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In this article, we discussed the analytical analysis of perturbed nonlinear fractionad®gjer equation applying our newly introduced
method named as “extended modified auxiliary equation mapping method(EMAEMM)”. By the application of our newly developed method,
we have found a variety of new families of optical solitons in more general forms which are bright, semi half-bright, periodic, semi half-
dark, combined, doubly periodic, dark, half bright, half dark with the usage of only three parameters which is the main different point of
newly introduced technique. Our Newly obtained solutions have a profound impact on the improvement of new theories of fluid dynamics,
mathematical physics, soliton dynamics, industrial studies, optical physics, mathematical biology, biomedical problems, quantum mechanics,
nuclear physics, electromagnetism, and in some other physical and natural sciences. For a graphical understanding of newly obtainet
solutions, we have drawn the graphs in different dimensions with the help of mathematical solver Mathematica 10.4 to get a more clear
picture of the dynamics of newly found solutions.
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1. Problem formulation and introduction physics. So the motivation of present research work is to
study those analytical methods which are highly helpful with

From several years to extract exact solutions of complex norgufficient computational reliability of time and very efficient
linear dynamical systems is one of the most excited and chal? calculations for the computation of optical solitons appear-
lenging areas of research for many mathematicians and rd9 in optical physics, plasma physics, quantum physics, nu-

searchers because of the high applicability of these equatiorffi€ar Physics, mathematical physics and in many other sub-

arising in applied physics and mathematical studies to exfields of natural sciences. So the goal of our work is the pre-

plain nonlinear wave phenomena. Complex nonlinear pal§.entation 9f .analytical a}nalysi.s of nonlinear perturped fr'ac—
tial differential equations (CNLPDES) are highly applicablet'onal S_chodlnger equation using Kerr law type nonlinearity
in many technical, natural, and scientific sciences, which ar8Y Our introduced method EMAEMM.

mathematical physics, electromagnetism, biomedical prob- Inrecentyears internet and various other telecommunica-
lems, telecommunication networks based on optical fibetion networks are the basic components to transfer informa-
technology, chemistry, nuclear physics, solid state physicdjon data. In this process, technology based on optical fiber's
plasma physics, optics and in many other engineering submedium is the backbone of a transformation of information
jects [1-34]. Optical solitons appearing in optical physics androm here and there which has potential applications in the
plasma physics particularly have a significant role in the im-development of bio-mathematical studies. Due to high im-
provement of new theories of applied physics. Moreover, theact applications of optical solitons, which are counted as
development of new reliable, simplified, and very efficientbasic components of information transfer so, it is very impor-
analytical methods for finding optical solitons is a challeng-tant to study those methods which are more reliable with less
ing field of research, especially in those areas where the excomputational time for the computation of optical solitons.
istence of optical solitons is frequently experienced, includ-So the present work is focused to introduce a new technique
ing nuclear physics and in some other sub-areas of appliedith only three parameters to extract optical solitons. The



404 A. R. SEADAWY, N. CHEEMAA, S. ALTHOBAITI, S. SAYED AND A. BISWAS

theory of fractional calculus starts from Grunwald, Liouville, 2.  Summary of the extended modified auxil-
Leibniz, Riemann, and Letnikov plays an important and very iary equation mapping method

remarkable role in many applications of physics, biology, vis-

coelasticity, engineering, finance, control theory, fractionalFirstly we assume that we are having generally a nonlinear
dynamics, signal processing, and many other branches of sqpartial differential equation(NLPDE) which is presenting any
ences [2]. nonlinear wave phenomena with the association of a set of

independent variableB, = {yo = t,y1, Y2, -eovevvreenene JYp

Nowadays, the analytical study of nonlinear fractional ;¢ independent variables for dependent funciidp, ¢) fol-
partial differential equations has attained the great attentiofy,ed in the following manner

of both physicists and mathematicians. Many researchers
have widely study integrable nonlinear perturbed fractional S(h, bty Duis i oo ) =0, 1)
Schiddinger Equation using Kerr law type nonlinearity intro-

duced by Nick Laskin, a well known governing model ap-wheres is the representation of a general polynomial func-
pearing in quantum mechanics and optical physics with potion having its complex argument functigrty, ¢) with asso-
tential applications [3]. Many researchers have used numegiated partial derivatives and its nonlinear terms.

