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Analytical solutions of the N-dimensional Schrödinger equation for the newly proposed Varshni-Hulthén potential are obtained within the
framework of the Nikiforov-Uvarov method by using the Greene-Aldrich approximation scheme to the centrifugal barrier. The numerical
energy eigenvalues and the corresponding normalized eigenfunctions are obtained in terms of Jacobi polynomials. Special cases of the
potential are equally studied and their numerical energy eigenvalues are in agreement with those obtained previously with other methods.
However, the behavior of the energy for the ground state and several excited states is illustrated graphically.
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1. Introduction

The interactions of quantum systems with the spherically
symmetric potentials have been studied by researchers since
the discovery of quantum mechanics [1-3]. From the early
days of quantum mechanics, the study of exactly solvable
problems has attracted a considerable attention in many ar-
eas of physics, particularly in atomic physics, information
theory, nuclear physics, particle physics, molecular physics
and its importance cannot be overemphasized [4,5]. The ex-
act solution of the relativistic and non-relativistic equations
for most of these types of potentials is not attainable and ap-
proximations become indispensable [6]. For instance, in the
case of the Schrödinger equation, when the angular momen-
tum quantum number is present, one can resort to solve the
non-relativistic equation approximately via a suitable approx-
imation scheme [7]. Some of such approximations, yield-
ing good results, consist of the conventional approximation
scheme proposed by Greene and Aldrich [8], the improved
approximation scheme by Jiaet al. [9], the elegant approxi-
mation scheme [10], the Pekeris approximation [11], the im-
proved approximation scheme by Yazarlooet al. [12], im-
proved approximation scheme in Refs. [13-15] and in Refs.
[16,17].

Over the past decades, problems involving the multi-
dimensional Schr̈odinger equation have been addressed by
many researchers using different analytical procedures. For
examples, Ntibiet al. [18] investigated the analytical so-
lution of the D-Dimensional radial Schrödinger equation
with Yukawa potential. Oyewumiet al. [19] studied
the N-dimensional Pseudoharmonic oscillator. Gönül and
Koçak [20] investigated explicit solutions for N-dimensional
Schr̈odinger equations with position-dependent mass. The
N-dimensional Kratzer-Fues potential was discussed by
Oyewumi [21], Ikhdair and Sever [22], studied the modi-

fied Kratzer-Fues potential plus the ring shape potential in
D-dimensions while Dong [23], reviewed the wave equations
in higher dimensions.

The Varshni potential is greatly important with applica-
tions, cutting across nuclear physics, particle physics and
molecular physics. The Varshni potential model takes the
form [24,25]:

VV = η0 − η0η1

r
e−δr, (1)

whereη0 andη1 are potential strength parameters,δ is the
screening parameter andr the inter-nuclear separation. The
Varshni potential is a short-range repulsive potential energy.

The Hulth́en potential is one of the important short-
range potentials in physics. Its relevance to diverse areas
of physics including nuclear and particle physics, atomic
physics, molecular physics, condensed matter and chemical
physics has been of great interest and concern to researchers
in recent times [26,27]. The Hulthén potential model takes
the form [28]

VH(r) = − η2e
−δr

1− e−δr
, (2)

where δ is the screening parameter andη2 is the poten-
tial strength constant which is sometimes identified with the
atomic number when the potential is used for atomic phe-
nomena. Many authors have obtained bound state solutions
of SE with this potential. For example, Tazimi and Ghasem-
pour [29] used the Nikiforov Uvarov (UN) method to obtain
bound state solutions of the three-Dimensional Klein-Gordon
equation for two model potentials. Quantization rule was em-
ployed by Ikhdair and Abu-Hasna [30] to obtain the solution
to the Hulth́en potential in arbitrary dimension with a new ap-
proximate scheme for the centrifugal term. Okorieet al. [31]
obtain the solution of Schrödinger equation (SE) with energy-
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dependent screened Coulomb potential with the new form of
Greene-Aldrich approximation using the NU method.

