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Vector fields localization on brane worlds
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To confine vector bosons in the four-dimensional sector of a domain wall spacetime, we propose a mechanism in which the interaction among
vectors is propagated via the self-interaction of the scalar wall. In the process, the vector acquires an asymptotic mass, defined by the bull
cosmological constant, and it ends up coupled to the wall by the tension of the brane. The mechanism is applied on the Randall Sundrurr
scenario and regular versions of it and singular domain walls. In any case, the electrostatic potential between two charged particles is definet
by both the vector state attached to the wall and a continuous tower of massive vector states that propagate freely along the scenario’s extr
dimension.
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1. Introduction dard electromagnetism on the wall is obtained, in the second
one, the electrostatic interaction is the five-dimensional way.

The five-dimensional braneworld scenarios require standard Finally, we discuss coordinate covariance and gauge the

model fields to be confined to the four-dimensional sector osymmetry of the model.

the theory. In particular, when the electromagnetic field lo-

calization is considered, a non-normalizable gauge field i .

found [1]. This issue has been addressed in several oppo?—' Vector field coupled to the wall

tunities, and some proposals have emerged in order to SON€gnsjder the five-dimensional coupled Einstein-scalar field

the problem. For instance, in [2], massive bulk vector fieldSsystem (Latin and Greek indices correspond to five and four-
are coupled to the Randall-Sundrum (RS) brane [3] through &imensions respectively)

guadratic interaction term, in such a way that the photon is the

bounded state of a vector fields spectrum. On the other hand, Ly _ }R _ 18 6996 — V() )

in [4], where the brane is generated by a domain wall solution NG 27 '

to the Einstein scalar field system, the coupling between the ) ) ) N

bulk gauge fields and a dilaton is required to find a normalWV& are interested in domain wall geometries,, smooth
izable gauge boson on the thick brane. In both mechanismscenarios where the scalar figjdinterpolates between the
the localized state generates the standard electromagnetic ifinima of the self-interaction potenti&l(¢). Besides con-

teraction. Outside of this framework, other proposals can psider the coupling of the bulk vectors with the scalar field of

found in Refs. [5-10]. the wall, namely
In this paper, we consider the vector field localization LA 1 w2 . , .
on self-gravitating domain walls via the coupling of the bulk N —Fa P+ §V(¢>)AQA '~ Q%AJY (2)

vectors with the scalar field of the wall. We propose an in-

teraction term defined by the scalar potential of the wall. Aswhere @ is the five-dimensional coupling constant between

a result, the generalization of the Ghoroku-Nakamura mechiwo charged particles on the wall.

anism [2] to thick walls is obtained. We also show that the  Before moving forward, it is necessary to point out two

four-dimensional degrees of freedom of the bulk vectors ar@spects regardin@): i) we will assume that the vector fields

determined by a supersymmetric quantum mechanics prolglo not modify the gravitation of the scenario and ii) the term

lem where the ground state yields the standard electrostati¢ (¢) A, A* will not be justified. We want to show that it

potential on the wall. leads to standard electromagnetism in the four-dimensional
We apply the mechanism on the RS scenario and regulasector of the wall.

ized versions of it, and the so-called singular domain walls  In conformal coordinates,

[11], where the scalar field interpolates between the lower ) 20(2) o )

values of the scalar potential. Whereas in the first case, stan- ds” =e (M da’da” + dz*) ©)
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from (1), we have and
0.0)* = 3[(0.a)* + 92 4 s
( (b) [( a) a] ( ) (_pQ + gv(¢)e2a> sz(p,z,z/)
and
B 2
V(O(E) = -3 B0af + e, @) Hi"0:Gealp 7 ) = e 00z =), (13

and from @), we get
wherep® = 7n*%ps. Now, in (12,113), the transversal and lon-
4v(¢)e2a - e g .
0 (9, + 9.a) 0.+ | A, gitudinal decomposition of the four-dimensional components
3 of the propagator is considerdd.