ical methods to obtain its approximated solutions, but our o the computation of exact traveling required results,

work is motivated to present the analytical treatment of thisye will use the below-mentioned linear traveling wave trans-
governing model via our newly introduced technique by im-f5rmation.

plementation, we found a variety of more general and new

families of analytical results in a compact form [4,5]. So M

our research work is based to extract optical solitons for ¢ = d(§), §= ZQiyi7 (2)
PNLFSE. By using our new technigue, some new and more =0

varieties of analytical solutions in more general forms haVGHereQi, i =01, . M, . are constants which can have

been founded by us, which includes semi half-bright, semb, \a1ue and will be calculated later. Further substituting

half dark, bright, dark, half dark, combined, periodic, half 31,5\/6 mentioned transformatic@) gnto (2) yields the given
periodic, half-bright, doubly periodic with the usage of threebe|OW

parameters which is the main different point of our new tech-
nigue. These calculated results have a highly positive impact F(o Q; ¢” ¢“’ ________ )=0 A3)
on the improvement of theoretical plasma physics, biomed- or oy ’

ical problems, optical physics, electromagnetism, industriahe nonlinear ordinary differential equation (NLODE), while
physics, soliton dynamics, nuclear physics, telecommunicar js the representation of a polynomialdri¢) with associ-
tion networks, mathematical physics, and in some other substed its total derivatives’, ¢, ¢, ........cc........ etc. Fur-
fields of physical sciences. Also, some necessary and Sufner we will consider thai(¢) satisfies the general solution
ficient constraint conditions are evaluated during the mathey, the series form ob(¢)
matical derivation of extraction of optical solitons.

Several techniques in the literature are developed using =€) = Zajgj(g) + Z b_;67 (&)
different mathematical software for the analytical analysis =0
of nonlinear fractional partial differential equations. Such m m y © i
as the Jacobi elliptic function technique [6], Kudryashov pi—2 ! (7<)
technique, extended Fan sub-equation technique [7, 8], the M ;Cﬂ (©)0 (&) + f 4 < 0(¢) > 7 )
Bdacklun transform technique [9, 10], homogenous balance
technique [11], the truncated expansion technique [12, 20]n the above general solutiod, c; b; a; are all arbitrary
the tanh-function technique [21], inverse scattering techniqueonstants which will be calculated later, ahg) satisfies the

Jj=-1

Jj=

[22,23] and many more. below-mentioned derivative in three parametric values:
A brief introduction of the perturbed nonlinear fractional " do\ 2 ) s .
Schidinger equation has been presented in section first by ¢ = <d§> =m0°(§) + m20°(§) +m30°(§), (5)

using Kerr law nonlinearity. A detailed explanation of the

algorithm of the developed method is presented in sectiofvhile ;, 75, andms are any type of constants that will be
second. Implementation of the method has been presented #yaluated later. To calculatg(¢) explicitly, we will follow
section third for the extraction of exact solitons of nonlinearthe below-mentioned steps:

fractional perturbed Schdinger equation to check compu-

tational efficiency and reliability of the technique. Section 1. First step: we need to determine the value of non-

fourth is the representation of graphs of obtained solutions. negative integer "m” by making a quite balance be-
In section five discussion of the results with some important tween the highest order non-linearity terms and the
concluding remarks has been presented. terms of highest order partial derivative in Eq. (3).
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2. Secondly: substitute the general solution (4) alongBy breaking real and imaginary parts t0j respectively, we
with Eq. (5) into Eqg. (3) nonlinear ordinary differ- obtained
ential equation, and considering the collection of all

those coefficients of the same poweérs(€)67 (&) (j = (—ac — b*c® + y1b3c)y

0,1,2,3,4,5,....... m, k = 0,1), and by equating all 3 ) 3

these coefficients to zero, we will obtain a set of al- + (v = 1be)x” + (b° = 3nb’c)xee =0, (11)
gebraic type equations, and then further with the help (a + 2b%c — 3,),15)302”(5

of any suitable mathematical solver like Maple, Math-

ematica, Matlab, after that some sets of values of con- + 7162 xeee + (72b + 2730)x*xe = 0. (12)

stants will be obtained;, c;, b;, a;.