With the experimental proof of the Schrödinger wave
equation, researchers have made great effort to solve the SE
by the combination of two or more potentials, which can be
used for a wider range of applications [32]. For example,
Edet et al. [33] obtained bound state solutions of the SE
for the modified Kratzer potential plus screened Coulomb
potential including a centrifugal term. Also, Edetet al.
[34] obtained any-state solutions of the SE interacting with
Hellmann-Kratzer potential model. Williamet al. [35] ob-
tained bound state solutions of the radial SE by the combi-
nation of Hulth́en and Hellmann potential within the frame-
work of Nikiforov-Uvarov (NU) method for any arbitrary-
state, with the Greene-Aldrish approximation in the centrifu-
gal term. Inyanget al. [36] studied any-state solutions of the
SE interacting with class of Yukawa-Eckart potentials within
the framework of NU method. Hence, motivated by the suc-
cess of the combination of exponential-type potentials, we
seek to investigate the bound state solutions of the SE by the
combination of Varshni potential, of Eq. (1), and the Hulthén
potential of Eq. (2) using the NU method. The resulting po-
tential, so-called the Varshni-Hulthén potential (VHP), takes
the form

V (r) = VV (r) + VH(r) = η0

− η0η1

r
e−δr − η2e

−δr

1− e−δr
. (3)

Considering the achievements in the previous studies, we
combine the potentials to allow for more physical applica-
tion and comparative analysis to existing studies of molecular
physics. Also in molecular physics, it is well-known that the
potential energy functions with more parameters have a ten-
dency to fit experimental data better than those with fewer pa-
rameters [37]. The plot of the combined potential for differ-
ent values of the screening parameterδ is presented in Fig. 1.
However, it must be noted that the exact solution of the SE

FIGURE 1. Plot of the combined potential as a function of inter-
nuclear distance for different screening parameter. We choose
η0 = η1 = −1, andη2 = 0.025.

with the combined potentials in Eq. (3) is not possible due
to the presence of the centrifugal term. Therefore, to obtain
approximate solutions, we employ a suitable approximation
scheme. It is found that such approximation proposed by
Greene and Aldrich [8],

1
r2
≈ δ2

(1− e−δr)2
, (4)

is a good approximation to the centrifugal or inverse square
term for a short range potential which is valid forδ 1.

The paper is organized as follows: In Sec. 2, we derive the
bound state solutions of the SE with VHP using NU method
and also derive the corresponding normalized wave function.
In Sec. 3, we present the results and discussion and finally,
we make a concluding remark in Sec. 4.

2. Bound state solutions of the Schr̈odinger
equation with Varshni plus Hulth én poten-
tials

In this study, we adopt the Nikiforov-Uvarov method which is
based on solving the second-order differential equation of the
hypergeometric type. The details can be found in Ref. [38].
The SE takes the form Ref. [39]

U//
nl(r)+

(
2µ

~2
[Enl − V (r)]

− (N + 2l − 1)
4r2

)
Unl(r) = 0, (5)

wherel, µ, r, N , and~ and are the angular momentum, the
reduced mass of the particle, inter-particle distance, the num-
ber of space, and reduced Plank constant, respectively. Sub-
stituting Eqs. (3) and (4) into Eq. (5) we obtain

U ′′
nl(r) +

(
2µ

~2

[
Enl − η0 +

η0η1δe
−δr

(1− e−δr)

]

− δ2(N + 2l − 1)(N + 3l − 3)
4(1− e−δr)2

)
Unl(r) = 0. (6)

By using coordinate transformation

x = e−δr (7)

we obtain the differential equation as

U ′′
nl(x) +

1− x

x(1− x)
U//

nl(x) +
1

x2(1− x)2
(− [ε + β0]x2

+ [2ε + β0]x− [ε + γ]
)
U(x) = 0, (8)
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where

−ε =
2µEnl

~2δ2
− 2η0µ

~2δ2
,

β0 =
2η0η1µ

~2δ
+

2η0µ

~2δ2
,

γ =
(N + 2l − 1)(N + 2l − 3)

4
. (9)

Now that Eq. (8) and Eq. (1) of Ref. [38] are in the same
shape, we have the following parameters:

σ(x) = −(ε + β0)x2 + (2ε + β0)x− (ε + γ),

σ(x) = −x(1− x), τ̃(x) = 1− x. (10)

Substituting Eq. (10) into Eq. (11) of Ref. [37], we obtain
π(x) as

π(x) = −x

2
±

√
(A− k)x2 + (k + B)x + C, (11)

where

A =
1
4

+ ε + β0, B = −(2ε + β0), C = ε + γ. (12)

To find the constantk, the discriminant of the expression
under the square root of Eq. (11) must be equal to zero. As
such we have that

k = β0 − 2γ ± 2
√

ε + γ

√
γ +

1
4
. (13)

