenomenological models [3–19] that capture the quantum
chromodynamic traits of strong interactions. Whilst the SLIP
picture for light-quarks must be taken with a grain of salt, for
the case of heavy mesons,cc̄ and bb̄, this picture is accu-
rate enough to describe the mass spectra of heavy quarkonia.
Assuming spherical symmetry, the SLIP can be cast in the
general formV (r) = −Ar−α + Brβ + V0, wherer is the
inter quark distance,A, B andV0 are constants andα and
β are free parameters assessed either from Lattice QCD, see
for example [20], or fixed by fitting the known experimental
masses of hadronic states. The choiceα = β = 1 andV0 =
0 corresponds to the Cornell potential. The choiceV0 = 0,
α = 2 = β/2 corresponds to the anharmonic potential [21]
and other choices give rise to commonly used potentials.

The relevant Schrödinger wave equation (SWE) with any
of these SLIPs often has to be solved numerically. To that
end, a vast number of numerical strategies have been imple-
mented in literature among which, to count a few, we find
the shooting method [22], the Asymptotic Iteration Method
(AIM) [23] and many others such as different forms of
Runge-Kutta methods. Most numerical strategies imple-
mented for solving the SWE are as precise as going up to
O(d2) of grid spacingd. The Matrix Numerov Method
(MNM) (see, for instance [24]) which in the context of me-
son physics has been put forward by the Qena group [25]
and extended by our group [26], departs from a discretiza-
tion of the kinetic term in the SWE in such a manner that
the problem of solving the radial SWE is cast in the form
of a matrix eigenvalue problem. In this form, its accuracy
is of O(d6). On the other hand, many proposals of quark
model (QM) potentials have used quark masses far higher
than those reported in the Particle Data Booklet in various
years [3–19]. The quark model community has exploited the
freedom in choosing quark masses (the so called constituent
quark masses) and quark interaction energy (QIE) parameters
in mq1 +mq2 +Σ = Mmeson. This hides the factual and phys-
ical values of quark massesmq1 ,mq2 and those of the quark
interaction energyΣ.

In our present work we study the spectrum of heavycc̄,
bb̄ states. For that purpose, we use bare quark masses in SWE
extracted from experimental evidence got by various Collab-
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orations. Regarding the SLIP, we are interested in the choice
of parametersα = β = 1/2 andV0 = 0, known in literature
as the Song-Lin (SL) potential [27]. We select this effective
potential beyond the paradigmatic Cornell potential because
there are a number of appealing features [28, 29] that the SL
potential displays better than the Cornell model. Let us re-
call that the SL potential has been theoretically calculated
by coupling the non-Abelian character of QCD to a heavy
dilaton field [30]. From phenomenological perspective [27],
the first term in this potentialb/

√
r is inspired from leptonic

widths of vector mesonsρ, ω, φ, J/ψ andΥ measured in
experiments [31] and perturbative QCD at short distances,
while the term (−a

√
r) has been motivated by considering a

chromo-electric flux tube [27] between a quarkQ and anti-
quarkQ̄ in a quarkonium system where perturbative QCD is
hard to manage, and the possible colour-screening effects on
strong force which are considered of considerable importance
[33–36]. In fact, the colour-screening in our parametriza-
tion of SL is far more simply added than in [33–36] using
Cornell potential. The SL potential has been considered in
[23,37,38] and applied only to low lying meson states with no
or insignificant application to decay rates and other quarko-
nia observables. We calculate spin averaged masses ofcc̄,
bb̄ spectroscopic states, which are relevant for the prediction
of hyperfine splittings between|1LL〉 and |3LL〉 states de-
fined as〈3LL〉 - 1LL where 〈3LL〉 is spin averaged mass
of the triplet{3LL−1,

3 LL+1,
3 LL+3}. By considering the

spin averaged wave functions at contact, we readily obtain the
leptonic, diphoton, digluon, triphoton, trigluon and one pho-
ton plus 2 gluons decay rates ofS-wave states by demanding
agreement of1S state for each one of these decays with the
experiment. We do this to find the value of the QCD cou-
pling constant(αs) and then use it for decay modes of2S
to 5S states. A comparison with known values of these de-
cay widths is presented, rendering our full dynamical picture
of the NR framework in fair agreement with the dynamics of
these heavy meson states. We also include momentum width
and velocity corrections to these decays and get their excel-
lent agreement with experiment. We obtain wavefunctions,
masses, radii, quark velocities, quark momentum widths, an-
nihilation decay rates and strong running coupling constant
for charmonium and bottomonium states in the following
manner: we fit the parameters of the potential by demanding
exactness of the theoretical mass of only one1S spin aver-
aged state ofcc̄ with experimental value and then calculate
all remaining spin averaged masses for heavy mesons with
the parametersa = 0.7011 GeV3/2, b = 0.8912 GeV1/2

and this parametrization of SL potential makes the SWE a
robust dynamical equation of heavy quarkonia even beyond
the original expectations of the model [27] and extends the
achievements of other similar calculations [23, 37, 38]. We
compare our findings against experimental results and other
theoretical calculations and systematically extend our results
up to8S, 7P , 7D, 7F , 7G. This extension to higher states
is allowed and reliable because suitable colour-screening ef-
fects are already present in confining term of our SL poten-

tial parametrization and this colour screening of the confining
term in inter quark potential is seen to produce higher orbital
and angular momentum excited states efficiently [33].

After preparing the firm ground from MNM we obtain
the charmonium and bottomonium spin averaged masses and
radii, in order to circumvent the struggle for numerical accu-
racy in the numerical solution, we introduce a variatonal ap-
proach combining the Heisenberg uncertainty principle and
the variational principle in the Hamiltonian of the SWE. Such
an approach, which we refer to simply as the variational prin-
ciple (VP), imposes an algebraic transcendental relation be-
tween the masses and the radii of these states and is partially
based in our previous work in [26]. The results from our VP
are less uncertain than those from MNM. In the remaining
part of this article we present the details as follows: Section 2
introduces MNM to solve the SWE. Section 3 presents our
model of the quark velocities, and the decay widths for dif-
ferent decay modes of spin averagedS-states of charmonia,
and bottomonia. In Sec. 4 we develop a strategy of com-
bining the variation in mesonic Hamiltonian with Heisenberg
UP through our momentum width-model to establish analyti-
cal relation between spin averaged masses and radii of heavy
meson states. Conclusion and further possible developments
are discussed in Sec. 5. In the Appendix A to this paper we
have calculated spin averaged masses by including hyperfine,
spin-orbit, and tensor interactions to SL potential and com-
pare these against the spin averaged masses in Tables I and II
obtained without these spin effects while in Appendix B we
have estimated the bare quark masses. The color screening is
explored in Appendix C.

