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1. Introduction a function a point. The difference between conformable frac-
tional derivative and non-conformable fractional derivative is
The idea of fractional derivative was first raised by L'Hospital that the tangent line angle is conserved in the conformable
in 1695. Since then, several related new definitions have beedne, while it is not conserved in the sense of nonconformable
proposed. The most common ones are Riemann-Liouvill@ne [25] (see also [26,34,36,37] for more new related results
and Caputo definitions. For more information about the mosgbout this newly proposed definition of non-conformable
known fractional definitions, we refer to [1,2]. A new defi- fractional derivative). The definition of non-conformable
nition of fractional derivative and fractional integral has beenfractional derivative has been investigated and applied in var-
recently proposed by Khalét al. in [3]. As a result, several ious research studies and applications of physics and natu-
important elements of the mathematical analysis of functiongal sciences such as the stability analysis, oscillatory char-
of a real variable have been formulated such as: chain rulé@cter, and boundedness of fractionaéhard-type systems
fractional power series expansion and fractional integratiofi27,28,33], analysis of the local fractional Drude model
by parts formulas, Rolle’s Theorem, and Mean Value The{29], Hermite-Hadamard inequalities [30], fractional Laplace
orem [3-5, 40]. The conformable partial derivative of the transform [31], fractional logistic growth models [32], oscil-
ordera € (0.1] of the real-valued functions of several vari- latory character of fractional Emden-Fowler equation [35],
ables and conformable gradient vector are also defined. Iasymptotic behavior of fractional nonlinear equations [38],
addition, a conformable version of Clairaut's Theorem forand qualitative behavior of nonlinear differential equations
partial derivative is investigated in [6]. In [7], conformable [39].
Jacobian matrix is defined, and chain rule for multivariable This paper is Organized as follows: In Sec. 2, the main
conformable derivative is proposed. In [8], the conformableconcepts of conformable fractional calculus are presented.
version of Euler's Theorem on homogeneous is introducedsection 3, we proved a conformable version of the con-
Furthermore, in a short time, various research studies hay@rmable second-order Sturm-Picone identity. From this re-
been conducted on the theory and applications of fractionady|t, we establish the conformable Sturm-Liouville compar-
differential equations in the context of this nEWIy intrOducedison and Separation theorems. Section 4, for a conformable
fractional derivative [9-18,23,24]. Sturm-Liouville problem, the Green function is constructed,
In addition, another new definition of local fractional and its properties are studied. At the end, we prove the
derivative is introduced by P. M. Guanet al. [25], and generalized Hyers-Ulam stability of conformable inhomoge-
it is called the non-conformable fractional derivative which neous linear differential equations with homogeneous bound-
is considered as a natural extension of the usual derivative @fry conditions.
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2. Basic definitions and tools if ¢ =a,then
Definition 1. Given a functionf : [0co) — R. Then, the (T%h)(a) = lim (Tgf)(g(t)) A(T2)(t) - (9(£))*, (8)
conformable fractional derivative of order, [3], is defined t—a
by Theorem 4 (Rolle’s Theorem) [3]. Leta > 0, @ € (0,1]
o flt+ettT) — f(t and f : [a,00) — be a given function that satisfies the fol-
(Tof)(t) = lim ( 5 )= N )v @) lowing:
forall ¢t > 0,0 < a < 1. If fis «a-differentiable in some - f is continuous offa, b].
(0,a), a > 0, andlim,_,g+ (T, f)(t) exists, then it is defined ’
as - [ is a-differentiable on(a, b).
(Taf)(o) = tEIg+(Taf)(t)' (2) - f(a) = f(b)

Theorem 1 [3]. If a function f : [0,00) — Ris a- Then, there exists € (a, b), such that(T,, f)(c) = 0.
differentiable atfo > 0,0 < o < 1, thenf is continuous at  Corollary 1. LetI C [0,00), « € (0,1] andf : I — Rbe a
to. given function that satisfies

Theorem 2 [3]. Let0 < o < 1, and let f, g be a-
differentiable at a point > 0. Then - fis a differentiable onl .