Substituting Eq. (13) into Eq. (11) yieldsπ(x) as

π(x)=−x

2
±

(
√

ε + γ+

√
γ+

1
4

)
x−√ε+γ, (14)

andτ(x) can be written as

τ(x) = 1− 2x− 2
√

ε + γx

− 2

√
γ +

1
4
x + 2

√
ε + γ. (15)

Taking the derivative of Eq. (15) with respect tox, we
have

τ ′(x) = −2− 2

(
√

ε + γ +

√
γ +

1
4

)
. (16)

Referring to Eq. (10) of Ref. [38], we define the constant
γ as,

λ = −1
2
−√ε + γ −

√
γ +

1
4

+ β0

− 2γ − 2
√

ε + γ

√
γ +

1
4
, (17)

and taking the derivative ofσ(x) with respect tox from
Eq. (10), we have

σ′′(x) = −2. (18)

Substituting Eqs. (15) and (18) into Eq. (13) of Ref. [38],
we obtain

λn = n2 + n + 2n

(
√

ε + γ +

√
γ +

1
4

)
. (19)

By comparing Eqs. (17) and (19), using Eq. (9) yields
the energy eigenvalues equation of the VHP as a function of
n andl as

Enl = η0 +
δ2~2(N + 2l − 1)(N + 2l − 3)

8µ

δ2~2

8µ




[
n + 1

2 +

√
(N + 2l − 1)(N + 2l − 3)

4
+ 1

4

]2

−Q

n + 1
2 +

√
(N + 2l − 1)(N + 2l − 3)

4
+ 1

4




2

, (20)

where

Q =
(

2η0η1µ

~2δ
+

2η2µ

~2δ2

)

+
(N + 2l − 1)(N + 2l − 3)

4
. (21)

To obtain the corresponding wavefunction, we consider
Eq. (3) of Ref. [38], and upon substituting Eqs. (10) and (14)
and integrating, we get

φ(x) = x
√

ε+γ(1− x)(1/2)+
√

(1/4)+γ . (22)

To get the hypergeometric function, we first determine the
weight functionρ(x). By substituting Eqs. (10) and (14) into
Eq. (3) of Ref. [38] and after integrating, we obtain

ρ(x) = x2
√

ε+γ(1− x)2
√

1/4+γ . (23)

Hence, by substituting Eqs. (10) and (23) into Eq. (2)
yields the Rodrigues equation given as

y(x) = Nnlx
−2
√

ε+γ(1− x)−2
√

(1/4)+γ

× dn

dxn

[
xn+2

√
ε+γ(1− x)n+2

√
(1/4)+γ

]
, (24)
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TABLE I. Energy eigenvalues (eV) of the Varshni-Hulthen potential forη0 = η1 = −1, η2 = 0.025 with ~ = 2µ = 1.

