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Spherical symmetry breaking in electric, magnetic and toroidal multipole moment
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This Letter reports the breaking of the spherical symmetry in the complete electromagnetic multipole expansion when its sources are dis-
tributed on spherical toroidal surfaces, identifying the specific geometrical and physical changes from the familiar case of sources on a
spherical surface. In fact, for spherical toroids defined by concentric spherical rings and symmetric conical rings, the boundary conditions
at the latter are not compatible in general with integer values for the orbital angular momentum label of the multipole moments: the polar
angle eigenfunctions become Legendre functions of okdierd associativity m represented as infinite series with a definite parity, and their
complementary associated radial functions are spherical Bessel functions of the same @dasequently, the corresponding multipole
sources for the electric, magnetic and toroidal moments and their connections are identified within the Debye formalism, and the appropriate
outgoing wave Green functions are constructed in the new basis of eigenfunctions of the Helmholtz equation. Our familiarity with the exact
solutions, for the cases of the complete sphere and of cylindrical toroids, allow us to give a preliminary account of the electromagnetic fields
for the spherical toroids via the integration of their sources and the Green function for resonant cavities and optimum-efficiency antennas.
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1. Introduction moments in cylindrical toroids as reported in [10], which has
been an important point of reference and guidance in our

) ) ] ) ) ) writing of this Letter. It is also important to mention that
This Letter is motivated by the observations of toroidal dipoleg g [1-3] were reviewed in [11], recognizing that the ideas
interactions in metamaterials [1,2] and nanomaterials [3] Superintegrability and Symmetry Breaking apply not only

and attempts to establish the difference between electric ang, 51oms and molecules, but also to the electromagnetic mul-
toroidal moment electromagnetic radiations using the fam'l'tipole expansion, when its sources are confined on toroidal
iar spherical multipole expansions in the far-away zone [4] g ifaces.

The works in [1-3] and [5,6] have cited our work [7] on i .

the complete electromagnetic multipole expansion including "€ confinement of the sources and Dirichlet and

toroidal moments, which is complete on two accounts; 1)Véumann boundary conditions for resonant cavities and
it describes the fields inside and outside a spherical toroiddiPtimum-efficiency antennas, respectively, lead to quantiza-
surface where the sources are confined, and 2) it includd®©n of wave numbers_ and frquenmes, and to complgte gnd
the toroidal moments. The use of the multipole expansiorP'thonormal sets of eigenfunctions. Symmetry breaking in-

in the far-away zone ignores the roles of the sources and aplves the same c.onstant.s of motion but different eigenval—
Maxwell's equations in the boundary condition form, which US:¢ becomes\ with non integer values. Correspondingly,

are indispensable to connect the inner and outer solutions s4fl€ associated Legendre Polynomials become Legendre func-

isfying the homogeneous Helmholtz equation. The Citati0n§!0nS with (A, m)_ parameters n thel'r hyperg.eometnc func-
of our work motivated us to revisit it [8], and we have just re- 10N representation, with a well defined parity for symmet-
alized that when going from sources confined on a sphericdf€ toroids. The radial spherical functions becofdg, well-
surface [9] to sources confined on a spherical toroidal su?€haved superpositions of spherical Bessel func(t{%qrqu
face, the spherical symmetry of the first one is broken in thé?x inside the toroid, and outsidg in the hole and:, " out-
second one. Consequently, this contribution is focused on tH@0ing spherical wave.

manifestations of the symmetry breaking and its general con- The longitudinal, toroidal and poloidal current densities
sequences, which hopefully will be particularly useful for theof a given multipolarity, on each section of the spherical
metamaterials and nanomaterials communities. We may addroidal surface, are constructed from a common scalar De-
that we have just completed the identification of the completdye potential involving one eigenfunction of the sets men-
and exact solutions of a family of electromagnetic multipoletioned above, via the application of the gradi®tangular
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momentun. = —ir x V and curlVx operators, in the suc- ), and the polynomials are replaced by Legendre functions
cession already identified for cylindrical toroids [10]. They of order \, associativitym, and definite parity, represented
are the sources of the electric intensity fields in the inhomoas infinite series superpositions of hypergeometric functions
geneous Helmholtz equation. The complementary sources @fith argument$1—cos 8) /2 and(1+-cos ) /2, with common
the magnetic induction field in the same equation are alstabels in\ andm = 1:
identified.