3. Finally, by using all those values of constants which Through integration/12) .andl putting constant of inte-
we determined above into the general solution (4) therﬁgra’['c.)n e?jual to £€10 for simplicity, so we got the below-
we will get the solutions of (1) which are required. ~ Mentioned equation

. . .y + 2b%c — 3y1b*c?
3. Nonlinear perturbed fractional Schrodinger (a °= Imbex
equation using Kerr law type nonlinearity + é(Wb + 2930) X + Y1b%xee = 0. (13)

Here we are going to apply our introduced technique for . , ,
the extraction of new optical solitons of integrable nonlin- By (11) and [L3), we obtain the following equation
ear perturbed fractional Sddinger equation using Kerr law
type nonlinearity [3], which is frequently appeared in the
area of plasma physics, optical physics, theoretical physics,

—ac — b2c® + 1633 7= 2bc
a + 2b2%¢c — 3y b3c2 %('ygb + 273b)

and quantum mechanics mentioned below in dimensionless 2 _ 3
b* — 3mb’c
form [3]. = B (14)
0% o B
LyeB T Ve T Vol + U Vaae + 72l0]" v From [14), we obtain the following
+y3([vf)sv] =0 t>0, 0<B<1, (6) —a 3 R
2 3

. ' . ¢ = —5 + -mbc* + —1b. (15)

Here in Eq.[6), v(x,t) shows complex wave profile while 22 " 2 2R,

the term(9%v/0 t%) shows the fractional derivative in the

meaning of modified Riemann-Liouville derivatives, for the HereR, = b> — 3y1b%¢c, Ry = —ac — b*c® + v b%¢® and
detailed description see [2], and, i = 1,2,3. are the co- Ry = v — y,be. So finally Eq. iL1) together with the Ed12)
efficients of dispersion, particularly; is known as3rd order  takes the following form:

dispersion;, shows nonlinear dispersion, anglalso shows

some kind of nonlinear dispersion. To solve the abd)e ( Rix (&) + Rox®(€) + Rsx(€) = 0. (16)

governing model, consider the following initial wave trans-

formation 8 After applying homogeneous principal between the terms
v(z,t) =v(€), €=bx+ at ) x®andy in Eq. (16), we obtaim = 1 then further via pro-

r@pB+1)’ posed method Eq. (16) is considered to have a general solu-
whereb anda are arbitrary constants. By puttirig)(into (6),  tion in the form of a series given as:
we get the nonlinear ordinary differential equation (NLODE)

’

mentioned below. b
oo o WO=aotarp(©+ bt 28 )
tave + b vge + Yu|v|© + i[y16°vege ¥(&) Y(€)
+ y2blv[*ve +73b(|v])ev] = 0. (8) Here abovey(n) satisfies the equations of its partial
Hereu(¢) is a complex wave function, so we can consider thederivatives:
following starting hypothesis e
v(€) = x(§)e’*. 9) v = (dé) = m?(€)
Herec is an arbitrary constant whilg(¢) is a real function. 3 4, 0.
Then B) takes the form as + 2t (8) 4 sy (V); (18)
" 3
[(—ac — b + b2y + (7 — y2be)x? ¥ (&) = v (€) + Srav*(€) + 2507 (€); (19)
b* — 3y b ’ 2b%c — 3y1b%¢? ,
= Inbexe +il(at 2 =~ Imbixe 0 (€) = (1 + 3n20(0) + 65?0 (©). (20)

+ 716 xege + (72b + 273b)x*xe] = 0. (10)
Rev. Mex. Fis67 (3) 403-414
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By putting Eq. ([7) along with {L8) into Eq. {L6), and considering the collection of all those coefficients(¢)yi (¢) (k =

0,1 7 =0,1,2,3,4,5,....... n,) of same powers and by setting all these coefficients equal to zero, we will obtain a set of
algebraic type equations, and then further using any suitable mathematical solver, for example, Maple, Matlab, Mathematica
different new families of analytic solutions in a more general form associated with different values of comgtantsb,, di,

and frequency are calculated, using them into E@) ifferent new families of exact traveling wave results in a more general

form of perturbed nonlinear fractional Séalinger equation are listed below.