2. Numerov method

The non-relativistic kinetic energy operator for a two quark
system is

T = m1 + m2 +
|~p1|2
2m1

+
|~p2|2
2m2

, (1)

wherem1,2 and~p1,2 are the corresponding quark masses and
momenta. Then the Hamiltonian of this system is

H =
2∑

i=1

(
mi +

|~pi|2
2mi

)
+ V (~r1, ~r2). (2)

If these two quarks are moving in a spherically symmet-
ric potential that depends only on their mutual separation
r = |~r1 − ~r2|, namelyV (~r1, ~r2) = V (r), the problem can
be decoupled into the center of mass motion of the two quark
system and the relative motion of the quarks about their cen-
ter of mass. Factorizing the former, the SWE for the relative
motion reduces to the one-body eigenvalue problem

(
m1 + m2 +

|~p|2
2µ

+ V (r)
)

Ψ(~r) = ∆Ψ(~r) , (3)

whereµ = m1m2/(m1 + m2) is the reduced mass of the
system,∆ is the mass of the meson state and~p is the mo-
mentum of quark about the center of mass of the meson.
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Working in spherical coordinates and separating the angular
part in Eq. (3) according toΨ(~r) = Rnl(r)Y m

l (θ, φ), where
Y m

l (θ, φ) are the spherical harmonic functions normalised to
unity (with n, l andm the principal, orbital angular momen-
tum and magnetic quantum numbers), the masses of heavy
meson states are obtained by solving the radial one-body, one
dimensional-like SWE(ψ(r) = rRnl),

(m1 + m2 + Σ(m1,m2, `, a, b; r)) ψ(r) = ∆ψ(r), (4)

where we define

Σ(m1,m2, `, a, b; r) = − 1
2µ

d2

dr2
+

`(` + 1)
2µr2

+ V (r), (5)

as an operator for QIE. In what follows, we obtain the char-
monium and bottomonium spectra by solving the SWE with
the SL potential [27]

V (r) = − b√
r

+ a
√

r, (6)

havinga andb as free parameters. We fix these parameters to
the lightestcc̄ mass, and then derive the rest of the heavy
quarkonium full spectrum through the Matrix Numeroved
Eq. (10). Explicitly, these values are

a = 0.7011 GeV
3
2 , b = 0.8912 GeV

1
2 , (7)

FIGURE 1. Stability test of the number of grid points for the pre-
diction of the (inverse) mass ofS−states forcc̄ and bb̄ at fixed
rmax = 4fm.

FIGURE 2. Stability test of the size of integration interval for the
prediction of the (inverse) mass ofS−states forcc̄ andbb̄ at fixed
N = 350.

whereas the bare quark masses are taken to be

mc = 1.2 GeV, mb = 4.668 GeV. (8)

In this form we parametrize charmonium mass spectrum as
∆2S+1LJ

= 2.4 + Σ while for bottomonia we take∆2S+1LJ

= 9.334+Σ. Our parametrization in Eq. (7) is unique and the
same forcc̄ andbb̄ mesons. The masses in Eq. (8) are not
arbitrary, see Appendix B for this point.

In order to solve the corresponding SWE in Eq. (4) we
discretize its radial coordinater into N equidistant points
ri separated a distanced within a preselected characteristic
lengthrmax suitable for the description of heavy meson spec-
tra and represent the kinetic operator in Eq. (4) in terms of the
two trigonal matrices

AN,N =
I−1 − 2I0 + I1

d2
,

BN,N =
I−1 + 10I0 + I1

12
, (9)

such that Eq. (4) is expressed in the form as in Refs. [24–26]

− 1
2µ

AN,NB−1
N,Nψi +

[
VN (ri)

+
l(l + 1)
2µr2

i

+ m1 + m2

]
ψi = ∆ψi , (10)

whereψi = ψ(ri) is a column matrix(ψ1, ψ2, ..., ψN )T , the
term in square brackets is a diagonal matrix of orderN ×N
andI0, I−1, I+1 are respectively the square matrices of order
N ×N containing zeros every where except in the principle
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diagonal (PD), in the diagonal one step below PD, and in the
diagonal one step above PD which are filled with entries as
1. Concretely, we usermax = 4 fm and fix the number of
grid points withN = 350. These two numbers are obtained
from the stability of the inverse of the masses ofS, P andD
states against variation of the number of points and the size
of the domain of integration. For the sake of illustration, we
show the variation of the inverse of the masses forS-states
for charmonium and bottomonium with the number of grid
points in Fig. 1 and with the interval of integration in Fig. 2.

2.1. Spectra

Numerical solution of Eq. (10) gives wavefunctions corre-
sponding to spin averaged masses of charmonium and bot-
tomonium. These are our well behaved spin averaged or-
thonormal wavefunctions plotted forS, P and D states in
Figs. 3 and 4. The spin averaged masses are shown in Tables I
and II and compared against the experimental values [39] and

FIGURE 3. Wave functions for first fiveS-states (upper panel),P -
states (mid pannel) andD-states (lower panel) ofcc̄ mesons in the
SL potential.

FIGURE 4. Wave functions for first fiveS-states (upper panel),P -
states (mid panel) andD-states (lower panel) ofbb̄ meson in the SL
potential.

other theoretical findings. It is important to note that finding
the correct interaction energy between quarks (QIE) is a key
feature for the success or failure of a quark model and is a
real essence of understandingthe matterin visible universe.
The authors in Ref. [23] and Ref. [27] used charm quark mass
1.8 GeV which is 600 MeV more than our bare charm quark
mass. It means that these authors estimated interaction en-
ergy600 MeV smaller in charmonium system than ours. As
for the bottom quark is concerned, these authors estimate the
interaction energy to be 1066 MeV smaller when compared to
ours. The correct input mass to SWE produces correct predic-
tions and bare quark masses available so far are not less than
being the correct masses of charm in Eq. (B.1) and bottom in
Eq. (B.2). So our calculated interaction energies for charmo-
nia and bottomonia must be correct in our bare quark model
(BQM). A quick analysis of QIE in Tables I and II shows
interaction energy innL spin averaged states for bottomonia
is smaller than that for charmonia, and QIE for(n+1)L state

Rev. Mex. Fis.67 (1) 33–53



A NEW VARIATIONAL APPROACH AND ITS APPLICATION TO HEAVY QUARKONIA 37

TABLE I. Masses [GeV] forcc̄ spin-averagedS, P andD States. We calculated spin averaged masses using(
∑

J(2J + 1)∆J/
∑

J(2J + 1))
from Ref. [62] for Cornell potential model in Refs. [27,49] for purpose of comparison with our predicted 5P and 4D spin averaged states. In
the last column, N stands for “from Numerov Method”, E for “from Experimental mass of the meson” and VP is for “from our variational
principle” (Sec. 4).

nL Exp. Masses [33] mc = 1.8 GeV [22] mc = 1.8 GeV [26] mc = 1.2 GeV [Our work] Our QIE [MeV] N/E/VP

1S 3.067 3.104 3.097 3.066 666/ 660/ 662

2S 3.649 3.703 3.673 3.764 1364/ 1250/ 1211

3S 4.040 4.090 4.017 4.208 1808/ 1640/ 1624

4S 4.415 4.375 4.276 4.545 2145/ 2015/ 1937

5S — 4.692 4.487 4.824 2424/ ——/ 2194

1P 3.525 3.572 3.524 3.566 1166/ 1125/ 1042

2P — 3.986 3.907 4.055 1655/ ——/ 1480

3P — 4.280 4.186 4.418 2018/ ——/ 1813

4P — 4.580 4.410 4.714 2314/ ——/ 2086

5P — 5.034 [27] — 4.969 2569/ ——/ 2320

1D 3.769 3.806 3.791 3.902 1502/ 1369/ 1388

2D 4.159 4.185 4.090 4.292 1892/ 1759/ 1713

3D — 4.474 4.328 4.605 2205/ ——/ 1991

4D — 4.898 [49] — 4.871 2471/ ——/ 2231

5D — — —- 5.107 2707 ——/ 2444

TABLE II. Masses [Gev] forbb̄ spin-averagedS -,P -,D States. We calculated spin averaged masses using(
∑

J(2J + 1)∆J/
∑

J(2J + 1))
from Ref. [62] for Cornell potential model in Ref. [48] for purpose of comparison with our predicted 5P, 4D and 5D spin averaged states. In
the last column, N stands for “from Numerov Method”, E for “from Experimental mass of the meson” and VP is for “from our variational
principle” (Sec. 4).

nL Exp. Masses [33] mb = 5.2 GeV [22] mb = 5.2 GeV [26] mb = 4.668 GeV [Our work] Our QIE [MeV] N/E/VP