The Green functions for the spherical toroids are alsq,: (cos@) = N} sin@i
constructed using the bases of the above-mentioned radial® ATTV2
and polar angle eigenstates, as the counterpart of those in
[10]. In [7] the point unit charge Green function was used, x <2F1 {_{)\ — 1} A+2, 1;
with the sources of Egs. (23) and (24) involving Heaviside
step functions, representing uniform distributions on each ] )

1—cosf

+oF
2}21

@)

section of the spherical toroidal surface. It is appropriate at [_()\ S, A2, 1 1+ cosd
this point to recognize that the orthonormality and complete- 2

ness of the radial and polar angle eigenfunctions at the bound-
ary defined by the other variable provide the representations

of the difference of the respective Dirac-delta functions, and The order) is determined by the nodes and the extreme
P '~ points of the series ifi;. The companion radial functions are

Side stop Lnctions, These relaionships aré mportant 1o urRUPSfPOSItons of the corresponding ordinary and Neumann
q o ) r1}§pe spherical Bessel functions inside the toroid [a, b]:
erstand the connections between the Green functions an
sources in [7,8] and this contribution, as well as the equiva-
lence of their integrated results. Ry(kr) = Ax(k)jx(kr) + Bx(k)na(kr) 2
Consequently, the successive sections of this Letter in
2. Spherical Symmetry Breaking, explain the reasons beerdinary spherical Bessel function in the hole of the toroid
hind it and identify its explicit manifestations, 3. Sourcesr € [0,a], and outgoing wave spherical Bessel function
Distributed on the Surfaces of Spherical Toroids, identifyoutsider € [b,oc]. The respective boundary conditions
them from a common Debye scalar potential for the succesan the radial eigenfunctions at the inner and outer spheri-
sive electric, magnetic and toroidal moments on the basis afal rings can be satisfied only for specific choices of coeffi-
their multipolarities and directionalities, including their suc- cientsA, (k), By (k), leading to resonant wave numbers and
cessive connections, 4. Scalar Green Functions, to be cotheir associated frequencies, which turn out to be interlaced
structed using the solutions of the homogeneous Helmholtfor the successive modes of the cavities and antennas. Addi-
equations inside and outside the toroidal surface, satisfyingonally, their nodal lines combined with those of their com-
Dirichlet boundary conditions for resonant cavities and Neu-panion polar eigenfunctions determine the positions of four-
mann boundary conditions for optimum-efficiency antennassided perimeters in each meridian plane; as well as the corre-
respectively, and 5. Discussion of the anticipated results fosponding positions of extreme amplitudes inside the perime-
the electromagnetic fields, to be evaluated from the integrater. The product of the radial and polar eigenfunctions apply
tions of the sources in Sec. 3 and the Green functions ito the magnetic moments. For the electric and toroidal mo-
Sec. 4. The Appendix serves as a guide to the readers imaents there is an extra radial factor, argument of the spherical

terested in understanding the details of the text. Bessel functions, as justified at the end of Sec. 3. Reference
[11] illustrates the symmetry breaking in the context of con-
2. Spherical symmetry breaking fined atoms and molecules, and also included reviews of [1-
' 3].

The restriction of distributing the sources on the surface of a
spherical toroid formed by spherical concentric rings of ra-
gg’:;: ang7e§9noz 0, S ;2 nisfrm_mgfflgsg glcil ;ngj ;tr,the 3. Sourqes dist.ributed on the surfaces of

in spherical coordinates, allows the construction of solutions ~ SPherical toroids

of Maxwell equations using the basis of solutions for the

scalar homogeneous Helmholtz equation, inside and outsidehe sources of the electromagnetic fields distributed on the
the toroid, as Debye potentials subject to Dirichlet and Neusurface of the spherical toroids are identified from a common
mann boundary conditions for the electromagnetic radiatiolDebye scalar potential, for each spherical and conical ring
fields in resonant cavities and optimum-efficiency antennassections at the respective positians- a, b andf = 64, 65,
respectively. In general, for arbitrary values of the polar antespectively; with multipole distributions and directionalities
gle #,, the above mentioned boundary conditions can not béo be described next for the successive multipole moments.
satisfied by the familiar associated Legendre polynomials ofFor the electric moments, the starting point is the longitudinal
degreg(¢, m) . The quantum labéel takes non integer values current density with a gradient of the Debye scalar potential
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of the chosen multipolarity: Similarly, the curl ofS”" is identified as the poloidal current
o d density of the toroidal moments’?, source oE””:
K™ = kT (dTRA(kT)) [Yao(01,¢) + Yao(02, ¢)]
. 1 d d
0(d Tp _ 22022
+ oy (CZQYAO(07¢)) [Ra(ka) + RA(kb)] . (3) K (nroﬁ {r dr {T drR)‘(kr)H
Its divergence leads to the surface charge density via the con- X [Yao(01,¢) + Yao(02, ®)]

tinuity equation, P

+ kg, — [Ra(ka) + Ry (kb)]
voKE = i =, (2 i) r
2 dr 1 d (. ng ) o
X — ¢sinf— , )
WO @) Vaolf 0) Line de{ g ol QS)H) ©
1 1 d d
R . v
T <Sin9 do {bmgﬂw rolf, ¢)D Additionally, the curl ofK 7? yields the toroidal source den-
i Tt Tt.
x [Rx(ka) + Ra(kb)] . (@) SityS'forB™:

In turn, the cross product ofrsind)¢ and (r + ) .
with the longitudinal current density leads to the poloidal Tt _ ¥ (,% {d {d ‘[TQdR}\(kT)J)}]
current densityK “P of the electric intensity field, and the r dr dr\ dr
source densitg”" of the magnetic induction, in the respec- X [Vao(01,¢) + Yao(62,9)]
tive Helmholtz equations:

1
KPP = k0 <7’er>\(kr)) sin € [Yao(01,9) + Yao (02, ¢)] = ritoy [Ra(ka) + Ra(kD)]
y < g (mogeea)}] ) o
— kg, (sinedaym(e,@) [Ry(ka) + Rx(kb)], (5) de sin6 do dg

sPt = ¢7< — Ky {rdRA(kr)} [Yao(01,0) + Yao(O2,9)) Notice that the longitudinal, poloidal and toroidal source
dr densities involve first derivatives of the radial and polar an-

gle eigenfunctions, for the electric moments. The curls of
+ Ko, {dy/\o(&qg)} [R(ka) + R,\(k’b)]> . (6)  thelasttwo transverse current densities yield the toroidal and

dg poloidal current densities, for the magnetic and toroidal mo-
ments, respectively, involving second derivatives associated
with the Laplace operator, and yielding the radial and po-
lar eigenvalues and eigenfunctions of the Helmholtz equa-
tion. In turn, the additional curls of the current densities lead

In turn, the curl o 7 becomes the toroidal current den-
sity for the magnetic momenté*? as the source density of
the electric intensity field:

KMt _ P (,_CT [d {TQdR/\(kr)}:| sin 6 to the source densities for the respective magnetic induction
*ldr U dr fields, with third order derivatives in the radial and polar an-
X [Yao(01,0) + Yao(62, 6)] gle eigenfunctions. These dependences are behind the dif-
ference by a factor ok? between the electric and toroidal
+ ko, [Ra(ka) + Rx (kD)) moment electromagnetic fields, sharing otherwise the same
d d space dependences in their transverse fields. as well as their
X [d@ {smedeyw(e, ¢)H > 7 resonant frequencies for cavities and antennas. On the other

hand, the electromagnetic fields for magnetic moments differ
Additionally, the curl of K leads to the poloidal source from the other two by exchange of the directionalities of their

densityS™? of the magnetic induction field: electric intensity and magnetic induction fields, and even ver-
" [1d (d{,d ) sus odd orders of derivatives, as well as different resonance
SYP = ( Frg Ldr {dr (T drR’\(kr)))H sin 6 frequencies. In the case of electric moments, it is important
to point out the presence of the common radial factor in the
x [Yxo(01,8) + Yxo(02,9)] vectorsr, rd andr sin #¢, which via their successive vector
1 products with the longitudinal current density yield the re-
+ 007 5 [Ra(ka) + Ra(kD)] spective components of the toroidal sourceBéf and the

poloidal current source &F?. The extra factor of the spher-

« { '1 4 {sined {Singdy}\o(g’qg)])}]). (8) ical Bessel functions mentioned in Sec. 2 for electric and
sin ¢ df do do toroidal moments is thus justified.
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4. Green functions intensity field turns out to be consistent with Gauss’ and Fara-

) ) . . day’s laws, while the magnetic induction field is also con-
This section contains the scalar Green functions of th&ijstent with Gauss’, Ampere’s and Maxwell’'s laws in their
Helmholtz equation with a unit charge at the poifit on  poundary condition forms. Additionally, their field lines may
the toroidal surface, using the inner solutions of the homoye \ritten in their differential forms and turn out to be inte-
geneous equation, Eqgsl)(and ), satisfying the Dirichlet  graple for the poloidal fields, yielding their vortex structure
boundary condition for the resonant cavities, and the Neui each meridian plane within four-sided radial and circular
mann boundary conditions for the optimume-efficiency anteNseparatrices.