Family 1:

7 Al b _ d -0 a1 — + iAgMg o 2A1 - Ag/t%
\/E’ 1 — 01 — Y, 1 — 2\/&\/&7 /-I’I_Asv M3_8A1-

Next, using these values in EQ.6) along with Eq. L8), so the solutions via the newly proposed method in this family of
Eq. (6). are found in the following.

(1) = — (i[Q(ach b2c?) + b2 (1 — ev1(2bc? + 3p1) + (1 — ey tanh[i/ir(w + 50)])]) yice
o WAVE,

where p; >0, e =41, p3 —4ups =0. (22)

( C4A B2 <1 + 5:21{%@1&2 ])}> (1 = 3ey1)ps \/fT>

Cl0::|:

(21)

vo(z,t) =1 WA VA, el
where w1 >0, pus >0, pe=—+/4pips. (23)

Above”¢” and”4” can have suitable values ofl or 1.

< on, 2 (1 N e(\/1+P25+COSh[\/lTl(W+Eo)])> (1- 3051)/“)
ic€

p+sinh[/11 (w+£0)]

2VA1VA2

e

vs(z,t) =1

where ;> 0, (24)

HereA; = (—ac — b2c® + b3c3y1), Ay = (v — beye), Az = (b* — 3b%cyy), here”p” and”&,” represents any constant
values.

Family 2:
dy =+ 7\@ = b 0 381 (25)
= I s =ap=a1 =0, = ,
' VA, P, M= 94,

Next, using these values in E4.6) along with Eq. L8), so the solutions via the newly proposed method in this family of
Eq. 6). are found in the following.

on(ant) = (i € sech[%\/,tTl(w—Fﬁo)]Q\/E\//Tl pict
o VBVA (1 + € tanh[} /7 (w + &)

where g1 >0, e=+1, p3—4pipus =0. (26)
o V3VBae(l £ coshly/rw + o))/ »
A= B5(6 + cosh [/ (w + €0)])(0 + cosh [y/7in (@ + €0)] + € sinh[ /(@ + &)]) |

where  p1 >0, p2 = —+/4p1ps. (27)
Above”¢” and”§” can have suitable values ofl or 1.

(x,t) =i VEVBse(—1 = /TH 72§ coshly/Tin(w + &)] +p sinhly/ 7 (w + &)/ ict
00 =\ TRatp+ sinh [y 1 @p + /LT P28 + < coshly i + &) + sinh [y + o)

where  p; >0, (28)

Rev. Mex. Fis67 (3) 403-414
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HereA; = (—ac — b%c® + b3c3v1), Ag = (7 — beye), Az = (b2 — 3b%ey), here“p” and “€,” represents any constant
values.

Family 3:
VA3 VA Ay
1 2@’ 1= M2 = 43 = a1 , ao 22\/A—27 K1 A37 (29)

Next, using these values into EA.6] along with Eq.|L8), so the solutions via the newly proposed method in this family of
Eq. 6). are found in the following.

e sechl}yi(w + &)V sy
2vA; + (14 etanh[\/p1(w + &o)]) it

at = —1
vr(z,t) i VA,
where >0, e==+1, p3—4pipus =0. (30)
€(146 cosh[\/p1(w+£0)])vVAs /BT
; (Z t) _ \/Al + (04cosh[\/m1 (w+E£0)]) (64cosh[/m1 (w+Eo)])+e sinh[\/m1(w+Eo)]) 6ic£
8\ Ly 2 /7A2
where p1 >0, p2 = —/4pips. (31)
Abovee andé can have suitable values ofl or 1.
VAT + —1 — /1 +p?§ cosh[y/pr(w+ )] + p sinh[/m1(w + &)])VAsy/
1 - B
vl ) = —i (p + sinh [\/ w+&))p+ 1 +p 6 € + € cosh[ /i1 (w + &)] + sinh [/i1(w + &)])) pict
9 ) -
2v/ Ao
where 11 > 0, (32)

HereA; = (—ac — b?c? + b3c3y1), Ay = (v — beyr), Az = (b* — 3b%cy1), here”p” and”&,” represents any constant
values.