1S 9.444 9.473 9.460 9.444 110/ 108/ 122

2S 10.023 10.024 10.034 10.098 764/ 687/ 651

3S 10.355 10.327 10.356 10.482 1148/ 1019/ 1017

4S 10.579 10.593 10.589 10.766 1432/ 1243/ 1283

5S 10.865 10.788 10.776 10.998 1664/ 1529/ 1498

1P 9.900 9.912 9.902 9.930 596/ 564/ 496

2P 10.260 10.275 10.261 10.358 1024/ 924/ 890

3P —— 10.580 10.512 10.665 1331/ ——/ 1178

4P —— 10.703 10.711 10.911 1577/ ——/ 1408

5P —— 11.013 [48] — 11.119 1785/ ——/ 1602

1D 10.161 10.156 10.162 10.234 900/ 825/ 810

2D —— 10.434 10.433 10.565 1231/ ——/ 1093

3D —— 10.625 10.643 10.825 1491/ ——/ 1328

4D —— 10.934 [48] — 11.043 1709/ ——/ 1529

5D —— 11.143 [48] — 11.232 1898/ ——/ 1703

is larger than fornL. As a complementary note, in the Ap-
pendix A we have calculated these mass spectra by including
spin-spin, spin-orbit, and tensor interactions between quark
Q and antiquarkQ̄ as part of the dynamical Eq. (10) instead
of using the leading order perturbation method. These are
the so called quarkonia mass spectra with spin effects. We

have compared these spectra with those in Tables I and II
obtained without incorporating the spin effects in the form of
mass-plots Fig. 7.

As for the size of the bound states, the root-mean-square
radii rrms can be directly obtained from the numerical solu-
tion of the SWE as,
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TABLE III. Radiircc̄
rms of cc̄ andrbb̄

rms of bb̄ states in [fm] and corresponding momentum widthβcc̄ andβbb̄ in [GeV] in spin averagedS -,P -
andD quarkonia states.

nL rcc̄
rms(SWE)/rcc̄

min(V P )/Ref. [63] βcc̄
SWE/βcc̄

V P rbb̄
rms(SWE)/rbb̄

min(V P )/Ref. [64] βbb̄
SWE/βbb̄

V P

1S 0.439/ 0.3533/ 0.41 0.682/ 0.693 0.225/ 0.179 / 0.233 1.335/ 1.369

2S 0.915/ 0.922/ 0.91 0.765/ 0.760 0.488/ 0.501/ 0.545 1.434/ 1.397

3S 1.352/ 1.363/ 1.38 0.813/ 0.810 0.737/ 0.755/ 0.805 1.493/ 1.457

4S 1.762/ 1.773/ 1.87 0.851/ 0.846 0.972/ 0.991/ 1.030 1.544/ 1.514

5S 2.151/ 2.161/ 2.39 0.882/ 0.879 1.200/ 1.216/ 1.232 1.588/ 1.562

1P 0.697/ 0.775/ 0.71 0.717/ 0.645 0.370/ 0.416/ 0.435 1.350/ 1.202

2P 1.155/ 1.195/ 1.19 0.779/ 0.753 0.628/ 0.658/ 0.711 1.432/ 1.368

3P 1.577/ 1.601/ 1.67 0.824/ 0.812 0.869/ 0.893/ 0.945 1.496/ 1.456

4P 1.976/ 1.992/ – 0.860/ 0.853 1.097/ 1.118/ 1.154 1.549/ 1.521

5P 2.343/ 2.367/ – 0.891/ 0.887 1.317/ 1.336/ 1.346 1.594/ 1.572

1D 0.936/ 1.097/ 0.96 0.748/ 0.638 0.507/ 0.601/ 0.593 1.379/ 1.165

2D 1.380/ 1.472/ 1.44 0.797/ 0.747 0.760/ 0.818/ – 1.448/ 1.345

3D 1.791/ 1.850/ 1.94 0.838/ 0.811 0.994/ 1.036/ – 1.508/ 1.448

4D 2.178/ 2.220/ – 0.871/ 0.856 1.218/ 1.251/ – 1.559/ 1.560

5D 2.497 /2.581/ – 0.900/ 0.891 1.434/ 1.460/ – 1.604/ 1.575

(rrms)
2 =

∞∫

0

dr r3|Rn`(r)|2, (11)

where the symbolsn and` stand for the principal and orbital
angular momentum quantum number of the meson, respec-
tively. Furthermore, the heavy quarkonia states exhibit mo-
mentum widthβ as function of the quarkonium size deter-
mined by their quantum numbers in our proposed functional
formi

β =
δ

rrms
. (12)

Radii from Eq. (11) and momentum width from Eq. (12) for
different states are reported in Table III. A variation of mo-
mentum width with the size of theS, P andD states of char-
monia and bottomonia are depicted on right panels in Figs. 5
and 6, along with the analytical expressions for momentum
width as functions of instantaneous quark separationr. From
Table III we observe that bottomonia are more compact ob-
jects than corresponding charmonia. Furthermore the char-
monia sizes are roughly twice as large as those of the similar
states of the bottomonia while momentum width forc-quark
mesons is approximately half that of theb quark.

3. Other quarkonia observables

From the discussion of the previous section, we obtain a few
parameters that allow us to characterize the dynamics of these
heavy quark systems.

3.1. A model for quark velocities

Quark velocity is a vital ingredient in taking a decision
whether to describe quark dynamics in QCD perturbatively
or non-perturbatively, and in the determination of hadron
masses using string quark model Ref. [46]. The root-mean-
square velocity of bottom quark in thebb̄ ground state is about
0.3c and that of the charm quark in the lowest energy state of
the cc̄ is 0.5c (wherec is the speed of light in vacuum; see,
for instance, Ref. [47]). Moreover, and speaking naively, in
the study of various types of decays of a hadron the distribu-
tion of angular momentum-momentum of the partons within
it among possible decay products is a necessary item both in
experimental measurements (for example theJPC of a me-
son) and in theoretical calculations of decays (as we do in
Subsec. 3.2.1 in the form of momentum width and velocity
corrections). Incidentally, how the momentum is distributed
among constituents is equally important for inelastic scatter-
ing of leptons from composite particles as in deep inelas-
tic scattering experiments. This concept is of prime impor-
tance for explanation of the, effect observed by the European
Muon Collaboration (EMC) [48], the EMC effect, where in
Deep Inelastic Scattering (DIS) experiments the scattering
cross-section of leptons from quarks in nucleons of heavy
atomic nuclei is smaller than their scattering cross-section
from quarks in nucleons of light atomic nuclei. In addition,
this momentum distribution is fundamentally dependent on
parton velocity, see for example Eqs. (69), (70) and (106) in
Ref. [46] for a flux tube quark model. For these reasons, we
introduce a model for the quark velocity which is applicable
not only for the ground states of hadrons, but also for excited
states. Another reason for promulgating this definition is of
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FIGURE 5. The velocities and momenta of charm quark withincc̄ versus radii ofcc̄ obtained from SWE and our VP.

direct use for SWE and for the variational approach which we
describe below, in Sec. 4. The quark velocities in states other
than the ground state of quarkonia have never been reported
as far as we know. We propose two ways for calculating the
quark velocity, a first parametrization is motivated from sim-
ple dimensional analysis and the idea that two particles are
revolving around their common center of mass as if no QCD
glue or some other medium is present between and around
the two particles. The explicit parametrization is

vF =
β

mQ
, (13)

whereβ is the quark momentum found from Eq. (12), mQ is
the bare quark mass. A second parametrization is based on
our model that whatever is present in the meson in addition to
quarks half of the meson mass should come from one quark
and itsdressing. In other words, the quark has to drag along

it the field it is moving in. So we assume its inertia as half of
the meson mass and thus we introduce

vS = 2
β

∆
, (14)

where∆ is theQQ meson mass. This definition can be ex-
tended to the case of baryons, composed entirely of heavy
quarks, the effective quark inertia would be one third the
mass of that baryon and we shall get a factor of three in
Eq. (14) in place of a factor of two. In our view, Eq. (14)
should be more realistic because,a priori, it takes into ac-
count whatever is present in the meson along with the quarks
and Eq. (13) should be a special case of our model given by
Eq. (14) in the limit where QIE is negligible as compared to
sum of the bare quark masses. Thus, we adhere to Eq. (14)
and report quark
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FIGURE 6. The velocities and momenta of bottom quark withinbb̄ versus radii ofbb̄ obtained from SWE and our VP.

velocities in S, P and D spin averaged states of heavy
quarkonia in Tables IV and V, which are in fair agreement
with the overall assessment reported in Ref. [47]. These
quark velocities would be of essential importance for de-
termining inclusive decay rates by using Eqs. (27) and (33)
of Ref. [49] and the references therein, for all spectroscopic
states of heavy quarkonia instead of theBc(1S-wave) only.