nas, as well as for the near fields produced by the longitudinal  For the toroidal moments, the poloidal current densities
current and charge densities in the electric moments: KT? yield the poloidal electric intensity field&*?, while

1 the toroidal sourc&’" yields the toroidal magnetic induc-
G (r,r) = ZZZQ”T"" (k) R, (krim)h&n)a(me“) tion field B!, Notice the changes in directionalities of
mene the respective sources and fields when going from the mag-
1 1 . etm(e=¢") netic multipoles to the toroidal ones, directly connected with
x 03, (cos8)0y, (cost)————. (11)  the connections of the fields themselves via Faraday and
Maxwell laws in both cases. This observation is pertinent
here, in order to avoid the repetition of the discussion of the
fast part in the previous paragraph.

The outgoing Green function ii1) uses the same angu-
lar bases and the linear superposition of the products of th

inner and outer Bessel functions with coefficiepts,,, (k), . . :
taking into account the quantization and order of éxéitationi For the electric moments, the difference with respect to
9 d r}lhe toroidal moments, besides the exifan BM* compared

the respective degrees of freedom. The coefficients are evaly B!, is obviously the presence of the longitudinal current

qateq by mtegratmg the .rad|al par't of the Helmholtz eq.ua'density and its associated charge density. The evaluation of
tion involving the Wronskian of the inner and outer spherical

. the longitudinal electric field from the integration of the lon-
Bessel functions: L . ) .
gitudinal current density and the respective Green functions

(k) = —4m for the resonant cavities and antenri&8', yields the surface
Jnemo kr2W (Rx(kT), B0 (k:r)) charge density distribution at the toroidal surface via Gauss's
law in its boundary condition form; on the other hand, its
B —4rk (12) normal components at the first separatrices of the radiation

fields, inside and outside the toroid, vanish at the separatrices
becoming tangential near them, and consistent with Faraday’s
5. Discussion law. The reader may see their counterparts for the sphere in
[9], and for circular cylindrical toroids in [10].
This section describes the anticipated results for the electro- The analytical elements described in the successive sec-
magnetic fields to be obtained from the integration of thetions are the basis for the numerical computations of the re-
source densities identified in Sec. 3 and the Green functionspective electromagnetic fields, for specific values of the geo-
of Sec. 4, for the successive magnetic, toroidal and electrimetrical parameters of the spherical toroids. The correspond-
moments. This order is followed because the first two sharéng results will be reported in the near future.
transverse sources and only radiation fields, while the last The comparison of the contents of this Letter and our pre-
one also involves the longitudinal current and charge densivious works may help the readers to appreciate the differ-
ties and their near fields in the vicinity of the spherical toroid.ences in them. In fact, the Letter is the natural extension of
The presence of the latter illustrates clearly the difference bg7,8], recognizing explicitly the spherical symmetry breaking
tween the toroidal and electric moments. and its implementation. The comparison with [9] shows their
For the magnetic moments, the toroidal surface curcommon structure allowing for the difference in their respec-
rent densitie ' yield the toroidal electric intensity field tive inner and outer solutions. In the comparison with [10], its
E(r, 0, ¢), while their poloidal curlsS™?, yield the poloidal ~ separation into independent axial and circular radial compo-
magnetic induction field8(r, 8, ¢), for the interior of the nents is replaced by the separation into spherical radial and
resonant cavities and for the interior and exterior of thecommon polar angle components; in the first one, both de-
toroidal optimum-efficiency antennas, respectively. The vangrees of freedom determine the resonant frequencies, and in
ishing of the radial functions inside the toroidal surface atthe second one, the spherical radial component determines by
the inner and outer spherical rings of radiandb, required  itself the resonant frequencies.
by the Dirichlet boundary condition, guarantees that the outer We conclude this Letter by pointing out that its contents
fields vanish in the first case. On the other hand, in the secongrovide the new elements of spherical symmetry breaking
case, the extensions of the radial functions with Neumanrigenfunctions of the scalar homogeneous Helmholtz equa-
boundary conditions to the outer interval8, a] in the hole  tions, the connections between the sources of the succes-
and [b, oo] to the far-away zone, guarantee their proper besive electromagnetic multipole fields for electric, magnetic
haviors in their respective domains. In both cases, the electriand toroidal moments, and the respective Green functions for