+0Plon N2 Ag -1 (9.40.a) 9a A.=Q%e* ] (6)

A . papﬂ papﬂ
and Gap = (ﬂaﬁ 72 )G1 + P Go, (14)

<17’3 8§U+f A.=0"79.05A,=Q%* J*. (T)  \whereG, andG, satisfy

We want to study the electromagnetic interaction in the , 4 )
four-dimensional sector of the five-dimensional spacetime. e 0, (e"0,G1) + <15 +3V(d)e “) G
To do this we will calculate the electrostatic potential, which
. . . . 2
can be determined from the following generating functional _ (2Q)2 e=0(z — ) (15)
Y

W[J] = W0] exp { %/d4zdz\/g(7)/d4x’dz’\/m

and

x JMx,2)Gap(x — ', 2,2") T (2, z')] . 8)

e—aﬁ2az

4 -1
e <—p2 + 3V(¢)e2a> aZGQ]
with G in the bulk propagator. In the momentum spa8p, (

can be written as 4
+ =V (9)e**Ga + e 9, (e"0.G2)

W[J) = W[0]exp [— %/dt/dz\/@/dz’m 392

= Wefaé(z —2'). (16)

d3p ja N é . INE YR 9
x (271_)3 (—p,Z) ab(p,z,z )J (paz) ) 9)
On the other hand, fdr = z, we find

where, tilde indicates four-dimensional Fourier transform.
So, if we assume that the electrostatic sources are &t - ipp
Zz' = 0, namelyJ*(p, z) = d(z)0 /J 1 (p), we find that the Gap = > +4V(¢)62a(z)/38ZG27 (17)
potential is given by )
~ Zpﬁ
d3 ~ ~ Gﬁz = — a2 82/G27 (18)
Ul = [ et (PG G005 @, (0 ~P AV ()3
~ _ Zpg ~
whereG ., are the four-dimensional components of propaga- Gez = - —p2 + 4V (¢)e2e(2) /3 0:Gp:
tor Gap.
Bybchoosing Q? e /
+ d(z—2"). (19)

(2m)? —p? + 4V (¢)e?(=) /3
A, = /d4x'dz’\/g(z’) Guplx —2'52,2)J0(2, 7)), (11)
Due to thatp,j® = 0, only the traversal sector di4) con-

from (6) and [7), in the momentum space, we find a coupledtributes with the electrostatic potentidlQ). Therefore, we

system of equations for the componentsxf, given by will focus on finding a solution tal(5).
o [ s . B 4 J - Let us consider a continuous set of statgs(z) satisfy-
U [6 9. (¢"9.) — P + gV(¢)€2 Gab(p, 2,7) ing the Schidinger like the equation
+ 970" Gap(p, 2,2') +ip7 (9 + 0:a) Gy (p, 2,2) (o2 + VQM) Y = MY, (20)
Qi ' 4
= @ €67 8(z — 2') (12) Voum 782a 4= (a a)® — gV(¢>)e2“ (21)
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and the following orthonormality and closure relationships 3. Vector fields on RS brane world

/ U (2)m(2)dz = §(m —m'), (22)  The RS scenario [3] in the conformal coordinai@ki¢ de-
termined by

/¢ (2)dm = §(2" — z). (23) a(z)=—In(1+ «lz]), (29)

Notice that, forV (¢) given by ), the eigenvalues equation
(20, 21) can be written as a supersymmetric quantum me&n
chanics problem,

(0.4 30.0) (20,4 20) b= (29 Ve = (5-5ee). e

and hence, in the eigenfunctions spectrum, there are no states , . 9

with negative mass [12, 13]. On the other hand, the orthonor- with 7 = 6a the brane's tension and| = 6o~ the bulk
mality condition @2) is divergent for altn = m’, which is a ‘cosmological constant

technical problem that can be solved by introducing two reg-  In this scenario, the localization mechanism defined by
ularity branes at-z, [14], in such away thatin limit, — oo action @) takes the form

the initial scenario is recovered. As a consequence of the reg-

ulatory branes, the basis is discretized, and the orthonormal- £, 1F b 1
ity relationships satisfied in the sense of Kronecker ﬁ Ty D)
1 4 2 a 24 ra
L / Ui (on(2)dz = b (25) < (3 IA1- 276(2) ) AuA” - QA% @31)
Zr

Now, by expandlngﬁl in the discrete basis which is similar to the proposed in Ref. [2]: a five-