State δ N = 3 N = 4 N = 5

1s 0.025 -1.975781250 -1.419947195 -1.224992578

0.050 -1.526875000 -1.213252345 -1.101834379

0.075 -1.397725694 -1.148269303 -1.057252171

0.100 -1.333125000 -1.111565340 -1.027444000

0.150 -1.262152778 -1.062800124 -0.9783441671

2s 0.025 -1.226250000 -1.136131084 -1.086889280

0.050 -1.106875000 -1.055772344 -1.026860418

0.075 -1.068611111 -1.027534543 -1.002633126

0.100 -1.047656250 -1.010587522 -0.9858640000

0.150 -1.023819444 -0.9889295445 -0.9597536576

3s 0.025 -1.088142361 -1.058702155 -1.039373438

0.050 -1.031875000 -1.015446221 -1.003900782

0.075 -1.013913966 -1.001158640 0.9908992733

0.100 -1.005902778 -0.9950120013 -.09844360000

0.150 -1.004683642 -0.9961284666 -0.9827782293

3p 0.025 -1.086889280 -1.056823915 -1.036870313

0.050 -1.026860418 -1.007932642 -0.9938898525

0.075 -1.002633126 -0.9842622719 -0.9683923310

0.100 -0.9858640000 -0.9650092156 -0.9444802500

0.150 -0.9597536576 -0.9289088370 -0.8933044371

3d 0.025 -1.084383117 -1.053693514 -1.033115626

0.050 -1.016831266 -0.9954100212 -0.9788734727

0.075 -0.9800715659 -0.9561018046 -0.9346320845

0.100 -0.9457871111 -0.9150053890 -0.8845475625

0.150 -0.8699012826 -0.8168854194 -0.7591039275

4s 0.025 -1.040625000 -0.8168854194 -1.018280391

0.050 -1.008906250 -1.002307899 -0.9968737506

0.075 -1.002152778 -0.9980821361 -0.9935681755

0.100 -1.004414062 -1.002429482 -0.9981750400

0.150 -1.027517361 -1.030202097 -1.025835317

4p 0.025 -1.039373438 -1.025825868 -1.015778672

0.050 -1.003900782 -0.9948033881 -0.9868712556

0.075 -0.9908992733 -0.9812129600 -0.9710865137

0.100 -0.9844360000 -0.9724870563 -0.9582753600

0.150 -0.9827782293 -0.9631717038 -0.9365364617

whereNnl is the normalization constant. Equation (24) is
equivalent to

P

(
2
√

ε+γ,2
√

(1/4)+γ
)

n (1− 2x), (25)

wherePα,β
n is the Jacobi Polynomials. Hence, the wave func-

tion is given as

ψnl(x) = Nnlx
√

ε+γ(1− x)1/2+
√

(1/4)+γ

× P

(
2
√

ε+γ,2
√

(1/4)+γ
)

n (1− 2x). (26)

Rev. Mex. F́ıs. 67 (2) 193–205



EIGENSOLUTIONS OF THE N-DIMENSIONAL SCHR̈ODINGER EQUATION INTERACTING WITH VARSHNI-HULTHÉN. . . 197

FIGURE 2. Variation of energy eigenvalues as function of N for
differentl andδ. We choosea = b = −1, andc = 0.025

Using the normalization condition, we obtain the normal-
ization constant as follows:

∞∫

0

|ψnl(r)|2dr = 1. (27)

From our coordinate transformation of Eq. (7), we have
that

− 1
δx

0∫

1

|ψnl|2dx = 1. (28)

By letting,y = 1− 2x, we have

N2
nl

δ

1∫

−1

(
1− y

2

)2
√

ε+γ (
1 + y

2

)1+2
√

(1/4)+γ

×
(

P

(
2
√

ε+γ,2
√

(1/4)+γy
)

n

)2

dy = 1. (29)

Let

υ = 1 + 2

√
1
4

+ γ, and

µ− 1 = 2

√
1
4

+ γ, u = 2
√

ε + γ (30)

By substituting Eq. (29) into Eq. (28), using Eq. (30), we
have

N2
nl

δ

1∫

−1

(
1− y

2

)u (
1 + y

2

)υ

×
(
P (2u,υ−1)

n y
)2

dy = 1. (31)

According to Onate and Ojonubah [40], integral of the
form in Eq. (31) can be expressed as

FIGURE 3. a) The plot of the ground state energy spectra for variousl as a function ofη0. b) Variation of the first excited state energy spectra
for differentl as a function ofη0. We choosea = b = −1, c = 0.025 andδ = 0.025 for the ground and excited states.
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FIGURE 4. a) Variation of the ground state energy spectra for variousl as a function ofη1. b) A plot of the first excited state energy spectra
for variousl as a function ofη1. We choosea = b = −1, c = 0.025 andδ = 0.025 for the ground and excited states.

FIGURE 5. a) Variation of the ground state energy spectra for variousl as a function ofη2. b) The plot of the first excited state energy spectra
for variousl as a function ofη2. We choosea = b = −1, c = 0.025 andδ = 0.025 for the ground and excited states.

1∫

−1

(
1− p

2

)x (
1 + p

2

)y (
P (2x,y−1)

n p
)2

dp

=
2Γ(x + n + 1)Γ(y + n + 1)

n!xΓ(x + y + n + 1)
. (32)

Hence, by comparing Eq. (31) with the standard integral

of Eq. (32), we obtain the normalization constant as

Nnl =

√
n!uδΓ(u + υ + n + 1)

2Γ(u + n + 1)Γ(υ + n + 1)
. (33)

3. Discussion

Solution of the radial N-dimensional SE for the newly pro-
posed potential obtained by the superposition of Varshni and
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TABLE II. Energy eigenvalues (eV) of the Varshni-Hulthen potential forN = 3 with ~ = 2µ = 1.

