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Multilayer shallow-water model with stratification and shear
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The purpose of this paper is to present a shallow-water-type model with multiple inhomogeneous layers featuring variable linear velocity ver-
tical shear and stratification in horizontal space and time. This is achieved by writing the layer velocity and buoyancy fields as linear functions
of depth, with coefficients that depend arbitrarily on horizontal position and time. The model is a generalization of Ripa’s (1995) single-layer
model to an arbitrary number of layers. Unlike models with homogeneous layers, the present model can represent thermodynamics processe
driven by heat and freshwater fluxes through the surface or mixing processes resulting from fluid exchanges across contiguous layers. By
contrast with inhomogeneous-layer models with depth-independent velocity and buoyancy, the model derived here can sustain explicitly at a
low frequency a current in thermal wind balance (between the vertical vertical shear and the horizontal density gradient) within each layer. In
the absence of external forcing and dissipation, energy, volume, mass, and buoyancy variance constrain the dynamics; conservation of tote
zonal momentum requires also the usual zonal symmetry of the topography and horizontal domain. The inviscid, unforced model admits a
formulation suggestive of a generalized Hamiltonian structure, which enables the classical connection between symmetries and conservatiol
laws via Noether’s theorem. A steady solution to a system involving one Ripa-like layer and otherwise homogeneous layers can be proved
formally (or Arnold) stable using the above invariants. A model configuration with only one layer has been previously shown to provide: a
very good representation of the exact vertical normal modes up to the first internal mode; an exact representation of long-perturbation (free
boundary) baroclinic instability; and a very reasonable representation of short-perturbation (classical Eady) baroclinic instability. Here it is
shown that substantially more accurate overall results with respect to single-layer calculations can be achieved by considering a stack of only
a few layers. Similar behavior is found in ageostrophic (classical Stone) baroclinic instability by describing accurately the dependence of the
solutions on the Richardson number with only two layers.
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1. Introduction 1.2. Background

1.1. Motivation Back in the late 1960s and early 1970s and independently by
various authors [20, 33,42], the rotating shallow-water model
There is renewed interest to construct models for the study ofas extended by allowing for horizontal and temporal vari-
the dynamics in the upper oceaire(, above the main ther- ations of the density field while keeping it as well as the
mocline, including the mixed layer) such that: velocity field independent of depth. In the simplest setting,
e.g, with one active layer floating atop an abyssal layer of

- : ; inert fluid, the resultingnhomogeneoukayer model enables
1) are capable of incorporating thermodynamic processe%e investigation of thgermody%amic prz)/cesses in the upper

while maintaining théwo-dimensional structuref the t

rotating shallow-water equations, a paradigm of ocearfcean driven by heat and freshwater fluxes across the sur-
dynamics on scales longer than r;lfew hours [45]; and '2¢€- Due to the two-dimensional nature of the model, the

computational cost involved in such an investigation is con-
siderably much lower than that produced by an ocean general
2) preserve thegeometric (generalized Hamiltonign  circulation model [2, 37].

structureof the exact three-dimensional models from Following the nomenclature introduced in [51], we will

which they derive [31]. refer to the model above as 9L which represents an
inhomogenous-layer model wherein fields are not allowed to
Property 1) promises to deliver a fundamental understandvary in the vertical. The homogeneous-layer shallow-water
ing of ocean processes that is difficult—if not impossible—tomodel will be called HL. Additional, more recent terminol-
be attained using ocean general circulation models. Propertygy for the Il is “thermal rotating shallow-water model”
2) enables applying a recent flow-topology-preserving framef66, 71], which emphasizes the ability of the’lto include
work [28] to build parametrizations [17] of unresolvable sub- (horizontal) gradients of temperature. Thé lis also being
mesoscale motions and this way investigating the contribuealled the “Ripa model” in the literature [15,18,19,41,47,59],
tion of these to transport at resolvable scales, a topic of activim recognition of Pedro Ripa’s contribution to its understand-
research [39]. ing [49-51,53,55]. We will reserve that to refer to the model



352 F. J. BERON-VERA

generalized here, which was introduced in Ref. [51]. of active investigation [39] that the SALT stochastic version

of the IL° may cast light on.
The assessment on the computational cost efficiency of

the IL° holds even when more than one active layer is cond.3. Limitations of the IL°

sidered [34-36,60,70,72] or when the abyssal layer is acti- . . .

vated and rests over irregular topography [6, 7, 44]. FurtherP€SPite the above geometric properties of th Ithas sev-

more, due to the simplicity of the fLcompared to the primi- eral less atFractlve aspects, w_h|ch can b(_e consequentla! for

tive equations for arbitrarily stratified fluid, referred to hereinthe prod_uct|on.of small-scale glrculat|0ns in the model. Dis-

as IL>°, it has facilitated conceptual understanding of ba_cussed in detail by [55], these include:

sic aspects of the upper-ocean dynamics and thermodynam- 1) In addition to the classical Poincare and Rossby waves,

ics [13,54,56,57]. Due in part to this very important reason, the IL° represents variations of the thickness and den-
namely, the possibility to gain insight that is difficult to attain sity that do not change the vertical average of the pres-
with an ocean general circulation model, th€ lhas been sure gradient [51,52]. This mode is not present in the
recently revisited [13,24,31,70]. ILoe.

2) A uniform flow may be unstable [22,52,69]. A pri-
ori, this phenomenon seems to be something different
than baroclinic instability. For instance, unlike Eady’s
problem, it experiences an “ultraviolet divergence” in
the sense that a short-wave cutoff is lacking.

A multilayer version of the I was derived in [49],
and a low-frequency approximation was developed in [53];
cf. recent derivations in [64,65]. The no-vertical-variation
ansatz cannot be maintained under the exact dynamics pro-
duced by the IE° when horizontal density gradients are
present. The recipe used to keep the dynamical field’s depth- 3y gince the dynamical fields are kept depth-independent
independent is to vertically average the horizontal pressure  ithin each layer, there is no explicit representation of

gradient. (Some authors [22] postulate a turbulent momen-  {he thermal wind balance between the velocity vertical
tum flux that exactly cancels the vertical variation of the hor- shear and the horizontal density gradient, which domi-
izontal pressure gradient, but this simply is an ad-hoc hy- nates at low frequency.

pothesis which does not contribute to the understanding of . o
the problem.) While this is an approximation, [49] showedAn important additional limitation imposed by the depth
that it does not spoil the integrals of motion and generalizedndependence of the dynamical fields, and particularly the

Hamiltonian structure of the problem. buoyancy, is:

_ ) _ 4) The IL° cannot represent the restratification of
variational formulation [16] wherein the Hamilton princi- gradients, which tend to slump from the horizontal to
ple’'s Lagrangian follows by vertically averaging that of the the vertical [14, 25, 65].