_Q? Z . 1 (2 m (2 el 2)+a2)l/2 (26) dimensiongl Propa theory with g.eneric massive terms in five
— p+m and four dimensions. However, iB1), the bulk mass of the
vector fields and the four-dimensional coupling parameter are
termined by the cosmological constant and the brane’s ten-
sion, respectively.

we find that 26) satisfies automatically the EdL5) and that
the electrostatic potential, in the coordinates space, betwe
two charged particleg andgs, i.e., j!'(Z) = ¢;0(Z — ;)0

is determined by To evaluate the electrostatic potenti28), from (21) and
Q2 (29) we obtain
U(r) = 2”2( 0)f + Z [t (0) 2 W>, 27)
m™ T 2
m>o Vo = 2% 504(2); (32)
wherer = |23 — #1|. Notice that, in the presence of reg- @M=y (14 alz])? ’

ulatory branes, the system resembles a well of the infinite
potential of width2z,., so it is estimated that is quantized
in units of1/z,. Thus, forz,. — oo, the potential27) can be
written as

Ulr) = L0k (%( ) Yo = V2a (1+alz))™/2, (33)

such that the eigenstates of the probl@t, 82) are given by
a normalizable zero mode

2

o0 and a discrete spectrum of unbounded eigenstates
th zli_r}noo/ [9m (0) Qemrzrdm> . (28)
0 / —1

wherex is a proportionality constant defined by boundary Yt = NVl + Z<J3 [m{a + 'Z}]
conditions at-z,..

For a domain wall spacetime, we expect a zero-mode lo- + B.Y;3 [m{of1 + z}} ), z >0, (34)
calized around = 0, ¥ ~ exp(5a/2) in correspondence
with standard electromagnetism, and a tower of unbounded B
KK modes generating corrections to the Coulomb law. Ym— = N v - z<A Js [m{a™" = 2}]

Next, we will determine the electrostatic potent28)(on
three scenarios: RS brane, regular domain wall, and singular + B_Y3 [m{a™" - 2}] >, z <0, (35)
domain wall.
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with J andY’, the Bessel functions of the first and second4. Regular Domain Walls

kind and A, B, and N,,, the integration and normalization ] .
constants. Let a(z) be the metric factor of a domain wall correspond-

ing to a regularized version of the RS brane [16-21]. Fol-
lowing [22], it is possible to estimate at least the order of
corrections as follows. Asymptotically, (where the effects of
wall thickness are negligible) the metric factor of a regular-
ized wall resembles the RS solutiai(z) ~ —In(1 + «|z]).
Hence, forz > a~! the quantum mechanics potentialy

In agreement with [15], each eigenvalue @0 is asso-
ciated with a pair of eigenfunctiong;, and«2 ; which, for
the particular casé8@), whereVga (2) = Vom(—2), corre-
sponds to odd and even eigenstates of the protR&yi3e).
Hence, on the brane, they satisfy

¢ (07) =4¢,(07) =0, 36 5/(5 1
U5 (07) = 5, (0%) (36) Vou 2 (3 01) L. )
d d n 2 2 2’2
—e (07) — —S (07) =0 37
dzwm( ) dzwm( ) ’ (37) In Ref. [22], it is shown that for &, with asymptotic be-
q havior similar to 46), the density of the state on the wall is
an determined by, (0) ~ (m/a)®/2~1in such a way that,
the corrections to the electrostatic potent28)(go asr—>
m(07) = 45, (07), (38) iqi
m m and they are negligible compared to the Coulomb term from
d g, d 4.4 4 a critical radius determined by the parameters of the regular
25 ¥m(07) = ¥ (07) = Sayp, (0); (39)  scenario.

while, on the regular branes 5. Singular Domain Walls

d

d
+2,.) ~0,
m:l:( Z) dZ

4 o (£2,) ~0. (40)  The domain walls are understood as solutions to the coupled
Einstein-scalar field system whepénterpolates between the
minimums of the scalar potential. However, there is another
family of walls wherel/(¢) does not have minimums, bt
interpolates among the lower values of the scalar potential.

'These scenarios are called singular domain walls, and like
standard walls, they can locate gravity [11].