State δ η0 = −1, η1 = −2, η2 = 0.050 η0 = −2, η1 = −1, η2 = 0.075 η0 = η1 = −2, η2 = 0.10

1s 0.025 -4.951406250 -8.189531250 -17.90265625

0.050 -3.178125000 -4.979375000 -10.85562500

0.075 -2.682934026 -4.144531249 -8.920017362

0.100 -2.445000000 -3.763125000 -8.012500000

0.150 -2.199236110 -3.391874999 -7.115069440

2s 0.025 -1.951875000 -3.502500000 -5.903125000

0.050 -1.492500000 -2.684375000 -4.107500000

0.075 -1.353819444 -2.461250000 -3.590902778

0.100 -1.280625000 -2.352656250 -3.332500000

0.150 -1.195277778 -2.236875000 -3.048611110

2p 0.025 -1.950609766 -3.501230860 -5.901844140

0.050 -1.487412504 -2.679271879 -4.102318752

0.075 -1.342319880 -2.449715279 -3.579121962

0.100 -1.260100250 -2.332069000 -3.311350250

0.150 -1.148818125 -2.190274722 -3.000182708

3s 0.025 -1.397100694 -2.635225694 -3.681684028

0.050 -1.183125000 -2.262152778 -2.860625000

0.075 -1.113937114 -2.155781250 -2.610279707

0.100 -1.076111111 -2.102569444 -2.476944444

0.150 -1.034359568 -2.047986111 -2.320563272

3p 0.025 -1.395844140 -2.633967404 -3.680420530

0.050 -1.178089585 -2.257110418 -2.855547918

0.075 -1.102593775 -2.144422285 -2.598811367

0.100 -1.055933444 -2.082364000 -2.456489000

0.150 -0.9889920835 -2.002556127 -2.274320787

3d 0.025 -1.393331033 -2.631450825 -3.677893532

0.050 -1.168018766 -2.247025710 -2.845393765

0.075 -1.079907212 -2.121704475 -2.575874807

0.100 -1.015578778 -2.041953778 -2.415578778

0.150 -0.8982647085 -1.911703752 -2.181843412

4s 0.025 -1.203750000 -2.332500000 -2.905000000

0.050 -1.078125000 -2.117656250 -2.427500000

0.075 -1.037361111 -2.056250000 -2.274444444

0.100 -1.017656250 -2.028164062 -2.190625000

0.150 -1.007569444 -2.011406250 -2.095277778

4p 0.025 -1.202496484 -2.331245508 -2.903742578

0.050 -1.073107813 -2.112635157 -2.422459376

0.075 -1.026072450 -2.044952550 -2.263085471

0.100 -0.9976000625 -2.008092250 -2.170412562

0.150 -0.9625842189 -1.966385868 -2.049800365
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FIGURE 6. a) Variation of the ground state energy spectrum for variousl as a function of the screening parameter(δ). b) A plot of the first
excited state energy spectrum for differentl as a function of the screening parameter(δ). We choosea = b = −1, c = 0.025, andδ = 0.025
for the ground and excited states.

FIGURE 7. a) Variation of the ground state energy spectra for variousl as a function of the reduced mass(µ). b). The plot of the first excited
state energy spectra for differentl as a function of the reduced mass(µ). We choosea = b = −1, c = 0.025, andδ = 0.025 for the ground
and excited states.

Hulthén potentials otherwise known as Varshni-Hulthén po-
tential are obtain within the framework of NU method by ap-
proximation to the centrifugal barrier. In Table I, we reported

the numerical energy eigenvalues (eV) with~ = 2, µ = 1
for 1S, 2S, 2P, 3S, 3P, 3d, 4S and 4P states with the potential
strength:η0 = η1 = −1, η2 = 0.025 and forN = 3,
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TABLE III. Energy eigenvalues (eV) of Varshni potential as a function of the screening parameter(δ) for in atomic mass units(~ = µ = 1).