IL°° [29]. When the equations of motion are derived in this
formulation, there is a natural way to express three fundai 4. The IL!

mental relations [31]. These are 1) the Kelvin circulation

theorem, 2) the advection equation for potential vorticity, andTo cure the unwanted features of the’ |LRef. [51] pro-

3) an infinite family of conserved Casimir invariants (aris- posed the following improved closure to incorporate thermo-
ing from Noether's theorem for the symmetry of Eulerian dynamic processes in a one-layer ocean model not restricted
fluid quantities under Lagrangian particle relabelling). Theto low frequencies:

Euler—Poincare formulation provides a means to consistently
introduce data-driven parameterizations of stochastic trans-
port using the SALT (stochastic advection by Lie transport)
algorithm [28, 29], enabling data assimilation in a geometry-
preserving context.

in addition to allowing arbitrary velocity and
buoyancy variations in horizontal position and
time, the velocity and buoyancy fields are also
allowed to vary linearly with depth.

Ripa’s single-layer model, denoted!lLenjoys many proper-
The IL° provides an attractive framework for applying the ties which make it very promising. For instance:

SALT algorithm to derive parameterizations for unresolved
submesoscale motions in the upper ocean. Indeed, numerical
simulations of the 1L [24, 43, 46] tend to reveal small-scale
circulations that resemble quite well [40] submesoscale fila- 2) The free waves supported by the!ll(Poincag,
ment rollups often observed in satellite-derived ocean color Rossby, midlatitude coastal Kelvin, equatorial, etc.)
images. Such submesoscale motions may be unresolvable in  are a very good approximation to the first and second
many computational simulations. The extent to which they vertical modes in the exact model with an unlimited
contribute to fluid transport at resolvable scales is a subject vertical variation.

1) Thell! explicitly represents the thermal wind balance
which dominates at low frequency.
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3) The IL' provides an exact representation of long- Pn+1 = const.
perturbation baroclinic instability and a very reason- ~ Un+1 = O’B,"gé =0
able representation of short-perturbation baroclinic in- s
stability. hn ho
1.5. This paper : hy

=

In this paper; | present a generalization of thé tb an ar-
bitrary number of layers, including two possible (mathemati- h;
cally equivalent) vertical configurations (Sec. 2). The model
obtained incorporates additional flexibility to treat more com- . h;
plicated problems than those that can be tackled with only .
one layer. With a single layer in a reduced-gravity setting,
mixed-layer processes can be minimally modeled. Including hq
additional layers can lead to a more accurate representatior
of such processes. On the other hand, considering a stack o
several layers atop an irregular bottom will enable investigat- pmr1 = const.

ing the influence of the ocean’s interior and even topographic Unt1 =0, pry1 =0
effects. Several aspects of the generalizeddte discussed hnt1 — o0

in Sec. 3. These include: remarks on submodels derived from (2) (b)

the generalized model as special cases (Subsec. 3.1); the na-

ture of the layer boundaries (Subsec. 3.2); the model conFIGURE 1. The two possible vertical configurations of thell !
servation laws (Subsec. 3.3); a discussion on circulation thea'® rigid bottom(a) and rigid lid (b). Within each layer, the veloc-
orems (Subsec. 3.4); a formulation of the model suggestivgy qqd buoya_ncy fields not 'only vary arbitrarily with the horizontal
of a generalized Hamiltonian structure (Subsec. 3.5); a forPOsition and time but also linearly with depth.

mal stability theorem (Subsec. 3.6); results on vertical normal

modes (Subsec. 3.7) and baroclinic instability (Subsec. 3.8), . 1— o,
both quasigeostrophic and ageostrophic, which demonstrate + z =: hi—1(x,t) + —
that improved performance with respect to the single-layer

results can be attained by considering only a few more laywhere

>

hn

i

hi(X,t) = l/i(X, O'i,t), (1)

ers; and the incorporation of forcing in the model equations ~ i
(Subsec. 3.9). Section 4 closes the paper with some conclud- hi(x,t) == ho(x) + Z hj(x,t) 2
ing remarks. j=1

[henceforth, an upper (resp., lower) sign will correspond to
2. The multilayer IL * the rigid-bottom (resp., rigid-lid) configuration]. The scaled
vertical coordinater defined in Ref. [51] according to
Consider a stack of. active fluid layers with thickness
hi(x,t),7=1,...,n, wherex is the horizontal position and
t stands for time (Fig. 1). The geometry can be either planar
or spherical; in the former case, the vertical coordinatés _ ) ) )
perpendicular to the plane, whereas, in the latter, it is radiaf€!ates to theth-layer scaled vertical coordinate defined
The total thickness i&(x,t) = >_; h;j(x,t). The stack of here through
inhomogeneous-density layers can be either limited from be-
low by a rigid bottom,z = hy(x), or from above by a rigid o=1-—9 Z h;j
lid, z = —ho(x). The usual choice in the rigid lid case is
ho = 0; however, laboratory experiments are often designed
to have a nonhorizontal top lid. The remaining boundary in
the rigid-bottom (resp., rigid-lid) configuration is a soft in-
terface with a passive, infinitely thick layer of lighter (resp., 1 ‘
denser) homogeneous fluid of density, ;. Although vac- o 0 o ~, ‘me S P
uum (p,+1 = 0) is the typical setting in the rigid-bottom Vlo h1 ha hn—1 hi
configuration, the choicg,,+; # 0 can be useful to study of -1
deep flows over topography. FIGURE 2. Vertical coordinate choice. Within each layer, the
A key element to generalize Ripa's model is to define arescaled vertical coordinatevaries linearly fromt1, at the base,
scaled vertical coordinate; that varies linearly fromt1 at  to 1, at the top. The upper (resp., lower) sign corresponds to the
the base ter1 at the top of theth layer (Fig. 2): rigid-bottom (resp., rigid-lid) configuration of Fig. 1.

z =: ho(x) + %(0’ — Dh(x,t) = v(x,0,t) (©)]

b ()
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Let an overbar denote vertical average within thie
layer:

+1

+1
1 1
(_],Z'(X,t) = i/a(x,a,t)dai = i/ai(x,m,t) dO’i. (5)
-1

—1

Following Ref. [51] closely, théth-layer horizontal velocity
and buoyancy fields are written, respectively, as

u;(x,04,t) = 0;(x,t) + oyuf (x,1), (6a)
191', (X7 0i, t) = rgz (Xa t) + 0'1'19? (X, t)v (6b)

which can be regarded as a truncation of an expansion in or-
thogonal polynomials of; of the form

ai(x,04,t) = a;(x,t) + 0;a (x,t) + % (0? — %) al’(x,t)
+ L (o - 304) a7 (x,t) + ..., @)

wherea! := 0,,a;, al? := 0,,+,ai, €tC. [55]. Theith-layer

(2

buoyancy is defined as

03, i 1) 1= g 210 ""’pt) )
where the upper (resp., lower) sign corresponds to the rigid-
bottom (resp., rigid-lid). Hereg is gravity, p;(x,0;,t) =
pi(x,1) + 0:p7 (x, ) is the (variable) density in thih layer,
and p, denotes the (constant) reference density used in the
Boussinesq approximation. Physically admissible buoyancy
values,i.e., everywhere positive and monotonically increas-
ing (resp., decreasing) with depth in the rigid-bottom (resp.,
rig-lid) case, are such that

D; > 07 >0, 0; —Vigq > 07 +07,,. 9)

If n(x,t) > 0 is the square of the instantaneous Brunt-
Vaisala frequency within théth layer, then note that

97 = Lnih,. (10)

In order to obtain the equations for thelayer version of
Ripa’s, model one must proceed as follows:

In Eq. (1),

D:=0s +u-V|s+ uds, (111)

is the material derivative, wherg;|and V| indi-
cate, respectively, that the partial time derivative and
the horizontal gradient operate at constafihote that
Ol,a = da and V|_a = Va, and thusDa =
Oia + u - Va, for any a(x,t)]; f is the Coriolis pa-
rameter (twice the local angular rotation frequency)
and z is the vertical unit vector. Also, in EqlL),
(u,w) is the three-dimensional velocity,denotes the
o-vertical velocity,? stands for buoyancy, andis a
kinematicpressure; the vertical variation in all these
fields is unrestricted. Equation$la—d) are defined in
-1 <o < +1(i.e, hg < £z < hg + h) and are
subject to the boundary conditions

p=0 at o={-1,+1}, (119)

p=0 at oc=-—1. (11h)

Note that boundary conditiond1g) can be expressed
as (i, +u- V|, )(ho + (/2L F b F () = 0

at the base of the layer and;|, + u- V|, )(ho +
(1/2)[1 £ 1))h F ¢) = 0 at the top of the layer. Here,
¢(x,0,t) is the vertical displacement of a constant-
density surface or isopycnal, which, by virtuglg),
relates to the vertical velocity through = D(. These
conditions thus indicate that a fluid particle initially on
a given boundary remains there at all times, conserv-
ing its density. A particular case is one in which all
particles on the boundary have the same densgy,
ho+(1/2)[1 F1]hF ¢ = const at the base of the layer
and/orhg + (1/2)[1 £ 1]h F ¢ = const at the top of
the layer.

2) Replace all occurrences of by its vertical average

(i.e, 0% — (1/3)) to preserve the linear vertical struc-
ture within each layer.

3) Collect terms in powers af and equate them to zero

afterward.

The equations that result from the above three-step procedure

1) Substitute ansat®) in the inviscid, unforcedprim-
itive equationgnamely, rotating, incompressible, hy-

constitute thex-IL! and are given by:

drostatic, Euler—Boussinesq equations) for arbitrarily D;9; =0, (12a)

stratified fluid (IL>°), which can be written as (D;9;)° = (12b)

Dy =0, (11a) Bthi + V- hyti; = 0, (12c)

O, h+ V|, -hu+hdsu=0, (11b) Do, + f2 x @ + Vp, = 0, (12d)

Du+ fzxu+ V|, p+9dV|[,v=0, (11c) (Dyw;)” + f2 x uf + (Vp;)” = 0. (12e)
dop— 3h9 =0,  (11d) Here

where Dja; = &a; + @; - Va; + th; 'V - hafuf,  (12f)

= Do = 2Pho+ (L =0)DhF2w ) (Dsas)” = Baf + i - Val +u? - Va, (129)

h
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are the mean and components of the material derivative of system|12) gives a model with}Y = 0 butuf # 0. This
any fielda;(x, 0;,t) = a;(x,t) + 0;a9 (x, t) in theith layer;  model differs from earlier related models [8, 61, 68] in that

and it is not restricted to low-frequency motions and that it ex-
_ - L o plicitly represents vertical shear within each of an arbitrary
Vp; = (Vi = 397)Vhi + 50V (0i = 507) number of layers.
+0iVhi o1 +V Y by, (12h)  3.2. Layer boundaries

j=it1
- ) _ _ _ Consistent with ansati) and the assumption of zero mass
(Vpi)" = 397Vh; + 5hV0; +97Vhi—1,  (12i)  transport across layer boundaries, thevertical velocity

which are the mean ang components of théth-layer pres- (11e) in theith layer reads

sure gradient force. 1

System[12) consists of7n evolution equations in then Hi= "o, i V- hiug (15)

independent field$d;, 97, h;, @;,uf), i = 1, ,n. The which vanishes at the base and the top of the layer. Con
coupling among different layer uantities is provided by the P ' )
bing amond v d b Y MCsequently,(d; + [, F uf] - V)(hi1 + (1/2)[1 F 1h; F

last terms on the right-hand side of the pressure folt2sij. o )

It is important to note that the dynamics in both the rigid- j:Ft Cig]) - % at the lba;el ‘j):f lthheth Iayel agd(a_t 46
bottom and rigid-lid configurations are described by the syslui u7] - V)(hi—1 4 (1/2)] Jhi ¥ (G £ (7)) =0
tem (12); no double signs are needed. The latter must b _t the top of thqth layer. Nam_ely, the Iayelr boundaries
taken into account, however, in the computation oftibtel interfaces and rigid bottom or lid) of the-IL" are ma-

pressure in theth layer, which, up to the addition of an irrel- terial surfaces on which each fluid particle retains its den-
evant constant. is give,n byp i oms107 Where sity. This includes the particular situation in which all fluid
’ 7 n+ )

particles on these boundaries have the same dengty,
_ _ hi—1 + (1/2)[1 F 1}h; F [¢; F ¢J] = const at the base of
pi =5 (1t o) bty = §(1=0D)hit] + Y hidy. (13) et Izgyér);ndﬁi_]l + (1[/2)[1 + ]1]h1- F [C; + 7] = const
J=itl at the top of theth layer. The latter situation, which is most
Finally, Eqgs. [[2) are satisfied in some closed but likely to happen far away from the ocean surface, cannot be
multiply-connected horizontal domain, s@. On 9D, i.e,  described by the IL with only one layer.
the union of each disconnected part of the solid boundary of