() Tolaf +bg) = a(Taf) + b(Tag), Va,b € R. - f(a) = f(b) = 0 for certainc € I

N p—a

(W) To(t?) = pt?=e,¥p € R Then, there exists € (a, b), such that(T,, f)(c) = 0.
(i) T (A) = 0, for all constant functiong (t) = A. Theorem 5 (Mean Value Theorem) [3]. Leta > 0,

, a € (0,1] and f : [a,00) — R be a given function that
(V) To(fg) = f(Tug) + 9(Taf) satisfies

V) Tu(f/g9) = (9[Tuf] + f[TagD/gg

(vi) If, in addition, f is differentiable, thenT, f)(t) = ) ) )
= (df [dt) (t). - [ is a-differentiable on(a, b).

- fis continuous irfa, b].

The conformable fractional derivative of certain func- Then, existg € (a, b) such that
tions for the above definition is given as:
fb

\_/

f(a)

(i) T.(1) =0, (Taf)(c) = ﬁv (7)

(i) T.(sin(at)) = at'=%cos(at), o a

(iii) T (cos(at)) = —at*~“sin(at), Theorem 6. [5]. Leta > 0, « € (0,1]and f : [a,00) —

R be a given function that satisfies

(iv) To(e™) = ae*, a € R.
Definition 2. The (left) conformable derivative starting from - [ is continuous irfa, b].
a of a given functioryf : [a,00) — R of order0 < o < 1, - fis a-differentiable on(a, b).
[4], is defined by ’

—a If (Tof)(c) = 0forallt e (a,b), thenf is a constant on
t+e(t—a)l=) — f(t
(@)(t) =ty EFCZ DD T gy gy

o _ _ Corollary 7. [5]. Leta > 0, a € (0,1] and F,G :

~ Whena = 0, it is written as (To.f)(). If fis a-  [q 00) — R be functions such thafl, F)(t) = (TnG)(t)
differentiable in soméa, b), then the following can be de- for all ¢ € (a,b). Then, there exists a constafitsuch that
fined as

(Tef)(a) = lim (T3 f)(a), 4) F(t)=G(t) +C, (®)

t—a

The following definition is the-fractional integral of a func-

Theorem 3 (Chain Rule) [4]. Assumef,g : (a,o0) — R tion f starting froma > 0:

be (left) a-differentiable functions, wher® < o < 1. By

letting h(t) = f(g(t)), h(t) is a-differentiable for allt # a Definition 3.
andg(t) # 0, therefore, we have the following: t )
a _ a . a . a—1 IZ(f)(t) = / 1—
(Tah)(t) = (T f)(9(t) - (T5g)(t) - (9(t)* ", (5) J @
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where the integral is the usual Riemann improper integral, = Consequently, we have
anda € (01] [2].

Theorem 8 T2I%(f)(t) = f(t), for t > a, wheref is W, y)(t) = e oo P@/1=drypra vy
any continuous function in the domain 6f.

Lemma 9. Let f : (a,b) — R be differentiable and

€ (0,1]. Then, for alla > 0, we have3], This completes the proof.

Similar to the classical case, by using the above formula,
ST (f)(t) = f(t) — f(a), (9) we can immediately obtain the following equivalent condi-
tion of linear independence:
Finally, we give the definition of non-conformabte- Theorem 10 Two solutions x and y of Eq. (11) defined

Wronskian, which is necessary in the next section. on [a,b] for somed < a < b are linearly independent if and
Definition 4. Let z and y be given conformabley- only if W (z, y)(t) # 0 forall ¢ € [a, b].

differentiable functions ofu, b] witha > 0 anda € (0, 1].

C Now, we propose a conformable version of three classical
We set the following:

results, the Sturm-Picone identity, Sturm’s comparison, and
2(t) y(t) separation theorems of order+ « [20].
(10) Let us now introduce the conformable self-adjoint Sturm-
Liouville equation as follows:

W (z,y)(t) =

3. Sturm’s theorems

Ta(pr(t)Tax(t)) + po(t)z(t) = 0, (13)
In this section, we consider the scalar fractional differential T (p1 () Taz(t)) + po(t)z(t) = 0, (14)
equation of ordety + « as follows:
ToTaz(t) + p(t) Taz(t) + q(t)z(t) = 0, (12) wherepg, p1, 90, ¢1, Ta p1, Toq1 are continuous on some

closed intervall C [0,+o0), p1 > 0, ¢1 > 0 onI and
with continuous functiong andq, anda € (0,1]. Tradi- « € (0,1].
tionally, from [19], two functions: andy that are continuous Theorem 11 (Conformable Picone Identity If x(t),
on [a, b] for some0 < a < b, will be called linearly depen- 4(t) and p, (t)T,x(t), ¢1(t)Ty(t) are a-differentiable for
dent if there exist;, c2 € R such thaic| + |e;| > 0and ¢ ¢ T andy(t) # 0in I, then we obtain
c12(t) + coy(t) = 0 for all ¢ € [a, b]. In the other case, they
are linearly independent. x(t)
Remark 1. We can write Ta (

@y — I A dayya T z(t))?
w ( ay)(t) w ( 7y)(t0)7 (12) _ $(t)T (pl(t)TafL'( )) o ( ((tt))) Ta(q1(t)Tay(t))
for two solutionse andy of [5] and somé € (a, b). In fact, Y
we apply the operatdF,, on W (z, y)(t) to obtain + (p1(t) — () (Toz(t)? + @ (t)
Toa(W(z,y)(t)) = Ta(2(t)Tay(t) — y(t) Taz(t) ~ <Tax(t) _ Z:EgTO‘ (t)) ) (15)
= Tax(t)Tay(t) + x(t)TaTay(t)
— Toy(t)Tax(t) — y(t) ToTuz(t). Proof.  This arises from the straightforward:-

differentiation.
Theorem 12(Conformable Sturm’s Comparison Theo-
ToToa(t) = —p(t) Tz (t) — q(t)2(t), rem). Let07?a < b be two consecutive zeros of a nontrivial
solutionz(t) of Eq. (3.3). Suppose that

However,z andy satisfies (11). Hence, we have:

and
ToTay(t) = —p(O Tay(t) — a(D)y(d). 0 0< @) <p(b).
Therefore, we get
Toa (W (2, ) (1) = —(2(t)Tay(t) — y(t)Tax(t))p(t)
= —(W(z,y)(t))p(t).

and

(i)) qo(t) < po(t),

Thus for all ¢ € [a, b]. Then, every solution(t) of Eq. (14) has at
least one zero in the closed interval [a,b].
Toa (W (2,y)(t)) = —p(t). Proof. If x(t) andy(t) are solutions of (13) and (14),
we(z,y)(t) respectively, andy(t) # 0 for all t € [a,b], then the
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conformable Picone identity (15) yields on substitution ofwhich implies that the conformable Wronskian,

Eq. (13) and (14) as follows: We(x,y)(t), is zero for allt and thatx(t) and y(¢) are
2(t) linearly dependent. For the same reason, we know that
T, (y(t) [m(t)y(t)Tax(t)—q1<t>x<t>Tay<t>]) y(b) # 0, but whenq,(t) = pi(t) and ao(t) = po(t),
Eq. (16) becomes
= (po(t) — ao(t))((£))* + (p1(t) — qu(t))(Taz(t))? ,
- 2 z(t) S|
F o) (Toa) - Z0T00) / () (Tt~ S T0) e
Integrating ovefa, b]; therefore, we have (see Lemma 9), (1) t=b
, ~ [2 06070 - a0 Tas0)]|

/((po(t) = qo())(@(1)* + (p1(t) — @1 () (Ta(t))?

uates to zero. Since; (¢) 0 in [a,b], it follows that

fa® {Tax@) _ MTQy(t)} ) L Toe(t) = (a(t) /y(1) Tay (1) = 0, or

we ($7y)(t) = y(t>Tam(t) - w(t)Ta (t) =0,

Sincey(a) # 0 andy(b) # 0, the right-hand side eval-
>

B ‘T(t) t=b
a {Z/(f)[pl(t)y(t)Tax(ﬂ B ql(t)x(t)TQy(t)] —u forallt € (a,b). Henceg(t) andy(t) are linearly dependent
(16)  on(a,b) which is a contrary to our assumption.