We plot quark velocities versus radii of mesons in their
different quantum states in Figs. 5 and 6. We observe that for
cc̄ andbb̄, the velocities of charm and bottom quarks inS, P
andD states follow a universal rule,

vS(r) =
σ√
r

+ ε
√

r + v0
S , (15)

while the momentum widths behave as

β(r) = ρ
√

r + β0, (16)

where σ(
√

fm), ε(fm(−1/2)), v0
S , ρ(GeV · fm(−1/2)) and

β0 (GeV) depend upon the principal- and orbital angular
momentum-quantum numbers of the quarkonium state. An
interesting conclusion that we reach at by comparing Ta-
bles IV and V is that velocities of charm and bottom quarks
predicted by Eqs. (13) and (14) do not differ significantly for
low lying mesons but this difference becomes conspicuous
for higher quarkonia states. In fact, the difference in predic-
tions for bottom quark in Table V is almost negligible. The
latter means that as per our velocity model, the heavier quarks
are surrounded by a little amount of fields contributing to the
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TABLE IV. Velocities from SWE and our VP (Sec. 4) in natural units, of the charm quark in orbitally and radially excited states of charmo-
nium.

States (n) S P D

vF vS,SWE /vS,V P vF vS,SWE /vS,V P vF vS,SWE /vS,V P

1 0.59 0.445/0.453 0.60 0.402/0.375 0.62 0.383/0.337

2 0.64 0.406/0.420 0.65 0.384/0.388 0.66 0.371/0.363

3 0.68 0.386/0.401 0.69 0.373/0.385 0.70 0.364/0.369

4 0.71 0.374/0.390 0.72 0.365/0.380 0.73 0.357/0.370

5 0.74 0.366/0.383 0.74 0.358/0.376 0.75 0.353/0.368

TABLE V. Velocities from SWE and our VP (Sec. 4) in natural units, of the bottom quark in orbitally and radially excited states of bottomo-
nium.

States(n) S P D

vF vS,SWE /vS,V P vF vS,SWE /vS,V P vF vS,SWE /vS,V P

1 0.286 0.283/0.289 0.289 0.272/0.244 0.295 0.270/0.229

2 0.307 0.284/0.280 0.306 0.276/0.268 0.310 0.274/0.258

3 0.319 0.285/0.282 0.321 0.281/0.277 0.323 0.279/0.271

4 0.331 0.287/0.285 0.332 0.284/0.283 0.334 0.282/0.280

5 0.340 0.289/0.288 0.342 0.287/0.287 0.344 0.286/0.285

the mass of meson via QIE and vice versa, but as the heav-
ier quarks get apart as inD-wave bottomonia, predictions
start differing. This observation is also supported by com-
paring the QIE’s of(nL)cc̄ with (nL)bb̄ in Tables I and II. It
is not without interest when we compare our quark-velocity
Tables IV and V with quark-velocity Table I of Ref. [46]. It
has also been measured in experiments (see Ref. [50]) that
first generation quarks in heavier atoms have velocities 10
to 20% smaller than their velocities in lighter atoms. This
trend of EMC effect Ref. [48, 50] is predicted by our veloc-
ity model Eq. (14) as we look horizontally from left to right
the direction of increasing mass of mesonicQQ̄ atoms in Ta-
ble IV for the second generation charm quark, and from left
to right in Table V for the third generation bottom quark, and
this is a practical success of our model of quark velocities.
We state these findings as follows:quark velocity decreases
due to an increase in its interaction energy with other quark,
and this interaction energy is larger as the interquark sepa-
ration grows bigger. Due to increase in both of the interac-
tion energy and interquark separation, the mass of the bound
state of quarks rises (compare for example1Scc̄ with 1Pcc̄

with 1Dcc̄). Hence, quarks move at slow velocities in heavier
bound states and vice versa.

3.2. Annihilation decay rates

To further strengthen our use of bare quark masses in the
non-relativistic potential model and the claimed improved
accuracy of the Matrix Numerov method, we have opted to
calculate the various decay rates of spin averagedS-wave

charmonia and bottomonia. Contrary to the general prac-
tice of proposing Gaussian, or hydrogenic functions with one
or two free parameters, we have calculated the wave func-
tions for the spin averaged quarkonia as solutions of SWE.
The leptonic(e+e−)-, diphoton(γγ)-, digluon(gg)-, tripho-
ton (γγγ)-, trigluon (ggg)-, and 1 photon-2 gluon decays
are of pivotal importance in identifying and producing the
resonances. These decays are also helpful for establish-
ing the conventional mesons and other multi-quark struc-
tures Refs. [51, 52]. The decay rates ofS-wave quarkonia
are [53–55]

Γ(nS → e−e+) =
|Rns(0)|2

∆2
ns

4e2
Qα2

(
1− 16αs

3π

)
, (17)

Γ(nS → 3g) =
|Rns(0)|2

m2
Q

10(π2 − 9)
81π

α3
s

×
(

1− 4.9αs

π

)
, (18)

Γ(nS → γγγ) =
|Rns(0)|2

m2
Q

4(π2 − 9)
3π

e6
Qα3

×
(

1− 12.6αs

π

)
, (19)
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Γ(nS → γgg) =
|Rns(0)|2

m2
Q

8(π2 − 9)
9π

αα2
se

2
Q

×
(

1− 6.7αs

π

)
, (20)

Γ(nS → gg) =
|Rns(0)|2

m2
Q

2α2
s

3
,

(
1 +

4.8αs

π

)
, (21)

Γ(nS → γγ) =
|Rns(0)|2

m2
Q

3e4
Qα2

1

(
1− 3.4α

π

)
, (22)

whereRns(0) is the meson wave functions at contact, which
we take from our numerical solutions of Eq. (10), ∆ns the
mass corresponding to the meson state,mQ the bare quark
mass,eQ the quark electric charge in elementary unitse,
α = e2/(4π) the fine structure constant andαs is the strong
coupling constant. In each of the above expressions for de-
cay rates, the last factor in parentheses comes from the one-
loop radiative QCD corrections. It is important to mention
that value ofαs is not available in the two free parameters of
SL potential, see Ref. [23, 27] and Eq. (7). Thus, to move
forward, we fit the experimentally known one value of the
decay rate of each channel from Eqs. (17) to (22) in the1S
state and extract the value ofαs for that decay rate. Then we
produce all remaining values for2S, 3S and so on states for
each channel. The values extracted forαs pertaining to de-
cay modes in Eqs. (17) to (22) are displayed in Table VI for

charmonia and bottomonia. The over all average value ofαs

for QQ̄ comes out to be0.3515± 0.1761.
A comprehensive review about the strong running cou-

pling constantαs within the effective potential approach is
given in section 4.3 of the Ref. [56]. Our values of the strong
coupling constant are in agreement with the findings of that
work.

Annihilation decay rates are reported in Tables VII
to XVIII along with a comparison against experimental re-
sults and other theoretical calculations where available.