D, the zero normal flow condition holds: 3.3. Conservation laws
g;-ni=0=ul-a on 9D (14) In a closed horizontal domain, on whose bound4d) @re
_ satisfied, conservation of the&h-layer volume, mass, and
wherei is normal todD. buoyancy variance follows, respectively, becaus&agt),

. . 8; (hs0; hi(05t; + L97ul) =0, (16
3. Discussion of several aspects of thelL * e (hids) + V- hi(9i0i + 507u]) (16)

and
3.1. Submodels 0,(hi02) + V - hy(070,; + 20.95u7) = 0. (17)

Any initial state with uniform buoyancy inside each layer = The total energy (sum of the energies in each layer) is
(W; = const and¥¢ = 0) and vanishing vertical shear also preserved in a closed horizontal domain since

(uf = 0) is readily seen to be preserved #2); conse-

quently, then-HL (a model withn homogeneous layers) fol- O ZE +V- Z hj(bja; + 56uf) =0,  (18a)
lows from (12) as a particular case, just as it does it from the
(exact, three-dimensional) T2 model [L1). In other words, where
then-HL evolves on an invariant submanifold of both the

IL' and IL>°. Noteworthy, then-HL is exact for a stepwise E;: = Lh;u} + thi(uf)?
density stratification; however, as mentioned above, it is not 1

able to accommodate thermodynamic processgs,due to 2

heat and buoyancy fluxes across the ocean surfaces-The  5nq
developed in [49] follows fromX2) upon neglectingry and

¥7; note that an initial condition witm? = 0 and9¥? = 0 bi = 30; + £ (uf)® + hy(J; — 397)

is preserved neither bil2) nor by (11), so then-IL? is not a n

particular solution of neither the-IL ! nor the IL>°. Ignoring + hi19; + Z hj9;, (18c)
u? in (12) results in a model witlu? = 0 but9¥? # 0, which j=it1

provides a generalization for Schopf and Cane’s [1983] inter- J . .

mediate layer model. Alternatively, the omissionigfin the b7 =i -uf + (hio1 + 3h:)07, (18d)
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which are the mean and components of theth-layer
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on the surface of the Earth whose mean radiu®;isand

Bernoulli head. The above result follows upon realizing thaty(y) := cos g cos§ andr(y) := R~ tan0 = —y~1dy/dy

Z;-Lzl hﬂj@tﬁj,l — Z?:l 8thj Zz=j+1 hk'ﬁk =0,andis
largely facilitated by rewriting12d,e) in the form

O + u] + hi# X (G + 3q7uf) + Vb = Ry, (19a)
dpuf + hiz x (¢f W; + guy) + Vb = R7. (19b)

Here,
i = +hi 'V - hu (20)
is the vertical average of thih-layero-vertical velocity (L5);
G=h ' (f+V-W;x2), ¢ :=h'V-ulxz (21)

are the mean and components of théth-layero-potential
vorticity;* and
Ri = ﬁi,lva + %th(ﬁz - %19;7), (228.)

RY = (hi—1 + 2hy)VO7 — Ih, V9, (22b)

are coefficients that characterize the geometry of the space
(the arclength element square and area elemendxte=
~v2da? +dy? andd?x = ydxzdy , respectively). Théth zonal
momentum (angular momentum around the Earth’s axis) is
then given by

M; := h;[yu; — QR(cos Vg — 7 cos )], (25)
where (2 is the Earth’s angular rotation rate. In the clas-
sical 6 plane,y = 1 and7 = 0 so that all the opera-
tors are Cartesian andll; = h;(ii; — foy — (1/2)8y?).
However, the geometry in a consistefitplane cannot be
Cartesian; instead = 1 — 7oy, 7 = 79/7, and M; =
hilyii; — foy — (1/2)3(1 — R*73)y?] [54]. Finally, con-
servation of the total zonal momentum (sum over all layers)
in a horizontal domain in addition requires, in all cases, that
both the topography and coasts be zonally symmetric.

which are rotational forces that arise as a consequence of tf&4. Circulation theorems

buoyancy inhomogeneities within each lay&; # 0 #
VI97).

In the IL*, the circulation ofu+uy, wherez-V x uy := f,

In turn, the local conservation law for the sum of the zonalaround a material loop, is constant in time if the latter is cho-

momenta within each layer is given by

00y M;+V-> F} 4+ 0:h0Y hiv; =0, (23a)
J J J

where

FY o= M, + Shoufuf + 3yh7(0; — 307)%
i—1

+ ’}/}Li+11§i+1 Z hJ)A(

j=1

(23b)

with «; denoting the zonal component af andx the unit

vector in the same directiéif. The above result follows upon

multiplying by vh; the zonal component ciL.2d),
Oty + ;- V; + 2h; 'V - huduaf
— (f +7u) 0+ 0ep; = 0, (24)
and realizing that

> i

k=j+1

> hj00(hjo1 — ho) + Y b0,
J J

-1
=0, (Y hjr1jra Y
J k=1

d _
At this point, it is crucial to specify whether the geometry is dt ét(ﬁi)(uﬁ_uf) = j{t(ﬁi)

flat or spherical. On the sphef®a = (y~'8,a,dya) , for

any scalan(x),andV-a = v~ [d,a+ 9, (yb)], for any vec-

tora = (a,b), wherex = (A—X\g) cosf Randy = (0—6y)R

sen to lie on an isopycnic surfdée This is known as the
Kelvin circulation theorem, which via Stokes’ theorem im-
plies conservation of -potential vorticity. From the Hamil-
tonian mechanic’s side, the Kelvin theorem is the geometri-
cal statement of invariance of the fluid action integral on level
surfaces of} [27]. The existence of a Kelvin circulation prop-
erty is thus closely related to the existence of a (constrained)
Hamilton’s principle for the 1°. Then-IL* does not hold
such a circulation property. As a consequence, the evolution
of the ith-layer ¢¥-potential vorticity is not correctly repre-
sented. In Ref. [51] it is shown that this is the result of the
lack of information on the vertical curvature of the horizontal
velocity field. It is easy to show, however, that the evolution
of the three components of the vorticity field is correctly rep-
resented, and, consistent with theXILneitherg; nor ¢ are
conserved. The evolution equations of the latter fields and the
horizontal vorticity are given by Eq. (4.21) in Ref. [51] eval-
uated in thath layer (note that evaluation ofin theith layer
does not simply mean replacirkgby /;). The nonexistence

of a Kelvin circulation property for the-IL! suggests that
finding Hamilton’s principle for it is, at least, nontrivial. The
n-IL! is nonetheless shown in S&5! to admit a formula-
tion suggestive of a generalized Hamiltonian structure. The
n-IL?, surprisingly, possesses a Kelvin circulation property
since