Family 4:

dl = —1 [\2/5%2, bl = 0 H1 = 2AA31 ay = \/\;\/\/: (33)

Next, using these values in Ed6) along with Eq. [L8), so the solutions via the newly proposed method in this family of
Eq. (6). are found in the following.

2v/2v/Dapia(1 + € tanh[L /a1 (w + &)])
where u; >0, e=+1, p3 —4uips = 0. (34)

vio(z, 1) (_Z\/— € sech[X [3 v (w + &0))* /i pe + 21 /i3(1 + € tanh[%f(w+€o)])2)> et

\/E( —2€ (1 + 6 cosh[y/ir(w + &o)])m + (6 + cosh[\/p1 (w + &o)] + € sinh[\/7 (w + fo)})27r>

_ ick
on(@,f) =1 9v/2/Ba (0 + coshly /Tt (@ + €0)])(6 + coshl\/in (@ + &)] + € sinh[\/ji1(w + &))) ‘
where 7 = \//Tl, pr >0, pe = —\/4M1M3. (35)

Rev. Mex. Fis67 (3) 403-414
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Above”¢” and”$” can have suitable values ofl or 1.
vra(.t) = |:i\/A3\//Tl:| € (14 /14 p?0 coshl\/u1(w + &o)] — p sinh[\/i1(w + &)] + sinh[\/z1 (w + &o)])
12 ) - N .
V2/Ag (p + sinh[/f1 (w + &0)]) (p + /1 + p26 € + € cosh[/f1(w + &o)] + sinh[\/m1(w + &o)])

e (/1 + p26 + cosh[ /i (w + &))) ,
[+ e )V W] ) e

M2

where 1 >0, ps >0, (36)

HereA; = (—ac — b?c® + b3c3y1), Ay = (v — beyr), Az = (0% — 3b%cy1), here”p” and”&,” represents any constant
values.
Family 5:

2v/As./ A
M’ ap=b=dy =0, pp=0, ,u1=—*17
\/AQ AS

Next, using these values in EA6) along with Eq. 18), so the solutions via the newly proposed method in this family of
Eq. 6). are found in the following.

(37)

Cl1:i

vi3(w,t) = —i V2V ps(L+ etanhlz i (@ + &)l) el
’ M2\/A2
where e=+1, p3—4puius =0. (38)
e sinh[\/p1 (w+£0)] i
(o.1) = i VA + sty wren) VEs Y ict
V14T, =1 e
V2VA,
where g >0, pg >0, po = —/4uips. (39)

Above”¢” and”4” can have suitable values ofl or 1.

€ 25+cos w
VoA + (v/14p?8+cosh[/mi( +50)]))u1\/E

vis(x,t) = —i P*"S/HZL‘;’;T(“)%O)] et
where p1 > 0, (40)

HereA; = (—ac — b2c® + b3c3y1), Ay = (v — beyr), Az = (b* — 3b%cyy), here”p” and”&,” represents any constant
values.

4. Physical description of the solutions

IIiterature calculated by some old other analytical mathemat-
This section is devoted to giving us the graphical represenica| techniques for the same dynamical equation.
tation of newly found results including some type of ratio- ] ] o ) ]
nal functions, trigonometric type functions, type of combined ¢ Firstly: The important and main differentiated point of
functions, hyperbolic functions in different forms to obtain a our developed method to calculate new families of re-

more clear picture of physical structures of perturbed nonlin- sults is the unique structure of its bodé),(which is

ear fractional Sctidinger Equation via Mathematica 10.4. totally new and unique structure using parametric val-
ues three only.

Results and discussion e Secondly: To know about the clear picture of the dy-
namics of our newfound results their physical repre-

Here we are going to list the similar and different points of sentations with the help of different sets of values of

our calculated new families of required results which we have constantsl;, c;, b;, a; are shown using mathematical
been calculated using a newly developed method in compar- solver like Matlab, Mathematica 10.4, or Maple (see
ison of all those solutions which are already present in the Figs. (1-5)).