State δ Present method Present method Present method (FM) [40]

a = b = −1 a = −1, b = −2 a = −2, b = −1 a = b = −1

1s 0.001 -1.063124562 -2.001000250 -3.001000250

0.050 -1.092656250 -2.050625000 -3.050625000

0.100 -1.120625000 -2.102500000 -3.102500000

2s 0.001 -1.063001000 -1.251001000 -2.251001000

0.050 -1.090000000 -1.302500000 -2.302500000

0.100 -1.122500000 -1.360000000 -2.360000000

2p 0.001 -1.063124562 -1.251249562 -2.251249562 -1.0617502

0.050 -1.092656250 -1.311406250 -2.311406250 -1.0617502

0.100 -1.120625000 -1.370625000 -2.370625000 -0.9900000

3s 0.001 -1.028280028 -1.112113361 -2.112113361

0.050 -1.058402778 -1.166736111 -2.166736111

0.100 -1.100277778 -1.233611111 -2.233611111

3p 0.001 -1.028334111 -1.112223000 -2.112223000

0.050 -1.057500000 -1.168611111 -2.168611111

0.100 -1.091111111 -1.230000000 -2.230000000 -

3d 0.001 -1.028386250 -1.112330694 -2.112330694 -1.0269447

0.050 -1.051736111 -1.165625000 -2.165625000 -0.9867361

0.100 -1.062500000 -1.206944444 -2.206944444 -0.9469444

4s 0.001 -1.016129000 -1.063504000 -2.063504000 -

0.050 -1.050625000 -1.122500000 -2.122500000 -

0.100 -1.105625000 -12025000000 -2.202500000 -

4p 0.001 -1.016158766 -1.063565016 -2.063565016 -1.0150656

0.050 -1.048476562 -1.121914062 -2.121914062 -09951563

0.100 -1.093906250 -1.193906250 -2.193906250 -0.990000

4d 0.001 -1.028386250 -1.063624062 -2.063624063 -1.0149391

0.050 -1.051736111 -1.116406250 -2.116406250 -0.99851563

0.100 -1.062500000 -1.063624062 -2.165625000 -0.9625000

4f 0.001 -1.016212391 -1.063681141 -2.063681141 -1.0147502

0.050 -1.029414062 -1.1059765662 -2.1059765662 -0.9725000

0.100 -1.011406250 -1.117656250 -2.117656250 -0.9306250

4, and 5, respectively. We observed that the energy increases
as the screening parameters andN increases. In Table II, we
have presented the energy eigenvalues (eV) with~ = 2µ = 1
of the VHP forN = 3 with three different values of the po-
tential range:η0 = −1; η1 = −1, η2 = 0.050: η0 = −2,
η1 = −1, η2 = 0.075 andη0 = η1 = −2, η2 = 0.10, respec-
tively, and observed that the energy increases as the screen-
ing parameters increases for constantN . We have plotted the
graph of energy eigenvalues against the number of dimen-
sional space, potential strength, screening parameter, and the
reduced mass in the ground and excited states. In Fig. 2,
we show the variation of energy as a function of and ob-

served that the energy increases as both and increases. From
Figs. 3a) and b) - Figs. 5a) and b) respectively, we plotted the
ground and excited states energy eigenvalues of the different
quantum states as a function of the VHP strengths. We ob-
served that there is a decrease in energy in both the ground
and excited states as the potential strength,η0, η1, andη2

respectively, increases.
The variation of energy eigenvalues of VHP as a function

of the screening parameter is as shown in Fig. 6a) and 6b).
We observed that the energy increases as the screening pa-
rameter increases in the ground and excited states. In Fig. 7a)
and 7b), we show the variation of energy eigenvalues as a

Rev. Mex. F́ıs. 67 (2) 193–205



202 E. P. INYANG, E. S. WILLIAM AND J. A. OBU

TABLE IV. Energy eigenvalues (eV) of the Varshni-Hulthen potential forN = 3 with ~ = 2µ = 1.

State δ Present method EQR [42] AIM[43] Numerical [44]