. 1 _
(hi,1V’l9i—|—§hiV19i) -dx

holds in that model, and the material lo&ya, ) can be cho-
sen to lie on an isopycnic surface. Consistent with the pres-

are, respectively, rescaled geographic longitude and latitudence of this property, in [18] it is shown that the’lhas a
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Lie—Poisson Hamiltonian structure which implies an analo- (J;,97, h;, @;,u?), i = 1,...,n. Consider the relevant

gous Euler—Poincare variational formulation [31] and, henceglass, say’l, of sufficiently smooth real-valued function-

the existence of a Lagrangian functional. als of ¢. For any phase functionaf[p] € 2 it is further
In then-IL ', the following circulations theorems hold:  assumed that its density does not depend explicitlyt,on

d ~ _ namely, Flo] = [, F(¢,Ve,...,x)d?x, and that it sat-
T u; -dx = f (Ri — pu7) - dx, isfies the boundary conditiohs
oD oD
and
d 5f-ﬁ:0:5f-ﬁ on J0D. (26)
— uf -dx = RY - dx. ot ouy
dt Jop oD

This contrasts with the It for which the circulation ofu A phase functionalF[¢] € 2 will be said to beadmissible
aroundoD is time-independent. Note that the circulation of |ntroduce then the functional

u? aroundd D would be invariant if both); andy? were cho-

sen such thah x VoJ; = 0 = fi x V97 ondD™. However, Hlg] = /E 27)
the latter boundary is not preserved by ! dynamics. P

In opposition, the conditioh x VJ; = 0 ondD is preserved

by then-IL° dynamics, thereby guaranteeing invariance ofwhere

the circulation ofti; arounddD. This has been shown [49] / . / dzxz (28)
to have important consequences for the generalized Hamilto- f D ,
nian structure of the IL !

and E; is the energy in theth layer (L8k); its functional
3.5.  Aformulation suggestive of a generalized Hamilto-  gerivatives are given by

nian structure

2
The Euler equations of fluid mechanics possess what is called gz; = h,;(ﬁ,;_l + %hi), % = —%,
a generalized Hamiltonian structure [40]. The™({11), ¢ i
which derives from the Euler equations, is also Hamiltonian oH W oH i OH _ hiuf (29)
in a generalized sense [1]. A good sign of the validity of any Shi 7 sw, Y sug 3

approximate model derived from the“L is the preserva-

tion of the generalized Hamiltonian structure. This section isThe latter and the zero normal flow conditions ac@B5(14)

devoted to showing that the-IL! admits a formulation sug- show that is admissible. Let now

gestive of a generalized Hamiltonian structure. A stronger

statement was made in Ref. [51] foilL . J= @]Ij +K; (30)
Let o(x,t) = (p'(x,1),...,9™(x,t)) be a “point” j

on the infinite-dimensional phase space with coordinates

|  be askew-adjoint x 7 block-diagonal matrix operator where

00 0 0 0
00 0 0 0
L=—] 00 0 V- (o) 0 , (31a)
0 0 V(o) gzx(e) q¢zx(e)
0 0 0 ¢fzx(e) 3Gz x(e)
0 0 0 h;'(e)-VI; h;'V-99(e)
0 0 0 h;'(e) VY7 3h;'(e)- VI,
K; = — 0 0 0 0 0 . (31b)
—h;7 o)V, —h; ' (0)VI? 0 0 hytugVv - (e)
9V (h;to)  —3h;'(0)VY¥; 0 V(h;'u? -e) 0

Here, the circle (resp., bullet) in parenthesis indicates opera-
tion on a scalar (resp., two-component vector). Define furthety = g[,] e 2. Then the layer model Eq&l2) can be written

a bracket operatiofy, } : 2 x 2 — 2 as in the form
{F,G}:= Ejﬁ d?x (32) e = {p, H}, (33)
dp b
D

which is equivalent toF = {F, H} VF[y] € 2.
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The bracket operato3p) satisfies{,G} = —{G,F}  vation laws of the system might be sought using the bracket
(anticommutativity),{ F, aG + bK} = a{F,G} + b{F,K}  approach developed in [58].
(bilinearity), and{FG,K} = F{G,K} + G{F,K} (Leib-
niz’ rule), wherea, b are arbitray numbers an#l, G, K[¢]  3.6. Arnold stability
are any admissible functionals. The anticomutativity prop-
erty follows from the skew-adjointness of the matrix oper-In Ref. [51] it was shown that a state of rest (or a steady-
ator J [boundary terms cancel out b_QG)] The bilinear- state with at most a uniform zonal Current) in thd!Ll can
ity property and Leibniz’ rule are direct consequences of thde shown to be formally stable using Arnold’s [1965; 1966]
bracket’s definition. method if and only if Eq./9) is satisfied,i.e., if and only
That system12) can be cast in the forn88) appears to  If the buoyancy is everywhere positive and increases (resp.,
suggest that the-IL ! is Hamiltonian in a generalized sense, decreases) with depth within a layer with the rigid bottom
with the functional’™ and the bracket operatdr,} being ~ (r€Sp., rigid lid). Amold's method for proving the stability
the Hamiltonian and Poisson bracket, respectively. Howeve®f & steady solution of a system consists of searching for
the bracket32) does not seem to qualify as Poisson sinceconditions that guarantee the sign-definiteness of a general
{F.G}. K} + {{G,K}, F} + {{K, F},G} = 0 (Jacobi's invariant which is quadratic to the lowest-order in the devi-
identity) does not seem to hold. ation from that state; the resulting conditions are only suffi-
In addition to independence of the choice of phase spac@ient [26,38]. In then-IL* with n > 1, however, Amold's
coordinates, the Hamiltonian structure conveys other imporMethod fails to provide stable conditions even for a state of
tant properties like the direct linkage of conservation laws'®St and with no topographyi¢ = 0 ). The lowest-order
with symmetries via Noether's theorem [62]. While the ~ (quadratic) contribution to that invariant, which can be called
IL' cannot be formally proved to be Hamiltonian, its energy, ‘free energy” because it is defined with respect to a state of
H, and—M, where M(y] := [, M; is the zonal momen- rest,
tum of the system, do appear to be generators aind x- 1
translations because c83) and d,¢ = {M, ¢}, respec- € :=; /Hj(5ﬁj)2+%Hj(5U?)2 + (95 — 3N7H;) (8hy)?