Next, let us explore the four-dimensional effective be-
havior of the vector field on the singular scenario reported
in [11] wherein in conformal coordinat8), the warp factor,

Therefore, the constants of integration setifgy andyd,
can be determined bi86, 37) and 25) in the first case; and
by (38, 39) and 25) in the second one. On the other hand
the boundary conditiord) induces the discretization of the
massj.e., m ~ nw/z. withn € Z+.

Thus, for the integration constants, we have

A¢ =1, B¢ = -B¢, B{ = _M, (41)  the scalar field, and potential are given by
Ya(m/a)
—Incosh(az), a>0. 47)
and
_ p=1/5 0z, (48)
Y:s(m/a)} 1 \[
At = {1 + ="  BY=-B! (42
Jz(m/a) " and
1 (Ya(m/a) | Jo(m/a) 3
B = _— _a.2|7_2 2
f=—3 ( Trmia)  Valmya) V(g)=3a {1 -~ cosh (\/2/3¢)] . (49)
YZ(m/a) Yo (m/a) Notice that the scalar field interpolates betweew, and
% (1 T Jg(m/a)> - §y2(m/a)' (43)  the scalar potential has a maximumgn= 0. On the other

hand, the scalar curvature for this geometry is determined by

Finally, on the brane and fon <« o, we find 3
R = 1407 [1 -3 cosh(?az)} (50)
T o/m\3 T /m\5 w /m 44
ar W}m | 32 ( ) +@ (E) +86 ( ) (44) which diverges for: — +oo. Thus, the solution represents
o ) a wall embedded in a five-dimensional spacetime that inter-
such that the electrostatic interaction polates between two subspace with naked singularities in the
horizon.
U(r)Nl (1 3 1 4+§ L 6+1260 1 8) , (45) To calculate the electrostatic potent28), the density of
r 32 (ar)t "4 (ar)® " 43 (ar) states associated {80) with
is in correspondence with the standard four-dimensional po- 2 T 4 L2 _9 51
tential forr > a1, Vo =mq 510 €08 (az), mg = 2% (1)
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is required. In this case, we can see that the zero mode isherel'™ = T'(1 — ) andl'" = T'(1 + p).
separated from continuous modes by a mass gap defined by The solution is doubly degenerate [15] and satisfies the

my.

By considering the change of varialfle= az, the equa-
tion (20, 51) takes the form of a Schdinger equation with a

potential of Bschl-Teller [23],

following boundary conditions

6 (07) =95 (07) =0, %/°(07) =e(0),
Pd (07) =9l (0%), ¥/407) =2 (07).

(62)
(63)

Therefore, the density of the statezin= 0 is determined by

2 [l (0))* = 7T+ P

(0P f4(0)

i (64

Now, the integral in the electrostatic potential saturates
for m > mg, and in this case, the stat@l) reduces to

2
49 mg

16 m2 -’

By substituting the mode®4), (55) y (65) in (28), we obtain

2 [0 (0)] = 1 (65)

1 33 49 ) 1 —mgr
U(r) ~ - (16 - 1—6m0rlnm0r + o > (66)

where the dominant term for << o~ ! is the order ofr—2
such that the electrostatic interaction on the four-dimensional

Regarding the free states, under the change of variable sector of the scenario is defined for a five-dimensional poten-

1 d? 35 )
2@ (€) — 5 cosh™“(§)Y (&) = Ev(§) , (52)
where
25 [ m?2
E = - T a 1
d (mg ) 7 (53)
with bounded states determined by
T
and
E’1 — 72 , 1/)1 = Nl COSh_5/2(§) Sinh(£)7 (55)
such that
16 16
mi=0.  wi=llwh M= iomo (5)
u = tanh(f), (57)
the differential equation5?2) takes the form of a Legendre
equation
d d 35 2FE?
(1 = 2 = — + —< =
du {( w) du¢] * [4 * (1—U2)]w 0. B9

whose solutions are the associated Legendre functions of the

first and second kind, df/2 grade and ordet = +v/—2F,
given by

1 1+ u\"?
12 _
P5/2(u) T —u) (1 u)

5 7 1—u
Fi|l——, =3 1 —pu; ——
X 2 1|: 23 27 3 2 :|a (59)
u _ T(T/2+ ) e (u? — 1)H/2
5/2(u) B 6 u’7/2+p
T ouw9 p 1
Fi|l-+=,-+=:4;,—|.
X 9 1|:4+274+27”U,2:| (60)

The functionsPS’L/2 anng/2 are orthogonal fofl — u| < 2
and|u| > 1, respectively; in particular, the chandg’) satis-
fies|1 — u| < 2. Hence

A (D7 P2 () + TP fi(w)

(61)

i (T Py (u) = TPy (w))

tial.