3.2.1. The Velocity and Momentum Width Corrections In
Annihilation decay rates

Most NR quark model calculations usually fail to produce
decay rates agreeable with experiment. The root of this fail-
ure lies in the absence of proper account of velocities and
momentum widths of the two valence quarks going to anni-
hilate each other in a meson. We have found the momentum
correction factor

Λpc =

√
1−

(
βcc̄

mc

)2

, (23)

in charmonia annihilation decays except for the decays to
three gluons, where this factor is,

Λpggg
c

=

√
1−

(
βcc̄

2mc

)2

. (24)

TABLE VI. The strong running couplingαs

Quarkonia(nS) Γe+e− Γggg Γγγγ Γγgg Γgg Γγγ αav
s

cc̄ 0.0147 0.1834 0.1948 0.2244 0.2780 0.5435 0.2872±0.1328

bb̄ 0.4268 0.2091 0.2475 0.0943 0.2968 0.7771 0.4058±0.1946

TABLE VII. Leptonic decay widths [keV] of spin averagedS-wavecc̄ states.

State OurΓ(nS)/Γc(nS) Exp. [38] [39] [40] (Γ
(
nS− > e+e−

)
/Γ

(
1S− > e+e−

)
) our/Exp. [26]

1S 5.55 5.55 5.63 3.112 1.00/1.00

2S 2.18 2.33 2.19 2.197 0.39/(0.45±0.08)

3S 1.34/0.91 0.86 1.20 1.701 0.16/(0.16±0.04)

4S 0.97/0.63 0.58 0.63 - 0.11/(0.11±0.04)

5S 0.76/0.47 - 0.24 - 0.08/–

TABLE VIII. Three-gluon decay widths [keV] of spin averagedS-wavecc̄ states.

State OurΓ(nS)/Γc(nS) Exp. [38] [41] [42] (Γ (nS− > ggg)/Γ (1S− > ggg)) our/Exp.

1S 59.45 59.55 269.06 52.8±5 1.00/1.00

2S 35.26/30.48 31.38 112.03 23±2.6 0.51/0.53

3S 27.14/23.52 - 94.57 - 0.40/–

4S 22.85/19.85 - 88.44 - 0.33/–

5S 20.12/17.38 - 85.30 - 0.29/–

Rev. Mex. Fis.67 (1) 33–53



A NEW VARIATIONAL APPROACH AND ITS APPLICATION TO HEAVY QUARKONIA 43

TABLE IX. Three-photon decay widths [eV] of spin averagedS-wavecc̄ states.

State OurΓ(nS)/Γc(nS) Exp. [38] [41] (Γ (nS− > γγγ)/Γ (1S− > γγγ)) our/Exp.

1S 1.08 1.08±0.032 3.95 1.00/1.00

2S 0.64/0.45 - 1.64 0.42/–

3S 0.49/0.33 - 1.39 0.31/–

4S 0.42/0.27 - 1.30 0.25/–

5S 0.37/0.23 - 1.25 0.21/–

TABLE X. Two-photon decay widths [keV] of spin averagedS-wavecc̄ states.

State OurΓ(nS)/Γc(nS) Exp. [38] [40] [41] (Γ (nS− > γγ)/Γ (1S− > γγ)) our/Exp.

1S 5.10 5.1±0.4 6.96 6.62 1.00/1.00

2S 3.02/2.12 2.15±0.6 10.45 2.88 0.42/0.42

3S 2.33/1.58 - 1.03 2.44 0.31/–

4S 1.96/1.28 - - 2.30 0.25/–

5S 1.73/1.09 - - 2.21 0.21/–

TABLE XI. Two-gluon decay widths [MeV] of spin averagedS-wavecc̄ states.

State OurΓ(nS)/Γc(nS) Exp. [38] [44] [45] (Γ (nS− > gg)/Γ (1S− > gg)) our/Exp.

1S 28.64 28.6±2.2 13.07 15.70 1.00/1.00

2S 16.99/10.05 14±7 9.53 8.10 0.35/(0.49±0.28)

3S 13.08/7.51 - 4.41 - 0.26/–

4S 11.01/6.16 - - - 0.22/–

5S 9.71/5.22 - - - 0.18/–

TABLE XII. (One-photon,two-gluon) decay widths [keV] of spin averagedS-wavecc̄ states.

State OurΓ(nS)/Γc(nS) Exp. [38] [41] (Γ (nS− > γgg)/Γ (1S− > γgg)) our/Exp.

1S 8.18 8.18±0.25 9.00 1.00/1.00

2S 4.85/2.87 2.93±0.16 3.75 0.35/0.36

3S 3.73/2.14 - 3.16 0.26/–

4S 3.14/1.76 - 2.96 0.22/–

5S 2.77/1.49 - 2.85 0.18/–

TABLE XIII. Leptonic decay widths [keV] of spin averagedS-wavebb̄ states.

State OurΓ(nS) Exp. [38] [46] [47] (Γ
(
nS− > e+e−

)
/Γ

(
1S− > e+e−

)
)

1S 1.336 1.34±0.018 0.998 1.60 1.00/1.00

2S 0.610 0.612±0.011 0.439 0.64 0.46/0.46

3S 0.412 0.443±0.008 0.341 0.44 0.31/0.33

4S 0.318 0.322±0.041? 0.298 0.35 0.24/0.24

5S 0.262 0.310±0.070 0.265 0.29 0.20/0.23

? This decay width is not correct in Table (XVII) of the Ref. [59]
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TABLE XIV. Three-gluon decay widths [keV] of spin averagedS-wavebb̄ states.

State OurΓ(nS)/Γc(nS) Exp. [38] [59] [58] (Γ (nS− > ggg)/Γ (1S− > ggg)) our/Exp.

1S 44.14 44.13±1.09 50.8 47.6 1.00/1.00

2S 23.05/17.44 18.8±1.59 28.4 26.3 0.40/(0.43±0.04)

3S 16.78/12.36 7.25±0.85 21 19.8 0.28/0.16

4S 13.67/9.82 – 16.7 15.1 0.22/–

5S 11.77/8.26 – 14.2 13.1 0.18/–

TABLE XV. Three-photon decay widths [keV] of spin averagedS-wavebb̄ states.

State OurΓ(nS)/Γc(nS) Exp. [38] [59] [58] (Γ (nS− > γγγ)/Γ (1S− > γγγ)) our/Exp.

1S 1.95×10−5/1.54×10−5 – 1.94×10−5 1.7×10−5 1.00/1.00

2S 1.02×10−5/7.72×10−6 – 1.09×10−5 9.8×10−6 0.50/–

3S 7.43×10−6/5.48×10−6 – 8.04×10−6 7.6×10−6 0.36/–

4S 6.05×10−6/4.35×10−6 – 6.36×10−6 6.0×10−6 0.28/–

5S 5.21×10−6/3.66×10−6 – 5.43×10−6 – 0.24/–

TABLE XVI. Two photon decay widths [keV] of spin averagedS-wavebb̄ states.

State OurΓ(nS)/Γc(nS) Exp. [38] [59] [58] (Γ (nS− > γγ)/Γ (1S− > γγ)) our/Exp.

1S 1.05/0.83 – 1.05 0.94 1.00/1.00

2S 0.55/0.42 – 0.489 0.41 0.51/–

3S 0.40/0.29 – 0.323 0.29 0.35/–

4S 0.32/0.23 – 0.237 0.20 0.28/–

5S 0.28/0.20 – – – 0.24/–

TABLE XVII. Two gluon decay widths [keV] of spin averagedS-wavebb̄ states.

State OurΓ(nS)/Γc(nS) Exp. [38] [59] [58] (Γ (nS− > gg)/Γ (1S− > gg)) our/Exp.

1S 17.90/14.08 – 17.9 16.6 1.00/1.00

2S 9.35/7.07 – 8.33 7.2 0.50/–

3S 6.80/5.01 – 5.51 4.9 0.36/–

4S 5.54/3.98 – 4.03 3.4 0.28/–

5S 4.77/3.35 – – – 0.24/–

TABLE XVIII. One photon-Two gluon decay widths [keV] of spin averagedS-wavebb̄ states.

State OurΓ(nS)/Γc(nS) Exp. [38] [59] [58] (Γ (nS− > γgg)/Γ (1S− > γgg)) our/Exp.