tively. The latter assumes that is an admissible functional, J

which requires the horizontal domain to hesymmetric +N]f2Hj (51§j+%Nj25hj)2
since(dM/déu?) = 0 and(dM/dv;) = 0, but (M /du;) = ) ) )
vhi # 0. ThendyH = e{H,H} = ¢H = 0 for the in- +3N; 2 H (607 — 5N70h;)

finitesimal variation ¢ := e{¢, H} = e0;¢ induced byH,

andoaH = e{H, M} = —eM = —¢ [ h;j0;9,ho = O iff

d:ho = 0for the infinitesimal variatiod v := e{p, M} =

—ed,p induced byM. Consequently, conservationafand

M are linked, respectively, to- and x -symmetries ofH

(horizontal domain and topography in this case included).
A distinguishing feature of generalized Hamiltonian sys-

+ (gjéhj + Hj&gj) (Silj,h (34)

cannot be proved sign-definite when> 1. Here, H;, g;
and N; are theith-layer unperturbed depth, vertically aver-
aged buoyancy, and Bruntaila frequency, respectively.
Similarly, a state of rest in the-IL° for any » cannot be

: , = S proved formally stable using Arnold’s method. Surprisingly,
tems is the existence of Casimitiyp] € 2, satisfying i js hossible to prove the stability of a steady-state with a
{C.F} = 0VF[p] € A The Casimirs are thus integrals ,,iform zonal current in that model. But the condition of
of motion, yet not related to (explicit) symmetneg becausestability is not one of “static” stability like Eql9) as in the
{»,C} = 0 (C does not generate any transformation). The; ;| 1 “contrarily, it is one of “baroclinic” stability since a
ith-layer integrals of volume, mass, and buoyancy variancgitorm current in then-IL® has an implicit vertical shear

are all admissible functionals that commute Wilth any admiSyh o9 the thermal-wind balance. These results can all be
sible function in the bracket in E¢32). Then-IL* does not inferred from [49] and [52].

seem to support additional “Casimir” invariants.

. o S Nevertheless, there is at least a system, which has one
The possibility of deriving a stochasti¢IL* using the

: , - IL '-like layer andn — 1 IL!-like layers, for which a state of
SALT approach [28] is constrained to the existence of &ggt can be proved formally stable. For instance, choosing the

o : > ; -
Kelvin circulation theorem, which is lacking for thelL". 5 armost layer to be f-like, the corresponding free energy
The lack of a Kelvin circulation theorem is tied to the {;1as the form

nonexistence of a generalized Hamiltonian structure and as-

solclated .Euler.—P_omcare varlatllongl formulation for the £ .= %/Hj(éﬁj)Q + LH, (6ug)?

IL*. While building parameterizations of unresolved sub- _

mesoscale motions does not seem plausible using this flow- J

topolgy-preserving frameyvork, investigating the contribut_ion _ + %N(;QHQ (51% n %Ngéhaf

of the submesoscale motions to transport at mesoscales is still

possible via direct numerical simulation. For this, the appar- + IN72H, (605 — LN26h,)?

ent generalized Hamiltonian formulation of thdL! can be = o 1 )

helpful, as finite-difference schemes that preserve the conser- + (95 = 95+1)(0h;)” = 5NGHa (6ha)”,  (35)
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wherea := n (resp.,a := 1) for the rigid-bottom (resp., Equivalent Barotropic Mode
rigid-lid) configuration, andd;, g;, andN; are all constants. 1.2
The above free energy is positive-definite if and onhBjfif o
fulfilled. [The n-HL has an infinite set of invariants which are m: 0.8
given byfj h;F(q;) whereF (-) is arbitrary; these include the 2 06
volume integral, which is the only one needed to obtain the 3 0.4
above result.] When all layers are homogeneous, the same 0.2
result is obtained. When one'ilike layer is included, how- 0
ever, the free energy cannot be shown of one sign. 0 0.5 1
That a steady-state (with or without a current) of the S
IL' cannot be proved formally stable does not mean that such First Baroclinic Mode
a state is unstable; it means that Arnold’s method is not useful
to provide sufficient conditions for the stability of that state. =
£
3.7. Waves m
Then-IL! Egs. 12), linearized with respect to a reference i’
state with no currents, can be shown to sustain the usual mid- ~

latitude and equatorial gravity and vortical waves (Poiacar 0

Kelvin, Rossby, Yanai, etc.) in vertical normal modes. g 055 £
Here | shall concentrate on how well these modes are rep-
resented by considering the phase speed of (internal) lonc Second Baroclinic Mode
gravity waves assuming a rigid-lid setting. 12
The reference state is chazractenzed by the parameter = 1 ~s. [© LHL= LI
Ny H, < 08 T S — 2.HL = 2-IL°
§i= T2g, (36) T 06 T | = 4HL = 4110
. . Z - — 11t
which must be such th&t < S < 1[11,51]. Here,N; is = 04 _ —;jil
the reference Brunt-&8isala frequency within an active layer 0.2 — Lo
floating on top of an inert layet#, is the total thickness of 0
the active fluid layer, ang, denotes the vertically averaged 0 0.5 1
reference buoyancy within the active layer. All three refer- S

ence quantities are held constant. The reference buoyangysge 3. Phase speed of (internal) long gravity waves as a func-

then varies linearly fromy,(1 + ) at the top of the active  {jon of the stratification strength in a reduced-gravity reference state
layer tog,(1 — S) at the base of the active layer. In Ref. with no currents.

[51], it was shown that the-IL* gives the exact result for
the “equivalent” barotropic or external mode phase speed ddistance between the exact solution and that produced using
(internal) long gravity waves for alt’ and a very good ap- four HL-like layers is of the same order. However, in every
proximation to the first internal mode phase speed fofall  case, the:-HL (or the n-IL°) overestimates the exact phase

Figure 3 compares, as a function®fthe phase speed as speeds.
determined by the 1¥°, n-HL, n-IL°, andn-IL! for various
n. The figure shows the results for the external magl¢, (  3.8. Baroclinic instability
and the first ¢;) and secondd;) internal modes. The ana-
lytical expression for the I°’s phase speed for an arbitrary As one further test of the validity of the-IL!, the problem
mode number can be found in Ref. [51]; the phase speeds f@f baroclinic instability, particularly upper-ocean baroclinic
the layer models are computed numerically. The solutiongnstability, is considered here. (A subset of the results pre-
of then-HL andn-IL? coincide becaus8, is constant for a  sented here appeared in [10].) The behavior in both quasi-
normal mode in the-IL°. These models can only suppart  geostrophic and ageostrophic regimes is explored.nFhe
vertical normal modes. In contrast, thdlL! sustains vertical solutions are compared in all cases with thé°llsolutions.
normal modes up to th@: + 1)th internal mode. In some cases, comparisons are also made it and