(1Ax(k) — Ba(k))
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spherical toroidal resonant cavities and optimum-efficiencyof two different types. Equation (11) shows the successive
antennas, needed for the evaluation of the respective electritirectionality selecting operators: gradient, angular momen-
intensity and magnetic induction fields. One of its impor-tum, and rotational of the angular momentum acting on the
tant results is the identification of the difference between theespective Debye scalar potentials, which are solutions of the
toroidal and electric moments in the presence of the localhomogeneous Helmholtz equation. Equation (12) is the con-
ized near field in the latter produced by the longitudinal cur-tinuity equation connecting the longitudinal current density

rent and its associated charge density. Hopefully, this will beand the charge density, and its counterpart in Eq. (13) con-
useful and of interest for the Metamaterials and Nanomaterinects the longitudinal Debye potential with the charge den-
als communities, by providing exact results to compare withsity. Equation (14) shows the decomposition of the rotational
their different interpretations of the toroidal moments, as il-of the current density into its poloidal and toroidal compo-

lustrated in [4]. nents, identifiable by their respective operators and the ex-
change of their Debye scalar potentials. The integrations of
Egs. (9-10) lead to the decompositions of the respective fields
Egs. (15-16) and the identifications of their respective Debye

The additional material in this Appendix, included for the scalar potentials Egs. (17-22).
benefit of a wider readership of Revista Mexicana de Fisica We consider now, [8,9] and the Letter, in order to appre-
interested in this Letter, is presented in two complementargiate the changes of going from sources confined on a spheri-
parts: 1) A guide to the References, in connection with thecal surface to sources confined on spherical toroidal surfaces.
motivation for writing the Letter, its antecedents and new re-The change of geometry brings in additional boundary con-
sults; and 2) The Debye formalism and its application neededitions, from a single spherical surface to the surfaces of the
to understand the results reported in Sec. 2-5. four sections of the toroidal surface: two spherical and two
1) As explained in the Introduction, the motivation of this conical coaxial rings. This explains the spherical symmetry
Letter is associated with the citations of our work [1] in [1- breaking in the Letter, and its consequences in the multipole
3], reporting the observations of toroidal dipole interactionssolutions of the homogeneous Helmholtz equation, as new
in metamaterials and nanophotonics, respectively. Our worklebye scalar potentials in Egs. (1-2) of Sec. 2.
[11] included reviews of reports related to [1-3]. Additional Concerning the vector sources reported in Sec. 3, they
reports on toroidal moments [4-6] show different interpreta-are constructed and identified from a common Debye scalar
tions about them. Our additional works on the electromagmultipole potential, under the action of the successive op-
netic moments with sources confined on spherical, sphericarators of gradient, which becomes angular momenta when
toroidal and cylindrical toroidal surfaces [8-10] are the imme-multiplied by the appropriate vectors, and successive rota-
diate antecedents of the Letter. The ideas of superintegrabitionals in Egs. (3, 5-10). The continuity Eq. (4) also yields
ity and symmetry breaking in [11] are applicable for atomsthe charge density. Notice the correspondences and differ-
and molecules, and also for electromagnetic fields. Supeences with their counterparts in [7].
integrability of a wave equation implies separability and in-  The construction of the Green functions in Sec. 4, for a
tegrability in more coordinate systems than degrees of freednit point source on the toroidal surface, is constructed by the
dom. Symmetry breaking in [11] and the Letter is due tostandard method using its expansion in multipole harmonics
the change from the spherical boundary [9] to the sphericadnd spherical Bessel functions of ordeof Egs. (1-2).
toroidal boundary [7,9], with the consequences described in  The idea of superintegrability and the exact results for
Secs. 2-5. Each Reader may find in the respective sets gpheres [9] and for cylindrical toroids [10] allow us to antici-
Refs. [1-6] and [7-11], the detailed antecedents needed tpate the results discussed in Sec. 5. In fact, apart from the dif-
understand the context and the contents of the Letter. ferent geometries the physical solutions, for the correspond-
2) Section 2 in [7] discusses the solutions of Maxwell'sing electric, magnetic and toroidal moments, have common
Egs. (1-4) and the Helmholtz equations for the electric intenqualitative and quantitative features.
sity and magnetic induction fields Egs. (5-6), via the integra-
tion of their respective sources in the latter with the Green
function from Egs. .(7-8), as expressed in Egs. (9-10). ThéAcknowledgments
second part of the same section, based on [14] in [7], il-
lustrates the decomposition of any field into its longitudinal, The Authors ELK and HTB gratefully thank the partial fi-
toroidal and poloidal components. While the Helmholtz the-nancial support provided by Consejo Nacional de Ciencia y
orem recognizes the decomposition of any vector field intofecnologha, SNI 1976 and Becas Nacionales 793451, in this
its longitudinal and transverse components, the Debye forwork. HTB also acknowledges financial support provided by
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