The right-hand side of Eq. (16) evaluates to zero by asReMark 2.

sumingz(a) = x(b) = 0, andy(a) # 0, y(b) # 0. Since ) i .
q1(t) > 0in [a, b], the third term of the integrand is nonneg- (i) Conformable Sturm’s Comparison Theorem guaran-

t

ative over|a, b]. Hence, we must have either tees the existence of at least one zero.
() Tox(t) — (x(t)/y(t)Tay(t) = 0in [a, b] (i) The assumptiony(t) < po(t) cannot be dropped.
or Consider the equation an> 0, T, Toz(t) + x(t) =
) 0(p1(t) =1, po(t) = —1) and T, Tay(t) — y(t) =
(if) 0(q1(t) = 1,g0(t) = 1) and letz(t) andy(t) be their
b non-trivial solutions, respectively. Between any two
/([po(t)—qo(t)](x(t))2+[p1(t)—ql(t)](Tam(t))z) zeros ofz(t), y(t) does not admit a zero.

(ii) Consider the equation an> 0, T, T,x(t) + z(t) =
x (1/t17*)dt < 0. 0(p1(t) = 1, po(t) = —1) and T, Tay(t) + 4y(t) =
0(q1(t) = 1,q0(t) = —4), and letz(t) = sin(t*/«)
andy(t) = sin(2t*/«) be their non-trivial solutions,
respectively. However, there is no zeradt) between
two consecutive zeros gf(t).

However, case (ii) gives an immediate contradiction since
po(t) — qo(t) > 0 andp;(t) — g1 (t) > 0 by assumption. In
Case (i), we are also led to a contradiction since (i) implies

yO)Ta(t) — 2()Tay(t) _ . (x(t)) _
2 a\
(y(1)) y(t)
or (t) = ky(t) for all t € [a,b], for somek # 0, but
y(a) = y(b) = 0 which is a contrary to our assumption.
Theorem 13 Conformable Sturm’s Separation Theo-
rem). Let0 < a < b be two consecutive zeros of a nontrivial
solutionz(t) of Eq. (13). Lety(¢) be any other solution of

Eq. (13) which is linearly independent oft). Then,y(t) wherea € (0,1] andp > 0. Clearly, if o — 0, the above

has exactly one zero of the interval §). In other words, the S . .

) . : equation is just the classical Bessel Equation, [19]. For more
zeros of any two linearly independent solutions of (13) are : ; Lo
: information about the conformable Bessel's function in the
interlaced. solution of wave equation, we refer to [21]

Proof. On the contrary, suppose thatt) # 0 for all Fort > 0 E ’h iab - 19/ th
€ (a,b). Sincex(t) andy(t) are linearly independent, it E (1”7 t> ’f ma Ingt a change variablg = v/t*/*, the
follows thaty(a) # 0; otherwise, we would have 9. (17) transforms into

- bl

Remark 3. An important application of Sturm’s Comparison
Theorem is to provide a good understanding of the zero set on
non-trivial solutions of Conformable Bessel's Equation. The
Conformable Bessel's Equation is given by

T Tay(t) + ot Toy(t) + (12 — p)y(t) =0, (17)

1—4p?
442«

W (z,y)(a) = Ti(;‘()t) Ti(;()t) =0, ToTay(t) + (1+

) o(t)=0.  (18)
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(To obtain the above equation, we start differentiating theTheorem 14. Letxz;(t) andz,(¢) be two solutions of (19a)
equationt®/%y = v). that verify condition (19b). Then;; (t) and z»(t) are lin-
Case 1:p > 1/2. In this case, compare (18) with early dependent.

Proof. Sincela;| + |az| # 0, it follows from
TaTay(t) + a2y(t) =0,

a1x1(a) + asTyx1(a) =0,
which has a solutiomin(t®) with zeros att = (nm)/®, 121(a) + azTam (a)

n € N. Therefore, a solution of (18) has at least one zero on a1z1(a) + asThxi(a) = 0,

each of the open interv@l{n — 1}7]'/*, (nm)'/*],n € N.