As noted above, the 1-IL result coincides with that of n-IL° solutions. In the quasigeostrophic regime, analytical
IL> for the barotropic mode. To approximate well the ex-expressions exist for the £ solutions. Analytical or semi-
act solution, two HL- or I0-like layers are needed. The first analytical formulas for the dispersion relations also exist in
internal mode solution is very well approximated using twothis regime for the 1-IL and models with one H:like or
IL '-like layers. Four HL-like layers do not provide a similar two HL-like layers. The rest of the solutions shown are com-
degree of approximation. The second internal mode solutioputed numerically upon finite differencing the corresponding
is reasonably approximated with two 'Hlike layers. The eigenvalue problems.
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FIGURE 4. (left panel) Minimum wavenumber for long-perturbation and strong-shearftee-boundary) baroclinic instability as a function
of the slope of the lower interface in the basic state. (right panel) Growth rate of the most unstable perturbation as a function of the
wavenumber in short-perturbation, strong-shear, Classical Eady) baroclinic instability.
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FIGURE 5. (left panel) Maximum normal-mode perturbation growth rate for ageostrophic (classical Stone) baroclinic instability as a function
of the Richardson number. (right panel) Wavenumber for maximum growth rate.

Upper-ocean baroclinic instabilitg.g, above the ocean

thermocline, is studied in [11] using thefLand the 1-IL! in Rp = Vngr7 Ry = N H, (37)
a reduced-gravity setting. A basic state with a parallel current | f] |f]

U = U(z)% is considered in that work to lie in an infinite are well separatedRx > R;), and thus long and short
channel on thef plane, to have a uniform vertical shear, and normal-mode perturbations to this state can be identified. Un-
to be in thermal-wind balance with the across-channel buoyder long small-Rossby-number normal-mode perturbations,
ancy gradient. The basic velocity is further set to vary (lin-the base of the active layer behaves as a free boundary. For
early) fromU 4 U7 at the top of the active layer {6 —U” at  short small-Rossby-number normal-mode perturbations, this
the base of the active layer. Accordingly, the basic buoyancinterface is effectively rigid. When the vertical shear is as-
field ©(y, z) varies fromg, (1 -2fU°y/H, +S) atthetopof  sumed strongl//U° < O(S~'), the short-perturbation

the active layer t@, (1 — 2fU%y/H, — S) at the base of the  limit corresponds to the classical Eady problem of baroclinic
active layer ¢ is the across-channel coordinate). A nonvan-instability, in whose case solutions are insensitivé/ @/ .

ishing velocity at the base of the active layer implies thatthe  The left panel of Fig. 4 shows the minimum along-
latter has a lineay-slope given by ' f (U7 —U) /(1—S5).  channel wavenumberk, for instability as a function of
This basic state is a steady solution of the“lito the low- {7 /U7 in the long-perturbation and strong-shear limits (free-
est order in the Rossby numb&o := U/L|f| ~ U?/L|f|  boundary baroclinic instability). The 1-iLgives the exact
whereL is the relevant length scale, which is assumed to beesult for all7 /U [11]. To provide a close approximation
an infinitesimal parameter. In the limit of weak stratification to this result for alll’ /U with the n-HL, a fairly largen

(8 — 0), the horizontal scales (cir. 25) is needed. Note that the 14lIpredicts, incorrectly,
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stability for U /U° < 0 (the vertical shear in this model is content. The possibility for the exchange of fluid across the
implicit through the thermal-wind relation). other interfaces is also considered.

The right panel of Fig. 4 depicts, as a function of the Let 7(x,t¢) be wind stress acting at the surface of the
along-channel wavenumbkythe growth rate of the most un- ocean 1 = 0 must be the setting in the rigid-bottom con-
stable perturbation in the short-perturbation and strong-shediguration and typically:, = 0 in the rigid-lid one). Assume
limits (classical baroclinic instability). The comparison of further that there is a friction force acting at the interface be-
the maximum growth rate predicted by the I-lwith the  tween contiguous layers. Introduction of these forces in New-
IL>*’s maximum growth rate is less satisfactory in this limit. ton’s equationsX2d,e) in the form
However, and very importantly, a high wavenumber cutoff of
baroclinic instability is present. The 1-1Lmodel only gives Ot + -+ = biaT/ha — ri(W; 1), (39a)
the k = 0 value of the growth rates of this figure, and thus it oo ‘ (i o
cannot be used to describe this regime & 0 in this model). O+ = F30iaT/ha + 3ri(W £ ), (390)

Three II__1-Iike layers are enough to approximate well the ex-implies that the work done by the wind stress is proportional
act maximum growth rate for all. To obtain a similar result g the velocity at the top of the uppermost layar, T u?,

using HL-like layers, at least six must be considered. and that one done by the friction force in thk layer is pro-
For the basic state considered above, the Richardsogortional to the velocity at the base of that layay, + u’.
number ) Namely,
Ri:= ( N: ) - S0 (38)
T \o.U) T 2Ro’L2’ 01y Ejt---=r- (U Fuf)

In classical baroclinic instability, for whicRo, S — 0, L = J

Ry = V2SRp andU /U° < O(S~1), the well-known result _ (s 4+ u”)2 40a

Ri — oo holds. In free-boundary baroclinic instability, for zj:r] (85 £ )", (402)

whichRo, S — 0, L = Rg andU/U° < O(S~!), Rican

acquire any value because a proper way [11] to achieve the 9, ZMjJr Coe=T - R— erhj(ﬁj +uj)-%.  (40b)

S — 0 limitis to setS = O(Ro") for anyv. Unlike quasi- j J

geostrophic baroclinic instability, ageostrophic baroclinic in- . . .
stability is characterized by a dependence of the solutions OH]. the above' e'quat|oné7;j Is the Kronecker delta, and is a

Ri [63,64]. This dependence is checked in the layer model b¥|ct|o_n coefficient that can be taken as a constant or as some
considering infinitesimal non-geostrophic normal-mode per-unCtIOn of A; a_n(_:l [0; & 7. [Reca_ll .tha.lta =n (res_p.,
turbations to the above basic state but withe= U/® — U « := 1) for the rigid-bottom (resp., rigid-lid) configuration.]
and assumino — 10~ andZ, — Ry, ’ Let nowI'(x,t) be a buoyancy input through the surface