6. Discussion

In this paper, the mechanics of Ghoroku-Nakamura [2] for
confining vector fields on the RS brane was extended to self-
gravitating domain walls in a five-dimensional bulk.

This was achieved by considering the coupling of the vec-
tor boson with the scalar field of the wall. We found that
the four-dimensional degrees of freedom of the vector field
can be expanded in terms of a basis of eigenstates of the
Schibdinger equation, free of tachyonic states. In the electro-
static potential, the ground state defines the Coulomb inter-
action on the wall, while the massive state density generates
corrections to the potential.

When mechanisni] is applied on the RS brane, the bulk
cosmological constant plays the role of mass for the vec-
tor field while the brane tension defines the parameter cou-
pling with the wall. The corrections generated by the massive
states in the electrostatic potent28] are exponentially sup-
pressed, and the standard electromagnetism can be recovered
on the brane from a critical radius similar to the gravitational
case.

In the case of thick brane, the mechanism was applied on
regularized versions of the RS scenario and singular walls. In
the first case, in agreement with the Csaki theorem [22], we
find that deviations to the Coulomb law are the order of.

In the second case, the deviations are not negligible, and the
electrostatic interaction goes to2 on the four-dimensional
sector of the wall.
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Notice that theoryiZ) is covariant but not gauge-invariant Appendix
due to the presence of the quadratic term in the action. This )
can also be seen in the four-dimensional effective theory (seA. The eigenvalues problem

Appendix),
1 1 n
5%):—1f§6+z [_4 (f25)" = 5 (mna +au“5)2}

1
2
Zr
/ dz0,a Q/Jq@p] o*at a

—2zp

+4) | lim
pa |

To find the four-dimensional effective theoi§7j, we have
considered

/dz/d‘*xﬁA —  lim /dz/d4xEA, (A.1)

where the spacetime is bounded by two regulatory branes,
each with negative tension and locatectat.. Under this

+Z Mo 1 im /dz 2V ($(2))pthy | aBal approach, it is possible to expand the componentd oin
3 oo Mg |2 pray e terms of a discrete base of functions with support along the
= 67) exta dimension.
In this sense, consider the operators
with 5 5
Q=0.+-d and Q"=-0.+-d. (A2
fap = 0aag — Opaa,  flg =l — dgall,  (68) 2 2
If ¢, is the set of states of the eigenvalues problem
where we have consideret, — e~*/24, and
QQ+¢n = mi"/]n»
Au(@,2) = au(@) Yo(2) + D ap(@) du(2),  (69)
n£0 Q v, L= 0, n=0,1,2,3,... (A.3)
As(z,2) = Za?(m) op(2), (70)

with m2 > 0 (because the differential operator is factoriz-
able) theny,, is the set of states of the problem

Q+Q30n = mi@’m

whereyp,, = Q*,/m, for all m,, # 0. Hence,, y ¢,
%Iways come in pairs, except for the zero modegpf(see

ef. [12] for details). On the other hand, the orthonormality
relationship for each discrete set of functions is determined

p#0

suchthatp,, = (-9, +5/2 0.a),, /m,, is the supersymmet-
ric partner ofy,, for m,, # 0[12]. In (67), the first two terms
correspond to the Maxwell action faf, and the Stueckel-
berg action for the massive vectd. The absence of gauge
symmetry is due to the final two terms; the second to last i
a term of interaction betweerf, anday via the dynamics of
the scalar mode8“az, and the last one corresponds to mas-
sive terms for(a?)? whenn = p and to interaction terms
betweer:? andal whenn # p. 2 2y

In a forthcoming paper, we look forward to reporting a / dz Ypipy = 6,p and / dz onpp = Onp.  (A5)
gauge-invariant generalization &)(and justify the term of .
interaction between vector fields. o o

This work was supported by IDI-ESPOCH under the
project FCPI167.
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For a five-dimensional vector field,, the components
expand as indicated i68) and [70) wherei(z) ~ e¢(2)/2,