Case 1:: 0 < p < 1/2. In this case, compare (18) with that

2 _ o rila Ia2\a
TaTay(®) + a7y(t) = 0, R A

and conclude that between any two consecutives zerasq _

b of u(t), there exists one zero efn(t*). Thus, we have Therefore,r, () andz,(t) are linearly dependent.

a < (nm)'/* < bfor somen € N. Theorem 15. Letz,(¢) andz,(t) be two solutions of (19a)
that verify condition (19c). Then; (¢) andz.(t) are linearly
dependent.

4. The study of conformable Green’s Func-

i Proof. It is analogous to the proof of the above theorem.
1ons

Theorem 16. System (19) has no Green’s Function\ifs
an eigenvalue.

Proof. Let z;(t) be an eigenfunction of system (19). Let
In this section, we consider the conformable Sturm- Liouville2(t) be a solution of (19a) linearly independent.ofit).

4.1. Conformable Green'’s Functions

system From Theorems 14 and 15, it turns out tha{(t) does not
verify the conditions (19b) and (19c).

To(p(t) Tox(t))+(Ap(t)—q(t)z(t)=0 (19a) According to the condition (jii) of (¢, ), the said func-

arz(a) + agTox(a) = 0 (198) (19)  tion is a solution of (19a) in the intervals < t < ¢ and
biz(a) + boTox(a) =0 (19¢) e < t < b, so it has the following form:

N A )+ A ) a<t
jar] + lazl # 0, [bu] + [ba] 0, o ={ O RO S5

with continuous function(t), ¢(t) and p(t) on [a,b] for
some0 < a < b, such thaip(t) > 0 andp(t) > 0 for all
t € [a,b] anda € (0,1].

Let us now express th&t“ (¢, ) meets the condition (iv)

Definition 5. Let Q denote the squai® = [a, b] x [a, b] for a1 (Ai(#)1(a) + Az(#)2(0))

somel < a < b, in thet e-plane. A functionG*(t,¢) de- + az(A1(e)Thz1(a )+A2(5)Tax2(a)) =0,
fined inQ is called conformable Green’s Function of Sturm-

Liouville system (19), if it has the following properties: bi(Bi(e)1(0) + Ba(e)2(b))

(i) The functionG(t, ) is continuous inQ. + b (Bi(e)Taza (b ) + BQ(‘E)TO‘@(b)) =0
(i) Lete € (a,b) be fixed. Ther7*(t, ¢) has conformable Sincex; (t) meets both conditions (19b) and (19c), the
partial derivatives of left and right with respect to vari- above equalities are reduced to

ablet, fort = ¢, and it is verified as follows:
As(e)(arza(a) + agTuza(a)) =0,

L PV O Ba(e)(b122(b) + baTox2(b)) = 0.
8taG (eT,e) 8taG (e7,e) = e
. ) On the contrary, we have
(i) Lete € [a,b] be fixed. ThenG*(t, ) has continuous
confqrmable partial dgrivatiyes of first gnq sec'o.nd or- a122(a) + asTaza(a) # 0,
der with respect to variablgif ¢ ¢, and it is verified
as follows: b1z2(b) 4+ baTpxa(b) # 0.
9 so that
e POTG(t€)) + (Ao(t) — a(1))G% (¢, ) = 0.
Az(e) =0, a<t<e
(iv) Lete € (a,b) be fixed. ThenG*(t,e) satisfies the
boundary conditions (19b) and (19c). By(e) =0, e<t<b
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From here, we have