1S 1.19 1.19± 0.33 1.32 1.2 1.00/1.00

2S 0.62 0.612± 0.011 0.739 0.68 0.52/0.51

3S 0.45/0.23 0.20± 0.04 0.547 0.52 0.19/0.17

4S 0.37/0.18 – 0.433 0.40 0.15/–

5S 0.32/0.15 – 0.370 – 0.13/–

The momentum width correction factor in all bottomonia
annihilation decays is

Λpb
=

√
1−

(
2βbb̄

mb

)2

. (25)

The velocity correction factor for all charmonia annihilation
decays is

Λvc =
√

1− v2
Sc, (26)

and this velocity factor in the case of bottomonia annihilation
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decay rates happens to be

Λvb
=

√
1− v2

Sb, (27)

except for annihilation toγgg for which the velocity correc-
tion factor is

Λvγgg
b

=
√

1− 2vSb, (28)

wherevSc andvSb are, respectively, the velocities ofc and
b quarks from our velocity model in Eq. (14). For the
case of quarkonia annihilations, the overall correction fac-
tor isΛpQΛvQ to be multiplied with expressions in Eqs. (17)
to (22) while Q is eitherc or b quark. The corrected de-
cay rates denoted byΓc are reported in Tables VII to XVIII.
The inclusion of momentum width and velocity corrections
give decay rates in agreement with experiment and this is an-
other validation about the correctness of our velocity model,
Eq. (14), and the momentum width model, Eq. (38). The ratio
Γ(nS)/Γ(1S) for n > 1 is seen to remain always less than
0.55 and more than0.05. Equations (23) to (28) impose very
tight constraints on the allowed momentum widths and ve-
locities of heavy quarks while they are in a quarkonium. This
is so because any change in the exponents or in the multipli-
cation factor of velocity or momentum spoils the consistency
of theoretical decay rates with experiment.

4. A Variational Approach

A subtle combination of the Heisenberg uncertainty Princi-
ple and the variation of mesonic Hamiltonian can be used to
estimate the masses of charmonium and bottomonium as fol-
lows. The radial Eq. (4) can be written as,(

m1 + m2 − 1
2µ

1
r

d2

dr2
r +

`(` + 1)
2µr2

+ V (r)

)

×Rn`(r) = ∆Rn`(r). (29)

This means radial Hamiltonian becomes (because radial com-
ponent of momentum operator iŝpr = −i[1/r][∂/∂r]r),

HR = m1 + m2 +
p2

r

2µ
+

`(` + 1)
2µr2

+ V (r). (30)

We have modeled the quark momentum of this equation in a
peculiar way which is described next.

We define symmetric point as the one for which all three
cartesian components of any 3-vector are equal in magnitude.
This means in cartesian space,

r =
√

3x, (31)

pr ≡ β =
√

3βx. (32)

This definition turns Eq. (30) into the following effective
Hamiltonian:

HR = m1 + m2 +
3
2µ

β2
x +

`(` + 1)
6µx2

+ V (
√

3x). (33)

Here we invoke the Heisenberg uncertainty Principle,

∆x ·∆px ≥ 1
2
, (34)

as follows: A little cerebration reveals that the equality sign
in Eq. (34) would hold for ideal systems (for which exper-
imental as well as theoretical uncertainties are frozen at the
minimum possible values of∆x and∆px), while the inequal-
ity sign in Eq. (34) would come when the system experiences
all sorts of “dissipative and interactive” effects. From Ta-
bles II and III, we observe that even in the lowest1S state
the QIE is not zero, which meansQQ̄ system always has
medium in which quarks move. Therefore, the equality sign
in Eq. (34) cannot hold. With these key ideas on board, we
parametrize the uncertainty relation in the form (that will be-
come clear below)

∆x ·∆px =
δ

3
, (35)

whereδ is real, positive number more than one and we define
it as,

δ =
(√

2(n− 1) + l + 3
)

δn.(1−l)

+
(

2(n− 1) + l +
3
2

) (
1− δn,(1−l)

)
, (36)

whereδn,(1−l) is the Kronecker delta. This definition is in ac-
cordance with the momentum width of known botommonium
and charmonium states (see, for instance, Refs. [25, 26, 67])
and is convenient for the discussion below, as we shorty ex-
plain. By keeping in mind the quantum indeterminacy in
position and momentum of quark in a meson, let us define
the notation in which∆x is x̄-the mean of the position co-
ordinate of quark relative to center of mass of the meson,
and similarly∆px by the mean quark momentum width̄βx

about center of mass. With these definitions, whatever phys-
ical quantityA we calculate in our VP corresponds to the
average〈A〉 of many measurements ofA and in essence the
same as expectation value of a Hermitian operatorÂ from
some linear vector space acting on a Hilbert space of states
the meson could be in.

Thus, from Eq. (35),

β̄x =
δ

3x̄
. (37)

The use of Eq. (31) and Eq. (32) gives,

β̄ =
δ

r̄
, (38)

and, in our notation, Eq. (33) becomes

H̄R = m1 + m2 +
3
2µ

β̄2
x +

`(` + 1)
6µx̄2

+ V (
√

3x̄). (39)

Now we use this expression for computing meson radii and
masses in the follwing way. Equation (37) makes Eq. (39)
altogether a function of one variablēx only,

H̄R(x̄) = (m1 +m2)+
δ2 + `(` + 1)

6µ

1
x̄2

+V (
√

3x̄). (40)
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TABLE XIX. Masses (in [GeV]) of higherS wave heavy quarkonia from our VP compared with those from Screened Cornell potential (SP),
Refs. [59]. Here, N is for “from Numerov method”.

Quarkonia 6S 7S 8S 9S 10S

cc̄N/V P/(D.Ebert,Nosh) 5.066/4.817/(5.164,4.973) 5.281/5.014/– 5.478/5.192/– 5.673/5.356/– 5.890/5.508/–

bb̄N/V P/SP 11.196/11.017/10.998 11.370/11.178/11.155 11.527/11.323/11.294 11.671/11.454 /– 11.804/11.576/–

TABLE XX. Masses (in [GeV]) ofD-wave heavy quarkonia from our VP compared with those from Bethe-Salpeter equation, Ref. [60].

Quarkonia 1D 2D 3D 4D 5D 6D 7D

cc̄V P/BS 3.789 /3.820 4.113/4.151 4.391 /4.405 4.631/4.611 4.844/4.781 5.035/– 5.20/–

bb̄V P/BS 10.146/10.15 10.429 /10.45 10.664/10.70 10.865 /10.90 11.039 /11.08 11.195/– 11.336/–

This is the Hamiltonian of our meson systemQQ̄ that de-
pends on̄x, which we regard as a variational parameter. Thus,
minimizing H̄R with respect tōx, we reach to the constraint

− δ2 + `(` + 1)
3µ

1
x̄3

+
∂V (

√
3x̄)

∂x̄
= 0. (41)

Its solution gives̄x = xmin, and when this value is substi-
tuted in Eq. (40) then we identifyH̄R(xmin) as the mass of
the meson denoted by∆V P written as,

∆V P = (m1 + m2)

+
δ2 + `(` + 1)

6µ

1
x2

min

+ V (
√

3xmin). (42)

Let us apply this general procedure to a concrete example in
which SLIP is the Song-Lin potential,

V (r̄) = − b√
r̄

+ a
√

r̄. (43)

Upon inserting this potential into Eq. (40), we reach at the
transcendental relation

(3)
5
4 µay5 + (3)

3
4 µby3 − 2(δ2 + `2 + `) = 0, (44)

wherey =
√

x̄. Equation (44) has only one real root for which
H̄R(x̄) is minimum and which we denote asymin. All other
four roots are complex and hence discarded being extraneous.
Thus solution of quintic equation gives,

x̄ = xmin = y2
min. (45)

Equation (45) used in Eq.(31) with our SL parametrization
Eqs. (7) and (8) give the radii ofcc̄ andbb̄ mesons reported
in Table III along with root mean square radii obtained from
SWE using Eq. (11) and compared with Refs. [44, 45]. The
agreement of our VP with SWE for quarkonia radii is excel-
lent.