The left panel of Fig. 5 shows, as a functionRf, the and write the buoyancy EqélZa,b) in the form

maximum growth ratemax;{kImc} of the perturbation. 90 4= 5. T/h A1la
The right panel of the figure shows, also as a functioRf Wit il /e (41a)
the wavenumbel;,., at which the latter value is attained. o0y + - =ndial/ha, (41b)

Shown for reference is an tt asymptotic solution, valid up _ _ o
to O(Ro?). The asymptotic formulas fanax; {Im kc} and ~ Wheren is any constant. Consider, also, the possibility of
kmax are those given in Eqgs. (4.27) and (4.28) of [63]. Thefluid crossing the interface between consecutive layers; then
n-IL! fares very well even withh = 1. A model with a single  the volume conservation EdlZc) can be rewritten as
IL -like layer, however, cannot describe this regime because

. 0 o — , Ohi 4+ =wP —wt. (41c)
of the dependence dRi (for the 1-IL° S = 0). With two 1% i i
IL '-like layers, the maximum growth rates and correspond;

) . . . Here, the quantities’! (x, t) andw?(x, ) are volume fluxes
ing wavenumbers at which they are achieved are in very cIosBer unit area through the top and base ofithdayer, respec-
agreement with the I¥® predictions in the range @i values '

explored, which was much wider than that shown in Fig. 5lt|vely. The set4l), for any value ofy, is compatible with the

. - ) mass conservation equation
Note, however, that observations indicate that typical values q

of Ri in the upper ocean are close to unity [65]. Oy (hi;) + -+ = 8T + 0 (wP — wh). (42)
3.9. Forcing At the surfacew! (x,t) = E(x,t) — P(x,t), which rep-

. ] ) ) resents the imbalance of evaporation minus precipitétion
In Ref. [51], forcing (wind stress, interfacial drag, and buoy-Away from the surface, some parametrization must be

ancy/heat input) was introduced in théL ! model equations adopted. In models with fl:like layers, it is commonly
in a way that was compatible with the conservation laws ofgqt [34]

energy, momentum, and mass/heat content. The same ap-
proach is adopted here to include, also, freshwater fluxes ,

(hi—y — HY 1)?
through the surface following the conservation law of salt Wi —w

( ) Hf_lt? 9( i—1 hz ’L) (3)

%
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Here,H{ andt; are constants with units of length and time, -ity and buoyancy fields can vary not only arbitrarily in the
respectively, that characterize the “entrainment” process, andorizontal position and time but also linearly with depth.

0(-) is the Heaviside step function. In the present case, an In the absence of external forcing and dissipation, the
algorithm may be designed such that conditi®) i6 ful-  model conserves volume, mass, buoyancy variance, en-
filled at all times. This would allow for a more natural rep- ergy, and zonal momentum for zonally symmetric horizon-
resentation of mixing processes, including the possibility oftal domains and topographies. Unlike models with depth-
representing localized mixing eventsg, characterized by independent velocity and buoyancy fields within each layer,
Vit1+97,, < 9; — 97 instantaneously at a certain position. the model generalized here can represent the thermal wind

This subject deserves to be studied in detalil.
Let finally assume a linear state equatior,, 9¥; =
gar(T;—Tyy1) — gas(S; — Sp+1). Here,ar andag are the

balance explicitly at low frequency inside each layer. In this
sense, the model of this paper has “better” physics than a
model with depth-independent fields. For a fixed number of

thermal expansion and salt contraction coefficients, respedayers, the model of this paper can sustain one more vertical
tively; Ti(x,0,t) = Ti(x,t) + oT{ (x,t) and S;(x,0,1) =  normal mode than the homogeneous-layer models, which, on
Si(x,t)+0S7 (x,t) are theith layer temperature and salinity, the other hand, are not able to incorporate thermodynamic
respectively; and’, 1 andS, ;; are the inactive layer (con- processesg(g, due to heat and buoyancy fluxes across the
stant) temperature and salinity, respectively. Let also writair-sea interface or associated with localized vertical mixing

the buoyancy input as
r :gaT(pGC)ilQ"_gaSSa(P_E)a (44)

C, is the specific heat at constant pressure,@(xl, ¢) is the
heat input through the surface. Equatidg@)(can then be split
into heat and salt content conservation equations, namely,

at(hiTi) + = (Sia(prcp)_lQ + TZ(U}? - U}E)a (45a)
3y(hiSi) + -+ = 6iaSa(E = P) + Si(w — w}). (45b)

If fluid across the surface is allowed only, the choléd)Een-
forces, on the one hand [9],

d _
- hij =0, (46&)
d
|
and, on the other [12],
d
GO =v" [(ne) e
D
+(Ta —(T))(P - E), (46b)

where
V:/hj E/ d2X
/ D
J

h is the total volume and

(T) = V_l/hjfj

is the average temperaturelih Note thatl46b), unlike the
equation satisfied by

/thj7

J

events). In this other sense, the present model has “more”
physics than a model with homogeneous layers. Last but
not least, overall improved results in both quasigeostrophic
(free-boundary and classical Eady) and ageostrophic (clas-
sical Stone) baroclinic instability with respect to the single-
layer calculations are attained with the addition of a small
number of layers.

The present generalization enriches Ripa’s single-layer
model by providing it enough flexibility to approach prob-
lems for which a single-layer structure is too idealized. Con-
figurations with a small number of layers are particularly use-
ful for the insight they provide into physical processes. Con-
figurations with more layers may provide the basis for an ac-
curate numerical circulation model.

Finally, and returning to the motivation for revisiting the
construction of models with reduced thermodynamics, the
requirement on the two-dimensional structure of the mod-
els is satisfied by the model derived here. A different strat-
egy than that taken here is needed to fulfill the requirement
on the geometric structure of the models if the goal is to
pursue flow-topology-preserving parameterizations of unre-
solved scales using the SALT (stochastic advection by Lie
transport) framework [28, 29]. The desired result might fol-
low from plugging Ripa’s ansatz in the Hamilton principle’s
Lagrangian of the primitive equations for continuously strat-
ified fluid. This is currently under investigation. A stochastic
parameterization framework that can be applied to the model
derived here is location uncertainty (LU) [48]. Unlike SALT
dynamics, which preserve Kelvin circulation, the LU frame-
work conserves energy, so it can be immediately applied to
the present model and is a natural fit to considering the pa-
rameterizations based on the extraction of available potential

is independent-as it should—of the choice of the origin of thesnergy [5, 21, 23]. Building stochastic parameterizations us-

temperature scale [67].

4. Concluding remarks

ing the generalized Ripa’s model is left for future work.
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