from where it follows, remembering thaj (¢) andx(t) are

Gorey A (t) a<t<e Zr)llo;f}(lg)eifg;;tl;)ln(sb?;dbtherefome(a)+a2Tax2(a) # 0,
’ Bi(e)z1(t) e<t<b ° @ '
SinceG“(t, ¢) is a continuous function, we obtain Ax(e) =0 a<e<bh.
Bl (8) =0
lim Ga(t,é‘) = A1(€)l‘1(€) . . . Ly
t—e~ Now, by applying conditions (i) and (ii), it turns out that
lim G%(t,e) = By (e ),
st (t,€) = Bi(e)z1(e) A1(e)x1(e) + Ba(e)xa(e) =0,
so that 1
A1(e)Tox1(e) + Ba(e)Thxa(e) = )
Ai(e) = Bi(e), a<e<b. P
From here, it follows that which allows us to calculate the following:
o« o« —Z2 (8)
_ (6% _ (6% A E) = 5
g0 (e ~ gm0 =0, ) = O O Tars(e) — 22 Tat ©)
which contradicts condition (ii). Bale) = —1(e)
Theorem 17. System (19) has one, and only one, Green’s S p(e)[x1(e)Thwa(e) — wa(e)Tax1(g)]
Function if A is not an eigenvalue. ) )
Proof. Let z; (t) andz,(t) two solutions of (19) such that Note thatr: (¢)Taa2(€) — 22(e)Ta1(€) is Nonzero since
it is conformable Wronskian of two linearly independent so-
z1(a) = az, Tux1(a) = —ay, lutions of Eq. (19).
2o(b) = by, Tawa(b) = —bi. Given the following:

Sincelay |+ |az| # 0, |b1|+ |ba| # 0, z1(t) andas () are To(p(t)Taw1 (1)) + (Ap(t) — q(t)) 21 (t) =
not null, they are also satisfying conditions (19b) and (19c)

. ’ To(p(t)Taw2(t)) + (Ap(t) — q(t))z2(t)
respectively.

These solutions are linearly independent, since otherwise gy multiplying the first equation by (t), the second by
it would be x1(t), and subtracting, we have

0,
0.

21(t) = po(t), w7 0. 23(0)Ta (p(t) Taie (1)) — 1 ()T (p(t) Tz (£)) = 0
Therefore, we have

that can be written in the form
blxl(b) + bgTaxl(b) = ,U,[bl.’tz(b) + bQTal’Q(b)] =0.

p(t)(2(t)Tax1(t) — 21 (t) Tax2(t)) = 0.
As a result,z;(¢) would comply with (19b) and (19c).
This is not possible since (¢) is not an eigenfunction. So,p(e)(z2(e)Tuz1(e) — z1(e)Taxa(g)) is a constants
The reasoning as in the proof of Theorem 16, we have tdhat does not depend an

Hence, we have
o ] Ai(g)zi(t) + Az(e)xe(t) a<t<e '
G2 (t,e) —{ By()as (1) + Bale)ealt) c<t<b °

Expressing tha6&“ (¢, ) meets the condition (iv), and it
turns out that

{ wr1(t)ra(e) a<t<e
G“(t,e) =
Lai(e)aa(t) e<t<b

The conformable Green’s Functic#t* (¢, ) has the prop-
a1 (A1(e)m1(a) + Az(e)z2(a)) . (t,€) prop

( ( erties (i) - (iv). The uniqueness of this function is easily de-

+az (A (€)Taz1 (a ) + Az(s)Ta:cg(a)) =0, guac((;,\d(e;rom the method that we have followed to determine

bi (Bi(e)z1(b) + Ba(e)za(D)) Ejem’ple. 1. Consider the system

b2 (Bi(e)Tar (b >+ 32(5)Tax2(b)) =0 TuTaa(t) +2(t) =0 te [0, (am)/]

that is reduced to z(0) + Toz(0) =0 }
z((am)/*) = 0

As(e)(arza(a) + asThxo (a))

)

0
for somea € (0,1], we will find the corresponding con-
Bl (8)([)11‘1([)) + bQTal‘l(b)) =0

formable Green’s Function. In this cagét) = 1, ¢(t) =

)
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-1, A = 0, p(¢t) is any positive continuous function in
0, (am)1/a)],a1 =1,a9 =1,b; = 1,by = 0.
The general solution ¢f,, T,z (t) + x(t) = 0is

x(t)

Then, we have
2(0) + Tox(0)
z((am)/*) = —A =0.

From hereA = 0, B = 0, so there was the conformable
Green'’s Function of the given system.