Substitution of the root Eq. (45) in Eq. (42) produces the
meson mass,

∆V P = (m1 + m2) +
δ2 + `(` + 1)

6µ

1
x2

min

− b√√
3xmin

+ a

√√
3xmin. (46)

The ground state mass formula is

∆V P (1S) = (m1 + m2) +

(
1
2µ

1
(2xmin)2

− b√√
3xmin

+ a

√√
3xmin

)
, (47)

and the higher states have the mass formula,

∆V P (nL) = (m1 + m2) +

(
δ2 + `(` + 1)

6µ

1
(2xmin)2

− b√√
3xmin

+ a

√√
3xmin

)
. (48)

The masses ofcc̄ and bb̄ mesons from Eqs. (47) and (48)
are reported in Table XXIII and compared with experimen-
tal values as well as those from SWE. Again the agreement
of masses from our VP with experiment and SWE is re-
markable. It is further emphasized that mass values from
our VP are closer to experimental findings than those pre-
dicted by SWE through MNM. It implies our VP is more
accurate than MNM. We also compare our VP masses of
S-, D-, F - andG-waves with sophisticated calculations of
Refs. [33, 68–70] in Tables XIX to XXII. The SWE is found
not accurate enough in predicting higher quarkonia masses,
but Tables XIX to XXIII show our VP works better not only
for low lying states but it is very much suitable for spec-
troscopy of higher quarkonia states as well.

There are some more add ons from our VP. We use
Eq. (45) in Eq. (31) and then result in Eq. (37) to getβcc̄

V P

andβbb̄
V P , which are reported in Table III. We use Eqs. (38),

(47) and (48) in Eq. (14) to getvS,V P for different states of
heavy quarkonia reported in Table IV. The quantity within
parentheses in Eqs. (47) and (48) is the QIE which we report
in Tables I and II. So every thing done by SWE numerically
is more accurately and efficiently done analytically by our
quantum mechanical VP.
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TABLE XXI. Masses (in [GeV]) ofF -waves heavy quarkonia from our VP compared with those from Screened Cornell potential (SP)
Refs. [60].

Quarkonia 1F 2F 3F 4F 5F 6F 7F

cc̄V P/D.Ebert 4.056/4.071 4.3182 /4.406 4.556 /– 4.770/– 4.964 /– 5.141/– 5.3052 /–

bb̄V P/SP 10.380 /10.366 10.603/10.609 10.802/10.812 10.979 /10.988 11.138 /– 11.281 /– 11.4135/–

TABLE XXII. Masses (in [GeV]) ofG-wave heavy quarkonia from our VP compared with those from Screened Cornel potential (SP) Refs.
[59] and D. Ebert [61].

Quarkonia 1G 2G 3G 4G 5G 6G 7G

cc̄V P/D.Ebert 4.2783/4.345 4.5008 /– 4.7095 /– 4.9023/– 5.0804 /– 5.2457/– 5.4000 /–

bb̄V P/SP 10.570/10.534 10.756/10.747 10.929/10.929 11.087 /– 11.232 /– 11.366/– 11.490/–

TABLE XXIII. Masses [GeV] forcc̄ andbb̄ spin-averagedS, P andD states from our VP compared with those from SWE and from the
experiments.

nL Expcc̄. [33] (Numerov)cc̄ Our VP Expbb̄. [33] (Numerov)bb̄ Our VP

1S 3.067 3.066 3.062 9.444 9.444 9.458

2S 3.649 3.764 3.611 10.023 10.098 9.987

3S 4.040 4.208 4.024 10.355 10.482 10.353

4S 4.415 4.545 4.337 10.597 10.766 10.619

5S 4.487 [26] 4.824 4.595 10.865 10.998 10.834

1P 3.525 3.566 3.442 9.900 9.930 9.832

2P 3.907 [26] 4.055 3.879 10.260 10.358 10.226

3P 4.186 [26] 4.418 4.213 10.512 [57] 10.665 10.514

4P 4.409 [26] 4.714 4.486 10.711 [57] 10.911 10.744

5P 4.807 4.969 4.720 10.014 11.119 10.938

1D 3.769 3.902 3.788 10.161 10.234 10.146

2D 4.159 4.292 4.113 10.432 [57] 10.565 10.429

3D 4.328 [26] 4.605 4.391 10.643 [57] 10.825 10.664

4D 4.520 4.871 4.631 11.011 11.043 10.865

5D 4.885 5.107 4.844 11.389 11.232 11.039

5. Conclusion

In this article, we have explored the mass spectra of charmo-
nia and bottomonia in a non-relativistic framework invoking
the Song-Lin potential as the effective interaction that binds
heavy quarks in these meson systems with a single set of pa-
rameters. By numerically solving the resulting SWE through
the Numerov strategy, we were able to calculate spin aver-
aged masses ofS, P , D, F andG states. For the sake of
illustration, we have not included in the discussion the tech-
niques and ideas of spin or tensor interactions. These findings
are straightforwardly extended in the Appendix A.

We have calculatedS-wave annihilation decay rates with-
out and with momentum width and velocity corrections by
using wave functions at contact obtained from MNM. The
agreement of theory with experiments after applying the cor-
rections indicate that expressions for these decay rates should
be revisited by properly incorporating the quark velocities

and momentum widths so that the factor|ψ(r = 0)|2 of wave
function at contact gets replaced with|ψ(r = 0, v, β)|2. This
factor may be calculated by identifying the string fragmenta-
tion in the Lund Model [71, 72] with decay of a meson and
using our VP based momentum Eq. (16) as transverse mo-
mentum distribution in the Lund Area Law. The linear rise in
scalar part of the Cornell potential is inappropriate for calcu-
lation of higher excited states of mesons unless other contri-
butions like the readjustments of the constituent quark mass,
the free parameters in SLIPS and the complicated relativistic
corrections in heavy quarkonia are added. The remedy to this
issue has been sought in the color screening of SLIPS (see
Appendix C).

The quark kinetic energies found from Table III using
µv2/2 andβ2/(2µ) whereµ is the reduced mass of two bare
quarks, are in good agreement with each other. This estab-
lishes the validity of our models of quark- velocities and mo-
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mentum widths. The EMC effect observed in atomic nuclei
for first generation quarks is correctly predicted by our quark
velocity model in the mesons for second generationc quark
and third generationb quark respectively incc̄ and bb̄. It
would be interesting to calculate these velocities in theBc

meson which should be such that velocity ofc quark inBc is
less than that incc̄ and the velocity ofb quark inBc is more
than that inbb̄. This would complete the theoretical testing
of EMC effect in heavy quarkonia. From Tables IV and V
it is observed thatvF is about (1.3 - 2)vS for c quark and
vS is approximatelyvF for b quark. So we conclude our ve-
locity model is more general than the usual velocity Eq. (13)
which becomes a special case of our model, Eq. (14). From
the analytical expressions of quark velocity in Eq. (15) and
momentum width (16) and the spatial rates of changes (the
gradients) their of, the result is:c quark velocity decreases
with increasing quark separation but at the same time quark
momentum width increases. This is an indication that QIE
causes an increase in the constituent mass of quark in the
form of so-called quark dressing and, as for theb quark ve-
locity is concerned, it increases with increasing interquark
separations but the increase in theb quark momentum width
is seen to be more than this, which leads to increase in con-
stituent mass ofb quark like thec quark. This is one of the
main reasons for which the eigenvalues of SWE with any one
fixed value of the constituent quark mass as in Refs. [3–18]
spoils the accuracy of the calculation for mesons in higher ex-
cited states. This unpleasant feature is –to some extent– also
visible in Table XIX with the MNM, but it is absent in our
VP mass spectra. It is the landmark of our VP, and we find it
more convenient the use of constituent quark masses in quark
model calculations. Coming back to gradients, all of them are
observed to decrease such that change in velocity ofc quark
occurs opposite to the direction in whichc quark momentum
changes and this happens in the same direction for the case
of b quark. This is one of the reasons that QIE is more incc̄
than inbb̄. Finally, our VP loses its accuracy nowhere in the
mass spectrum when we compare its predictions against other
techniques as observed from Tables XIX to XXIII. As far as
meson wave functions are concerned, these can be obtained
by using Virial Theorem as in Ref. [73]. This makes our VP
a robust dynamical method applicable to any two-body non
relativistic bound state held together by a suitable interaction
potentialV (r).