Rev. Mex. Fis67 (3) 403-414
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b)

Vixz)

FIGURE 1. The graphs plotting 0123) and 24) is given. Here fig. a) is 3rd-dimensional graph [@B) as a periodic type soliton with

associated values of parametégs= —3,e = 1.9,a = —2,u1 = —2, u2 = —1.8, b= —1.6, c = —1.1, u3 = 1.9 in intervals (0,5), (-5,5).
And b) shows contour plotting oR@) considering all those parametric values used above in intervals (-5,5), (0,5). And c) represents the

two-dimensional graph old) as semi half-bright type soliton using intervals (0,10), (-15,15). And d) represents 3rd- dimensional plotting
of (24) with parametric valuegy = 1.8, ¢ = —1.8, u1 = 3.0, u2 = 1.8, a = 2.1, b = 1.6, ¢ = 1.1, ug = —1.9 with in intervals (0,5),

(-5,5).

Viet)

b)

. ", .b 4 Tl
i Al gy
t A T s

. l‘*‘.‘*'*
B S P iy, (Wi

‘k\ A o
iy iy )

SZSCEAL

e
L

- (ﬂ i 2

€] =5 =5 g 3 :
FIGURE 2. The graphical representation @6), (27) and 28) is given in different dimension. Here a) visualizes the graphical representation
of (26) with §o = 1.33, e = —1.9,a = —2.1,u1 = 2.6, u2 = 1.98,b = 1.6, ¢ = 1.1, us = 2.1 in intervals (0,5), (-5,5). And b) represents
3rd- dimensional plotting of27) as semi half-bright type soliton using intervals (0,10), (-5,5). And c) shows contour plottii@¥)ofvith
the mentioned values of parameters using intervals (-5,5), (0,5). And d) presents 3rd-dimensional gragB)repbitan of bright type with

So=1,¢=19,a=2.1,u1 = 2.5, u2 = 1.6,b = —1.6, ¢ = —1.1, ug = 2 using intervals (0,5), (-5,5).

Rev. Mex. Fis67 (3) 403414
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i
5
=g —

-4 -2 2 4

d)

FIGURE 3. The physical representation &1), and B2) has been given. Here a) visualizes the graphical figur81)fds half doubly bright

type soliton with§p = —1.8,¢ = —1.7,a = 2.9,u1 = 1.6, u2 = 1.9, b = —1.6, ¢ = 1.1, us = 1.988 in intervals (0,3), (-5,5). And b)
shows 2nd-dimensional plotting a82) as bright- dark (combined) soliton in intervals (0,10), (-15,15). And c) represents 3rd-dimensional
plotting of (32) with §o = 1.9, e = —1.8, u1 = 1.7, uo = —1.98,a = 2.1, b = 1.9, ¢ = —1.98, puz = 2.8 in intervals (0,5), (-5,5). While

d) shows the one dimensional graph/81) considering all those parametric values used above in interval (-5,5).

Wik

b)

1335

1336

Vixy 1337

d) —

-1 -2 2 4

c)

FIGURE 4. The physical plotting of34), (35), and B36) has been given. Here a) visualizes the graphical representati@d)oag dark
soliton withép = 1.6, ¢ = 1.6, a = —2.8, u1 = 1.9, pu2 = 1.99, b = 3.1, ¢ = —1.8, puz = 1.88 in intervals (0,5), (-5,5). And b) shows
two dimensional graphical representation/®)(in intervals (0,5), (-5,5). And c) visualizes 3rd-dimensional plotting3s) with £, = 3,
e=18u1 =18 pu2=18a=-21,b=—-1.7¢= 1.8, uz = 2.9 inintervals (0,10), (-5,5). While d) shows the one dimensional graph
of (34) considering all those parametric values used above above using interval (-5,5).
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e It is necessary to mention Ed5)(showing us new
different in more general forms of analytic solutions
in different dimensions, including some type of ratio-
nal functions, trigonometric functions, combined func-
tions, and some type of hyperbolic functions.

Now we are going to list the differences of our calculated

new families of required results which we have been calcu-
lated using a newly developed method in comparison of all
those solutions which are already present in the literature cal-
culated by some other different old analytical mathematical
techniques for the same dynamical equation.