The solutions of T, T,xz(t) + z(t) = 0; z1(t) =
cost®/a+sint®/a, xo(t) = sint®/« satisfy the conditions
z(0) + To2(0) = 0,2((ar)(1/a)) = 0. The conformable
Green'’s Function has the form

{e%

t ot
= Acos — + Bsin —.
o «

—A+B=0,

+x2(e)a1(t) 0<t<e
G(t,e) =
Lai(e)za(t) e<t< (aml/
so that
K = p(e)(z2(e)Tami1(e) — 21(2)Taz2(€))
€a ) sa
= < sm— +cos> sin —
« «
e* e*
(— cos — + sin ) cos — = —1.
« «
Therefore, we obtain
G“(t,¢e)
—sin%(cos%—i—sin%) 0<t<e

|

4.2. The applicability of conformable Green'’s function

— (cos% +sin%) Sin% e <t < (am)t/e

In this section, we consider the system

T (p(t)Tuie(t)) — g(t)a(t) =0 (20a) }
arz(a) + as(x)Tax(a) =0 (200) (20)
biz(a) + ba(x)Tax(b) =0 (20c)

obtained from (19) for\ = 0. We now propose to solve the
inhomogeneous system

Ta(p(t) Tax(t)) — a(t)a(t) = — (1)
arz(a) + az(x)Tuz(a) =0
biz(a) + be(x)Toz(b) =0

wheref(t) is a real continuous function in the intenjal ]
for some0 < a < b.
Theorem 18.

(21)

one solution, which is given by

b
x(t) = /Ga(t,a)f(s)sl%ada,
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whereG*(t, ) is the conformable Green’s Function of (20).
Proof. That homogeneous system (20) has its unique solution
as the identically null function which is equivalent to saying
that\ = 0 is not an eigenvalue of (19); therefore, there is the
conformable Green'’s Function of (20).

Letz, (¢) andzy(t) be two linearly independent solutions
of (20a) that verify (20b) and (20c), respectively. Let us ap-
ply the conformable version of the method of variation of the
parameters to solve (20a). Then, we have

t)xl (t) + B(t)l‘g (t)
$2(t)

— Q1) (At)z

=

B(t) + A(t)To (1)
1(t) + B(t)z2(1))

that is to say

A(t)Toz (p(t)Taxl(t) - )
B(t)To (p(t) Tawa(t) —
)

)T (p(
p(t) (Ta A(t) Tz (t) + T,
p (

A(t)g(t)a1 ()]

B(t)q(t)z2(t))
o B(t)Taxs(t))

T A(t) + z2(t)Ta B(t)])

)
( t) [:Ll = _f(t)v
that is

p(t) (To A(t) Toa1 (t) + To B(t) Taxa(t))
+ Ta (p() 21 () Ta A(t) + 22() Ta B(1)]) = —f(2).
We make
21 ()T A(t) + 22(t)ToB(t) =
and we have

p(t) (TaA() Tz (t) + ToB(t)Taz2(t)) = — f(2)
so that

—z2(t) f(t)
p(t) (w2(t) Tawa (t) + 21(H) Taza(t))
(

a1 (1) (1) .
p(t) (z2(t)Taxy (t) 4+ 21 (t) Taza(t))

We know, from the proof of Theorem 17, that
p(t)(x2(t)Tox1(t) + 21 (t)Txe(t)) is a constant, and it is
equal toK. On the contrary, we have

a1z(a) + asTox(a) = a1 (A(a)z1(a) + B(a)za(a))
+ as(z1(a)TaA(a) + z2(a)To B(a) + A(a)Tyz1(a)
+ B(a)Tawz(a)) = A(a)(arz1(a) + axTaz1(a))
+ B(a)(a1z2(a) + asTaxa(a)) = B(a)(a1z2(a)
+ aThra(a)) =0

TLA(t) =

T.B(t) =

If the homogeneous system (20) has its only
solution as the identically null function, then (21) has only
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and sincers(t) is not an eigenfunction of (20) it turns out
that

ayxs(a) + asTyxa(a) # 0,

so thatB(a) = 0.
By writing now the following:

biz(b) + bTpz(a) = 0.

Similarly, we obtainA(b) = 0.
So, we have

/ 1
A(t) — / ng((g)f( )61704 de + C1,
and sinceA(b) = 0, we have to
t
A = - [ 2 o)L
/ 1 b 1
+ / wigg)f(s) e e = / migg)f(s) Sia de.
Analogously
t
1
B(t) = — / $1I((€)f(s) NN

/

b
_ /Gg(t,s)f(a)gli_ads,

where we have the following
+a1(t)ae(e) a<t<e

1
K

G*(t,e) = {

1‘1(5)1‘2(t> e<t<b

which is the Green’s Function.
Example 2 By using the Green’s Function, we want to solve
the following system

ToTox(t) + 2(t) = /> t €0, (ar)/*]
xz(0) =0
Toa((am)'/?)