Appendix

A. Spin effects

In order to test the role of spin-effects in the spin averaged
masses of heavy quarkonium systemsQQ̄, we choose the
spin-orbit, and tensor interactions by using the expressions
10(a), 10(b) and (11) in Ref. [27] and the spin-spin inter-
action as the Gaussian-smeared interaction in Eq. (4). After
properly evaluating the angular momentum factors through
the rules of non-relativistic quantum mechanics, these inter-

actions for the SL potential can be easily shown to be,

H (r)LS =
1

2m2r

(
3b

2r
3
2
− a

2
√

r

)
λ, (A.1)

H (r)T =
11b

24m2r
5
2

×
(

s (s + 1) l (l + 1)− 3
4

(
λ + λ2

))
, (A.2)

H (r)SS =
32παs

9m2

(
σ√
3

)3

× e−σ2r2
(

s (s + 1)
2

− 3
4

)
, (A.3)

wheres is total spin of the meson which is either 0 or 1,l is
orbital angular momentum of the quark,m is the bare quark
mass,σ is the spread in Gaussian,αs is the strong running
coupling constant,r is the interquark separation,a andb are
SL potential parameters, and

λ = j (j + 1)− l (l + 1)− s (s + 1) , (A.4)

with j the total angular momentum of the meson from|l− s|
to (l + s). By insertingH (r)LS , H (r)T andH (r)SS in the
Matrix Numerov radial SWE, Eq. (10), we have the masses of
singlets|1Lj〉 and triplets|3Lj〉 which are then spin averaged
as [40],

∆(nL) =
Σj (2j + 1)∆j

Σj (2j + 1)
. (A.5)

The numerical values of spin averaged masses from (A.5)
which include spin effects, and from Tables I and II, which
do not include spin effects, have been plotted together
in Fig. A.1. Our conclusion is: fine, tensor and hyperfine

FIGURE A.1. Comparison of masses of charmonium and bottomo-
nium calculated without and with spin effects.
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interactions between quark and antiquark do not contribute
in the spin averaged masses of charmonia and bottomonia
except in theP -wave charmonia, where these effects appear
mildly in 1P , 2P , and3P states within the scheme we are us-
ing to incorporate such corrections. Let it be mentioned that
the strength of the spin contribution might change depending
upon it is considered to start with in an effective potential or
as a perturbation [74].

B. Extraction of bare masses of Charm and Bot-
tom quarks

The general practice in quark model calculations using SWE
is to use the quark mass which fits to the experimentally mea-
sured masses of the mesons and then calculate the unknown
meson masses. This is the so called constituent quark mass.
We do not follow this approach in our current paper. Instead,
we compute here the bare mass of quark using experimen-
tal results and then use it to fit with only one lowest lying
experimental spin averaged mass ofηc (1S) andJ/ψ (1S).
Our only free parameters are the parameters in a given SLIP.
Now, the PDG averages for quark masses include quark mass
values obtained from various theoretical calculations, lattice
QCD as well as analyses of the Data from different exper-
iments done at high-end laboratories. We use only the ex-
perimental results. For thecharmingcase, we take into ac-

count the experiments in Table XXIV. Our average for the
bare mass of the charm quark is

mc = 1.227± 0.052, (B.1)

and using Table XXV for thebeautifulcase, our average for
the bare mass of bottom quark is

mb = 4.35± 0.389. (B.2)

The uncertainty in Eqs. (B.1) and (B.2) have been found
by using the experimental values from second column of Ta-
ble XXIV and XXV in

δm2
Q =

1
N

(
N∑

k=1

((mQ)av − (mQ)k

)2

, (B.3)

where(mQ)av is the root-mean-square mass of heavy quark
Q. The upper (lower) bound on bare charm mass is
1.279 (1.175) and for the bottom quark these bounds are
4.739(3.961). It is important to note the values in Eq. (8)
obtained from Eqs. (B.1) and (B.2) not only lie within these
upper (lower) bounds, their difference

mb −mc = 3.47, (B.4)

is our same yield as from the experimental determinations
reported in Table XXVI.

TABLE XXIV. Experiments leading to bare mass of charm quark.

Sr. No (mc)exp. Experiments Reference

1 1.290+0.077
−0.053 DESY-HERA-H1, DESY-HERA-ZEUS [75]

2 1.26±0.005± 0.04 DESY-HERA-H1, DESY-HERA-ZEUS [76]

3 1.196±0.059± 0.050 SLAC-PEP2-BABAR [77]

4 1.159±0.075 CERN-WA-096 [78]

TABLE XXV. Experiments leading to bare mass of bottom quark.

Sr. No (mb)exp. Experiments Reference

1 4.049+0.138
−0.118 DESY-HERA-H1, DESY-HERA-ZEUS [75]

2 4.186±0.044± 0.015 SLAC-PEP2-BABAR [77]

3 4.243±0.049 KEK-BF-BELLE [79]

4 4.07±0.17 DESY-HERA-ZEUS [80]

5 5.26±1.2 CERN-LEP-DELPHI [81]

6 4.19±0.40 CERN-LEP-DELPHI [82]

7 4.33±0.06± 0.10 CESR-CLEO [83]

TABLE XXVI. Experimental measurements of mass difference between charm and bottom quarks.

Sr. No (mb −mc)exp. Experiments Reference

1 3.472±0.032 SLAC-PEP2-BABAR [77]

2 3.42±0.06 CERN-LEP-DELPHI [84]

3 3.44±0.03 SLAC-PEP2-BABAR [85]
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FIGURE C.1. Comparison of screened potentials of charmonium and bottomonium with Song-Lin potential. The “0” is T.Barnes’ Cornel
[86], “1” is Henriques’ SP [34], “2” is Ding’s SP [35], “3” is Brisudova’s SP [36], “4” is Wang’s SP [33], “5” is SL [27] SP in our
parametrization.

C. The color screening

We compare the color screening effects from SL poten-
tial with other screened potentials shown in Fig. C.1. The
screened potentials (SPs) [27, 33–36, 86] are seen to saturate
to a scale of less than or equal to 2 GeV. This feature is inap-
propriate for correct reproduction of higher excited states of
heavy quarkonia with bare quark masses because the kinetic
part β2/(2µ) of QIE in Tables I and II is less than 1 GeV
(0.67 GeV forc quark, and 0.53vGeV forb quark). With
the unique parametrization of SL which we have achieved,
we find it more appropriate for higher meson states as is re-
flected in Tables XIX to XXII without introducing any con-
tribution by hand. In addition, our parametrization makes SL
match with other screened potentials in the low lying meson

states having spatial extensions (i.e. interquark separations)
less than1.0 fm. Another point which we want to stress is
that we have included screening effects in the interaction po-
tential without introducing any exponential damping factor
e−µr as has been done, for example, in Refs. [27,33–36,86].
This reduces the mathematical living cost to a great extent in
calculations with SWE, Bethe-Salpeter equation, Dirac equa-
tion, and other quantum field theories.

Acknowledgements

RM thanks Higher Education Commission of Pakistan for
providing funds to complete this project. AR acknowledges
valuable discussions with K. Raya.
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