Comparing new found exact results with those obtained

using technigu&xtended Fan-Sub Equation

¢ In Extended Fan-Sub Equatiptihe author Yomba [41]
explained that when we consider parametric values
ho = 0 andh; = 0, then under this consideration, the
general elliptic equationvill deform into sub-equation
auxiliary ordinary differential equatiofurther accord-

ing this case, he listed all possible results for PNFSE
(6) but the different point here in our presented re-
search work we have found some new solutions in a
more general form defined in complex domain for the
same case as mentioned above which were missing in

n
4

FIGURE 5. The physical representation (§9) and 40) has been given. Here a) visualizes the graphical representatiBg)afy kink type
soliton withép = 0.5, = 0.8, a = 3.9,b = 2.5, ¢ = 0.5, u1 = 0.8, 2 = 3.9, us = —3.99 in intervals (0,10), (-15,15). And b) represents
2nd-dimensional plotting ol(0) as soliton of bright type using (0,10), (-15,15). And c) visualizes 3rd-dimensional plotti@@jod¢ bright
type soliton in intervals (0,10), (-15,15). While d) shows contour plottingB8J ¢considering all those parametric values used above using
intervals (-5,5), (0,5).

way with in minimum computational time by one tech-
nique.

We have calculated a variety of new families of re-
quired results which are quite general and compact
defined in a complex domain with the help of only
one method, which depends on three parametric values
for perturbed fractional nonlinear Sduinger equa-
tion [41].

These newfound results are highly applicable in the im-
provement of theoretical studies of many other areas
of natural sciences, including mathematical physics,
plasma physics, biomathematics, nuclear physics, op-
tical physics, quantum field theory, and in some engi-
neering disciples.

All the solutions newly found here are also verified us-
ing mathematical solver Mathematica 10.4.

We would like to mention here that reliability, simplic-
ity, straightforwardness, minimum computational time
shows actually the high efficiency of our newly intro-
duced method with the usage of only three parametric
values in comparison to other methods.

this case calculated in a simplified and straight forwardSolutions found byFirst Integral Method

Rev. Mex. Fis67 (3) 403414



412 A. R. SEADAWY, N. CHEEMAA, S. ALTHOBAITI, S. SAYED AND A. BISWAS

e we compared our solutions with those which are founddisciples. To check the efficiency of our developed technique
by First Integral Methodmentioned in [42] we noticed we have applied on complex nonlinear perturbed fractional
all listed results are defined with in real domain, while Schibdinger equation after implementation, we have calcu-
our solutions are quite new and different defined inlated a verity of new analytical solutions in more general
complex domain. forms which are very useful to study many other nonlinear

Solutions found byernoulli Sub-ODE Methad dynamical systems qualitatively, also they are highly useful
i . ] in the improvement of theoretical plasma physics, biomed-

e we compared our solutions with those which are foundicg| problems, optical physics, electromagnetism, industrial
by the Bernoulli Sub-ODE Methodisted in [42], we  physics, soliton dynamics, mathematical physics, telecom-
noticed all listed results are defined within a real do-pypication networks, nuclear physics and in other subfields
main, while our solutions are quite new and differently of physical sciences. These calculated solutions have a pro-
defined in complex domain. found impact to develop new mathematical solvers in the

By concluding, it is important to mention that the solu- market, which are useful in the numerical analysis of com-

tions obtained in [41, 42] are quite different in comparison ofplicated dynamical systems which are representing nonlinear
our required found results. Thus from the above comparawave phenomena. They are useful to present their compar-
tive study, we can say in short, our developed technique giveison between analytical and numerical solutions. Moreover,
us the results in less computational time with straightforwardgraphical representation has been presented by us to show
manner of high reliability and efficiency. Our new simpli- more clear picture of the dynamics of found new required re-
fied solutions are highly helpful to show a clear picture abousults drawn using mathematical solver Mathematica 10.4.

the analytical treatment of many other complicated dynami- It is important to highlight here that our developed tech-
cal systems appearing in other natural and physical scienceégque gives us the results in less computational time with
with the range of three parameters. a straightforward manner of high reliability and efficiency.
Our new simplified solutions are highly helpful to show a
clear picture about the analytical treatment of other compli-
cated dynamical systems with the range of three parameters

Our objective was to present a new method for the analyticg®PPearing in other natural and physical sciences.
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