F. MARTINEZ, I. MARTINEZ, M. K. A. KAABAR AND S. PAREDES

First, we find the conformable Green’s Function of the
homogeneous system.
We have following:

(0% (03

t t
>+Bsin(
« o

z(t) = Acos (
X0)=0=4
Toz((am)/*) =0=B.

Therefore, the conformable Green'’s Function exists. This
function can be written as

> e <t < (am)t/e

(0%

(5)n(
COS| — |sm| —
« (0%
e* t*
sin () Cos <

(8% (6%
Therefore, our intended solution can be written as fol-
lows:

5(1
0<t<e

G*(t,e)

(am)l/ e

— / G*(t,e)es" /™ de

el-

« 1
e/
) e ()‘61,&

[0

t(X

e

(%

T () ()
() () I)
() ) (S
() {2} () 1)
() (-] enf])
(o2 2]}

()

Finally, we investigate the generalized Hyers-Ulam sta-
bility of the conformable linear inhomogeneous differential
equation of orderx + « (21) in the class of continuously
twice a-differentiable functions.

Theorem 19. Letp,q, f : [a,b] — R be continuous func-
tions and letp be a-differentiable function ond, b]. Assume
that the conformable homogeneous differential equation (20)

«
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has its only solution as the identically null function. If a twice for all ¢ € [a, b]. According to Theorem 18, it is obvious that

continuouslya-differentiable functione : [a,b] — R satis-
fies the inequality
Ta(p(t)Tox(t)) — q(t)2(t) + f(O)] < (1), (22)

forall ¢ € [a, b], wherep : [a,b] — [0, c0) is given that such

xo is a solution of (21). Moreover, it follows from (25), (26)
and (27) that

of the following integrals exists, then there exists a solution '

xo : [a,b] — R of (21) such that

o(0) = 0(8)] < 7 <x1<t>| / o2(€)lp(6) g e

Haa(o) [ |x1<e>|¢<e>511_ads>, 23

whereK is a nonzero constant ang (¢) andz»(t) are two

b
o)~ o] < |~ [ OO s(0) 4 pe e
- [ 220 ) + (o)) e

+laa(t) | |x1<e>so<s>€fade)

linearly independent solutions of (20a) that verify (20b) andfor all ¢t € [a, b].

(20c), respectively (see Theorem 18).
Proof. If we define a continuous function: [a,b] — R by

s(t) = Ta(p(t)Taz(t) — q(t)z(t)), (24)
forall t € [a,b], then it follows (22) that
s(t) + f(£)] < (1), (25)

forall ¢ € [a, b]. In view of Theorem 18 and (24), we have

(26)

where K is a nonzero constant becausgt) andxz.(t) are

two linearly independent solutions of (20a) that verify (20b)

Remark 4. Theorem 19 reduces to [22] (Theorem 3.2) in the
casex = 0 and using the Green’s Function.

5. Conclusion

In this research paper, we have proposed some results re-
ferring to the conformable boundary value problems. The
conformable Sturm-Picone identity of order « has been
proven, and its Sturm’s theorems of comparison and sepa-
ration have been successfully established. As in the classi-
cal case, an important application of the Sturm’s compari-
son theorem is to provide a clear understanding of the zero
set of non-trivial solutions of the conformable Bessel's equa-
tion. For a conformable Sturm-Liouville system, we have
defined the Green’s function and established its properties.
The conformable Green'’s function is applied to construct the
solution of the inhomogeneous problem of Sturm-Liouville,
whose associated homogeneous problem has its only solution
as the identically null function. Finally, we have proved the
generalized Hyers-Ulam stability of the conformable linear
inhomogeneous differential equation of ordes « (21) in

the class of continuously twice-differentiable functions.

and (20c), respectively (see Theorem 18). We now define &Cknowledgments

functionzy : [a,b] — R by

(27)
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