2p 0.025 -0.1127611 -0.1128125 -0.1128125 -0.112760

0.050 -0.1010442 -0.1012500 -0.1012500 -0.101042

0.075 -0.0898495 -0.0903125 -0.0903125 -0.089847

0.100 -0.0791769 -0.0800000 -0.0800000 -0.079179

0.150 -0.0593981 -0.0612500 -0.0612500 -0.059441

3p 0.025 -0.0437072 -0.0437590 -0.0437590 -0.043706

0.050 - 0.0331623 - 0.0333681 - 0.033368 - 0.033164

0.075 - 0.0239207 - 0.0243837 - 0.0243837 - 0.023939

0.100 - 0.0159825 - 0.0168056 - 0.0168056 - 0.016053

0.150 - 0.0040162 - 0.0058681 - 0.0058681 - 0.004466

3d 0.025 - 0.0436044 - 0.0437587 - 0.0437587 - 0.043603

0.050 - 0.0327508 - 0.0333681 - 0.0333681 - 0.032753

0.075 - 0.0229948 - 0.0243837 - 0.0243837 - 0.023030

0.100 - 0.0143364 - 0.0168055 - 0.0168055 - 0.014484

0.150 - 0.0003124 - 0.0058681 - 0.0058681 - 0.001396

4p 0.025 - 0.0199486 - 0.0200000 - 0.0200000 - 0.019948

0.050 - 0.0110442 - 0.0112500 - 0.0112500 - 0.011058

0.075 - 0.0045370 - 0.0050000 - 0.0050000 - 0.004621

0.100 - 0.0004269 - 0.0012500 - 0.0012500 - 0.000755

4d 0.025 - 0.0198457 - 0.0200000 - 0.0200000 - 0.019846

0.050 - 0.0106327 - 0.0112500 - 0.0112500 - 0.010667

0.075 - 0.0036111 - 0.0050000 - 0.0050000 - 0.003834

4f 0.025 - 0.0196914 - 0.0200000 - 0.0200000 - 0.019691

0.050 - 0.0100154 - 0.0112500 - 0.0112500 - 0.010062

0.075 - 0.0022222 - 0.0050000 - 0.0050000 - 0.002556

as a function of the reduced mass. It is observed that there is a decrease in the ground and excited states energy for different
quantum states as the reduced mass,µ increases.

Special cases

1. When we setη2 = 0 in Eq. (20), we obtain the energy eigenvalues for the Varshni potential,

Enl = η0 +
δ2~2(N + 2l − 3)

8µ
− δ2~2

8µ




(
n + 1

2 +
√

(N+2l−1)(N+2l−3)
4 + 1

4

)2

− P

n + 1
2 +

√
(N+2l−1)(N+2l−3)

4 + 1
4




2

, (34)

where

P =
2η0η1µ

~2δ
+

(N + 2l − 1)(N + 2l − 3)
4

. (35)

The numerical energy eigenvalues of Eqs. (34) and (35) for as presented in Table III, were computed for three different potential
strengths; for 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d and 4f states and were found to be in conformity when compared with the work
of Ebonwonyiet al. [41] using formula method.

2. If we setη0 = η1 = 0 in Eq. (20), we obtain the energy eigenvalue equation for Hulthén potential
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Enl =
δ2~2(N + 2l − 1)(N + 2l − 3)

8µ
− δ2~2

8µ




(
n + 1

2 +
√

(N+2l−1)(N+2l−3)
4 + 1

4

)2

−R

n + 1
2 +

√
(N+2l−1)(N+2l−3)

4 + 1
4




2

, (36)

where

R =
2η2µ

~2δ2
+

(N + 2l − 1)(N + 2l − 3)
4

. (37)

The numerical energy eigenvalues of Hulthén potential
presented in Eqs. (36) and (37) forN = 3 were computed
for 2p, 3p, 3d, 4p, 4d and 4f states and was compare with the
work of Qianget al. [42] using EQR, Bayraket al. [43] us-
ing AIM, and Ikhdair [44] using numerical methods and were
found to be in excellent agreement, as presented in Table IV.

3. If we setN = l = 0 in Eq. (20), we obtain the energy
eigenvalue equation for the s-wave of VHP as

Enl = η0 − δ2~2

8µ

([
n + 1

2

]2 − [
2η0η1µ
~2δ + 2η2µ

~2δ2

]

n + 1
2

)2

.

(38)

4. Conclusion

The analytical solutions of the N-dimensional Schrödinger
equation for the newly proposed Varshni-Hulthén potential
are obtained via NU method by using Greene-Aldrich ap-
proximation scheme to the centrifugal barrier. The nu-
merical energy eigenvalues and the corresponding normal-
ized eigenfunctions are obtained for various values of or-
bital angular momentum quantum number and space dimen-
sion. We have also obtained the numerical energy eigen-
values for two special cases of the newly proposed poten-
tial and their results were found to be in agreement with
the existing literature. However, the behavior of the energy
for the ground state and several excited states is illustrated
graphically. Therefore, studying the analytical solution of
the N-dimensional Schrödinger equation for the newly pro-
posed Varshni-Hulthen potential could provide valuable in-
formation on the quantum mechanics dynamics at atomic and
molecular physics and opens new window.
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