1. B. Bajc and G. Gabadadze, Localization of matter and cos- 4. A. Kehagias and K. Tamvakis, Localized gravitons, gauge
mological constant on a brane in anti-de Sitter spaBdys. bosons and chiral fermions in smooth spaces generated by a
Lett. B 474 (2000) 282.https://doi.org/10.1016/ bounce,Phys. Lett. B504 (2001) 38.https://doi.org/
S0U3/70-2693(00)00055-1 10.1016/50370-2693(01)002/4-X

2. K. Ghoroku and A. Nakamura, Massive vector trapping 5. G. R. Dvali and M. A. Shifman, Domain walls in strongly
as a gauge boson on a branehys. Rev. D65 (2002) coupled theoriesPhys. Lett. B396 (1997) 64. [Erratum-
084017 nttps://doi.org/10.1103/PhysRevD.65. ibid. B 407 (1997) 452].nttps://doi.org/10.1007/

08401/ s10//3-010-0640-/

3. L. Randall and R. Sundrum, An Alternative to compactifica- 6.
tion, Phys. Rev. Leti83 (1999) 4690https://doi.org/
10.1103/PhysRevLett.83.4690

G. R. Dvali, G. Gabadadze and M. A. Shifman,
(Quasi)localized gauge field on a brane: Dissipating cos-
mic radiation to extra dimensions®hys. Lett. B497 (2001)

Rev. Mex. 5. 67 (3) 415-421


https://doi.org/10.1016/S0370-2693(00)00055-1�
https://doi.org/10.1016/S0370-2693(00)00055-1�
https://doi.org/10.1103/PhysRevD.65.084017�
https://doi.org/10.1103/PhysRevD.65.084017�
https://doi.org/10.1103/PhysRevLett.83.4690�
https://doi.org/10.1103/PhysRevLett.83.4690�
https://doi.org/10.1016/S0370-2693(01)00274-X�
https://doi.org/10.1016/S0370-2693(01)00274-X�
https://doi.org/10.1007/s10773-010-0640-7�
https://doi.org/10.1007/s10773-010-0640-7�

10.

11.

12.

13.

14.

VECTOR FIELDS LOCALIZATION ON BRANE WORLDS

271. |nttps://doi.org/10.1016/S0370-2693(00) 15
01329-0

R. Guerrero, A. Melfo, N. Pantoja and R. O. Rodriguez, Gauge
field localization on brane worlds,Phys. Rev. D81 (2010)
086004 https://dol.org/10.1103/PhysRevD.81.

086004

C. A. Vaquera-Araujo and O. Corradini, Localization of ;7

abelian gauge fields on thick braneBur. Phys. J. C75
(2015) 48/doi:10.1140/epjc/s10052-014-3251-2
[arXiv:1406.2892 [hep-th]].

Z. H. Zhao, Q. Y. Xie and Y. Zhong, New localization method 1
of U(1) gauge vector field on flat branes in (asymptotic)
AdSs spacetimeClass. Quant. Grad2 (2015) 035020doi:
10.1088/0264-9381/32/3/035020 [arXiv:1406.3098
[hep-th]].

L. F. Freitas, G. Alencar and R. R. Landim, Universal Aspects
of U(1) Gauge Field Localization on Branesi»dimensions,
JHEP 02 (2019) 035/doi:10.1007/JHEP02(2019)035
[arXiv:1809.07197 [hep-th]].

M. Gremm, Thick domain walls and singular spacsys.
Rev. D62 (2000) 044017https://doi.org/10.1103/
PhysRevD.62.04401/

C. V. Sukumar, Supersymmetric quantum mechanics and the
inverse scattering method, Phys. A18 (1985) 2937/doi:
10.1088/0305-44/0/18/15/021

N. Arkani-Hamed and M. Schmaltz, Hierarchies without sym-
metries from extra dimensionBhys. Rev. 31 (2000) 033005.
doi:10.1103/PhysRevD.61.033005 [arXiv:hep-
ph/9903417 [hep-ph]]. https://doi.org/10.1103/
PhysRevD./0.104009

P. Callin and F. Ravndal, Higher order corrections to the
Newtonian potential in the Randall-Sundrum modBhys.
Rev. D70 (2004) 104008https://doi.org/10.1103/
PhysRevD.70.104009

16.

20.

21.

22.

23.

421

. A. Melfo, N. Pantoja and F. &nirez, Breaking th&Zs symme-
try of the Randall-Sundrum scenario and the fate of the massive
modes, arXiv:1011.2524 [hep-th].

M. Gremm, Four-dimensional gravity on a thick domain wall,
Phys. Lett. B478 (2000) 434.https://doi.org/10.
1016/S0370-2693(00)00303-8

O. DeWolfe, D. Z. Freedman, S. S. Gubser and A. Karch,
Modeling the fifth-dimension with scalars and graviBhys.
Rev. D62 (2000) 046008https://doi.org/10.1103/
PhysRevD.62.046008

8. D. Bazeia, C. Furtado and A. R. Gomes, Brane structure from

scalar field in warped space-timdCAP 0402 (2004) 002.
https://doi.org/10.1088/1475-7516/2004/
02/002

19. A. Melfo, N. Pantoja and A. Skirzewski, Thick domain

wall space-times with and without reflection symme®ys.
Rev. D67 (2003) 105003nttps://doi.org/10.1103/
PhysRevD.6/.105003

O. Castillo-Felisola, A. Melfo, N. Pantoja and A. Ramirez,
Localizing gravity on exotic thick three-braneBhys. Rev.
D 70 (2004) 104029.|https://doi.org/10.1103/
PhysRevD. /0.104029

R. Guerrero, R. O. Rodriguez and R. S. Torrealba, De-Sitter
and double asymmetric brane world®ys. Rev. Dr2 (2005)
124012 /https://doi.org/10.1103/PhysRevD.72.

124012

C. Csaki, J. Erlich, T. J. Hollowood and Y. Shirman, Uni-
versal aspects of gravity localized on thick branégjcl.
Phys. B581 (2000) 309.https://doi.org/10.1016/
S0U550-3213(00)002/71-6

G. Poschl and E. Teller, Bemerkungen zur Quantenmechanik
des anharmonischen Oszillatars,Phys 83 (1933) 143doi:
10.100//BF01331132

Rev. Mex. 5. 67 (3) 415-421


https://doi.org/10.1016/S0370-2693(00)01329-0�
https://doi.org/10.1016/S0370-2693(00)01329-0�
https://doi.org/10.1103/PhysRevD.81.086004�
https://doi.org/10.1103/PhysRevD.81.086004�
doi:10.1140/epjc/s10052-014-3251-2�
doi:10.1088/0264-9381/32/3/035020�
doi:10.1088/0264-9381/32/3/035020�
doi:10.1007/JHEP02(2019)035�
https://doi.org/10.1103/PhysRevD.62.044017�
https://doi.org/10.1103/PhysRevD.62.044017�
doi:10.1088/0305-4470/18/15/021�
doi:10.1088/0305-4470/18/15/021�
doi:10.1103/PhysRevD.61.033005�
https://doi.org/10.1103/PhysRevD.70.104009�
https://doi.org/10.1103/PhysRevD.70.104009�
https://doi.org/10.1103/PhysRevD.70.104009�
https://doi.org/10.1103/PhysRevD.70.104009�
https://doi.org/10.1016/S0370-2693(00)00303-8�
https://doi.org/10.1016/S0370-2693(00)00303-8�
https://doi.org/10.1103/PhysRevD.62.046008�
https://doi.org/10.1103/PhysRevD.62.046008�
https://doi.org/10.1088/1475-7516/2004/02/002�
https://doi.org/10.1088/1475-7516/2004/02/002�
https://doi.org/10.1103/PhysRevD.67.105003�
https://doi.org/10.1103/PhysRevD.67.105003�
https://doi.org/10.1103/PhysRevD.70.104029�
https://doi.org/10.1103/PhysRevD.70.104029�
https://doi.org/10.1103/PhysRevD.72.124012�
https://doi.org/10.1103/PhysRevD.72.124012�
https://doi.org/10.1016/S0550-3213(00)00271-6�
https://doi.org/10.1016/S0550-3213(00)00271-6�
doi:10.1007/BF01331132�
doi:10.1007/BF01331132�

