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To confine vector bosons in the four-dimensional sector of a domain wall spacetime, we propose a mechanism in which the interaction among
vectors is propagated via the self-interaction of the scalar wall. In the process, the vector acquires an asymptotic mass, defined by the bulk
cosmological constant, and it ends up coupled to the wall by the tension of the brane. The mechanism is applied on the Randall Sundrum
scenario and regular versions of it and singular domain walls. In any case, the electrostatic potential between two charged particles is defined
by both the vector state attached to the wall and a continuous tower of massive vector states that propagate freely along the scenario’s extra
dimension.
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1. Introduction

The five-dimensional braneworld scenarios require standard
model fields to be confined to the four-dimensional sector of
the theory. In particular, when the electromagnetic field lo-
calization is considered, a non-normalizable gauge field is
found [1]. This issue has been addressed in several oppor-
tunities, and some proposals have emerged in order to solve
the problem. For instance, in [2], massive bulk vector fields
are coupled to the Randall-Sundrum (RS) brane [3] through a
quadratic interaction term, in such a way that the photon is the
bounded state of a vector fields spectrum. On the other hand,
in [4], where the brane is generated by a domain wall solution
to the Einstein scalar field system, the coupling between the
bulk gauge fields and a dilaton is required to find a normal-
izable gauge boson on the thick brane. In both mechanisms,
the localized state generates the standard electromagnetic in-
teraction. Outside of this framework, other proposals can be
found in Refs. [5–10].

In this paper, we consider the vector field localization
on self-gravitating domain walls via the coupling of the bulk
vectors with the scalar field of the wall. We propose an in-
teraction term defined by the scalar potential of the wall. As
a result, the generalization of the Ghoroku-Nakamura mech-
anism [2] to thick walls is obtained. We also show that the
four-dimensional degrees of freedom of the bulk vectors are
determined by a supersymmetric quantum mechanics prob-
lem where the ground state yields the standard electrostatic
potential on the wall.

We apply the mechanism on the RS scenario and regular-
ized versions of it, and the so-called singular domain walls
[11], where the scalar field interpolates between the lower
values of the scalar potential. Whereas in the first case, stan-

dard electromagnetism on the wall is obtained, in the second
one, the electrostatic interaction is the five-dimensional way.

Finally, we discuss coordinate covariance and gauge the
symmetry of the model.

2. Vector field coupled to the wall

Consider the five-dimensional coupled Einstein-scalar field
system (Latin and Greek indices correspond to five and four-
dimensions, respectively)

Lg√
g

=
1
2
R− 1

2
∂aφ∂aφ− V (φ). (1)

We are interested in domain wall geometries,i.e., smooth
scenarios where the scalar fieldφ interpolates between the
minima of the self-interaction potentialV (φ). Besides con-
sider the coupling of the bulk vectors with the scalar field of
the wall, namely

LA√
g

= −1
4
FabF

ab +
2
3
V (φ)AaAa −Q2AaJa, (2)

whereQ is the five-dimensional coupling constant between
two charged particles on the wall.

Before moving forward, it is necessary to point out two
aspects regarding (2): i) we will assume that the vector fields
do not modify the gravitation of the scenario and ii) the term
V (φ)AaAa will not be justified. We want to show that it
leads to standard electromagnetism in the four-dimensional
sector of the wall.

In conformal coordinates,

ds2 = e2a(z)
(
ηµνdxµdxν + dz2

)
, (3)
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from (1), we have

(∂zφ)2 = 3
[
(∂za)2 + ∂2

za
]

(4)

and

V (φ(z)) = −3
2

[
3(∂za)2 + ∂2

za
]
e−2a, (5)

and from (2), we get
[
ηγα (∂z + ∂za) ∂z+

4V (φ)e2a

3
ηγα

]
Aα

+ηβ[σηα]γ∂2
βσAα−ηγα (∂z+∂za) ∂αAz=Q2e4aJγ (6)

and
(

ηβσ∂2
βσ+

4V (φ)e2a

3

)
Az−ηβσ∂z∂βAσ=Q2e4aJz. (7)

We want to study the electromagnetic interaction in the
four-dimensional sector of the five-dimensional spacetime.
To do this we will calculate the electrostatic potential, which
can be determined from the following generating functional

W [J ] = W [0] exp
[
− i

2

∫
d4xdz

√
g(z)

∫
d4x′dz′

√
g(z′)

× Ja
1 (x, z)Gab(x− x′, z, z′)Jb

2(x′, z′)
]
. (8)

with Gab in the bulk propagator. In the momentum space, (8)
can be written as

W [J ] = W [0] exp
[
− i

2

∫
dt

∫
dz

√
g(z)

∫
dz′

√
g(z′)

×
∫

d3p

(2π)3
J̃a(−~p, z)G̃ab(~p, z, z′)J̃b(~p, z′)

]
, (9)

where, tilde indicates four-dimensional Fourier transform.
So, if we assume that the electrostatic sources are atz =
z′ = 0, namelyJ̃a(~p, z) = δ(z)δa

µj̃µ(~p), we find that the
potential is given by

U [j] =
∫

d3p

(2π)3
j̃µ
1 (−~p)G̃µν(~p, 0, 0)j̃ν

2 (~p). (10)

whereGµν are the four-dimensional components of propaga-
tor Gab.

By choosing

Aa =
∫

d4x′dz′
√

g(z′) Gab(x− x′; z, z′)Jb(x′, z′), (11)

from (6) and (7), in the momentum space, we find a coupled
system of equations for the components ofG̃ab given by

ησα

[
e−a∂z (ea∂z)− p̄2 +

4
3
V (φ)e2a

]
G̃αb(p, z, z′)

+ p̄σp̄αG̃αb(p, z, z′) + ip̄σ (∂z + ∂za) G̃zb(p, z, z′)

=
Q2

(2π)2
e−aδσ

b δ(z − z′) (12)

and

(
−p̄2 +

4
3
V (φ)e2a

)
G̃zb(p, z, z′)

+ ip̄α∂zG̃αb(p, z, z′) =
Q2

(2π)2
e−aδz

b δ(z − z′), (13)

wherep̄α ≡ ηαβpβ . Now, in (12, 13), the transversal and lon-
gitudinal decomposition of the four-dimensional components
of the propagator is considered,i.e.

G̃αβ =
(

ηαβ − pαpβ

p̄2

)
G1 +

pαpβ

p̄2
G2, (14)

whereG1 andG2 satisfy

e−a∂z (ea∂zG1) +
(
−p̄2 +

4
3
V (φ)e2a

)
G1

=
Q2

(2π)2
e−aδ(z − z′) (15)

and

e−ap̄2∂z

[
ea

(
−p̄2 +

4
3
V (φ)e2a

)−1

∂zG2

]

+
4
3
V (φ)e2aG2 + e−a∂z (ea∂zG2)

=
Q2

(2π)2
e−aδ(z − z′). (16)

On the other hand, forb = z, we find

G̃zβ = − ipβ

−p̄2 + 4V (φ)e2a(z)/3
∂zG2, (17)

G̃βz =
ipβ

−p̄2 + 4V (φ)e2a(z′)/3
∂z′G2, (18)

G̃zz = − ipβ

−p̄2 + 4V (φ)e2a(z)/3
∂zG̃βz

+
Q2

(2π)2
e−a(z)

−p̄2 + 4V (φ)e2a(z)/3
δ(z − z′). (19)

Due to thatpαj̃α = 0, only the traversal sector of (14) con-
tributes with the electrostatic potential (10). Therefore, we
will focus on finding a solution to (15).

Let us consider a continuous set of statesψm(z) satisfy-
ing the Schr̈odinger like the equation

(−∂2
z + VQM

)
ψm = m2ψm, (20)

VQM =
1
2
∂2

za +
1
4

(∂za)2 − 4
3
V (φ)e2a (21)

Rev. Mex. F́ıs. 67 (3) 415–421



VECTOR FIELDS LOCALIZATION ON BRANE WORLDS 417

and the following orthonormality and closure relationships
∞∫

−∞
ψ∗m′(z)ψm(z)dz = δ(m−m′), (22)

∫
ψ∗m(z′)ψm(z)dm = δ(z′ − z). (23)

Notice that, forV (φ) given by (5), the eigenvalues equation
(20, 21) can be written as a supersymmetric quantum me-
chanics problem,(

∂z +
5
2
∂za

)(
−∂z +

5
2
∂za

)
ψm = m2ψm, (24)

and hence, in the eigenfunctions spectrum, there are no states
with negative mass [12,13]. On the other hand, the orthonor-
mality condition (22) is divergent for allm = m′, which is a
technical problem that can be solved by introducing two reg-
ularity branes at±zr [14], in such a way that in limitzr →∞
the initial scenario is recovered. As a consequence of the reg-
ulatory branes, the basis is discretized, and the orthonormal-
ity relationships satisfied in the sense of Kronecker

1
zr

zr∫

−zr

ψ∗m′(z)ψm(z)dz =
1
zr

δm′m. (25)

Now, by expandingG1 in the discrete basis

G1=−Q2
∑
m

1
p2 + m2

ψ∗m(z′)ψm(z)e[(a(z′)+a(z)]/2, (26)

we find that (26) satisfies automatically the Eq. (15) and that
the electrostatic potential, in the coordinates space, between
two charged particlesq1 andq2, i.e., jµ

i (~x) = qiδ(~x− ~xi)δ
µ
0 ,

is determined by

U(r) =
Q2

2π

q1q2

r

(
|ψ0(0)|2 +

∞∑
m>0

|ψm(0)|2 e−mr

)
, (27)

wherer = | ~x2 − ~x1|. Notice that, in the presence of reg-
ulatory branes, the system resembles a well of the infinite
potential of width2zr, so it is estimated thatm is quantized
in units of1/zr. Thus, forzr →∞, the potential (27) can be
written as

U(r) =
Q2

2π

q1q2

r

(
|ψ0(0)|2

+ κ lim
zr→∞

∞∫

0

|ψm(0)|2e−mrzrdm

)
. (28)

whereκ is a proportionality constant defined by boundary
conditions at±zr.

For a domain wall spacetime, we expect a zero-mode lo-
calized aroundz = 0, ψ0 ∼ exp(5a/2) in correspondence
with standard electromagnetism, and a tower of unbounded
KK modes generating corrections to the Coulomb law.

Next, we will determine the electrostatic potential (28) on
three scenarios: RS brane, regular domain wall, and singular
domain wall.

3. Vector fields on RS brane world

The RS scenario [3] in the conformal coordinates (3) is de-
termined by

a(z) = − ln (1 + α |z|) , (29)

and

V (φ(z)) = −3
4

(
4
3
|Λ| − 2

3
τδ(z)

)
, (30)

with τ = 6α the brane’s tension and|Λ| = 6α2 the bulk
cosmological constant.

In this scenario, the localization mechanism defined by
action (2) takes the form

LA√
g

= −1
4
FabF

ab − 1
2

×
(

4
3
|Λ| − 2

3
τδ(z)

)
AaAa −Q2AaJa, (31)

which is similar to the proposed in Ref. [2]: a five-
dimensional Proca theory with generic massive terms in five
and four dimensions. However, in (31), the bulk mass of the
vector fields and the four-dimensional coupling parameter are
determined by the cosmological constant and the brane’s ten-
sion, respectively.

To evaluate the electrostatic potential (28), from (21) and
(29) we obtain

VQM =
35
4

α2

(1 + α |z|)2 − 5αδ(z); (32)

such that the eigenstates of the problem (20, 32) are given by
a normalizable zero mode

ψ0 =
√

2α (1 + α |z|)−5/2
, (33)

and a discrete spectrum of unbounded eigenstates

ψm+ = Nm

√
α−1 + z

(
J3

[
m{α−1 + z}]

+ B+Y3

[
m{α−1 + z}]

)
, z > 0, (34)

ψm− = Nm

√
α−1 − z

(
A−J3

[
m{α−1 − z}]

+ B−Y3

[
m{α−1 − z}]

)
, z < 0, (35)
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with J andY , the Bessel functions of the first and second
kind andA, B, andNm the integration and normalization
constants.

In agreement with [15], each eigenvalue of (20) is asso-
ciated with a pair of eigenfunctions,ψc

m andψd
m; which, for

the particular case (32), whereVQM (z) = VQM (−z), corre-
sponds to odd and even eigenstates of the problem (20, 32).
Hence, on the brane, they satisfy

ψc
m(0−) = ψc

m(0+) = 0, (36)

d

dz
ψc

m(0−)− d

dz
ψc

m(0+) = 0, (37)

and

ψd
m(0−) = ψd

m(0+), (38)

d

dz
ψd

m(0−)− d

dz
ψd

m(0+) = 5αψd
m(0); (39)

while, on the regular branes

ψd
m±(±zr) ' 0,

d

dz
ψd

m±(±zr) ' 0. (40)

Therefore, the constants of integration set forψc
m andψd

m

can be determined by (36, 37) and (25) in the first case; and
by (38, 39) and (25) in the second one. On the other hand,
the boundary condition (40) induces the discretization of the
mass,i.e., m ∼ nπ/zr with n ∈ Z+.

Thus, for the integration constants, we have

Ac
− = 1, Bc

− = −Bc
+, Bc

+ = −J3(m/α)
Y3(m/α)

, (41)

and

Ad
− =

[
1 +

Y3(m/α)
J3(m/α)

]−1

, Bd
− = −Bd

+, (42)

Bd
+ = −1

2

(
Y3(m/α)
J3(m/α)

+
J2(m/α)
Y2(m/α)

)

×
(

1 +
Y 2

3 (m/α)
J2

3 (m/α)

)−1

− 1
2

J2(m/α)
Y2(m/α)

. (43)

Finally, on the brane and form ¿ α, we find

zr

∣∣ψd
m(0)

∣∣2 ' π

32

(m

α

)3

+
π

48

(m

α

)5

+
π

86

(m

α

)7

, (44)

such that the electrostatic interaction

U(r)∼1
r

(
1+

3
32

1
(αr)4

+
5
4

1
(αr)6

+
1260
43

1
(αr)8

)
, (45)

is in correspondence with the standard four-dimensional po-
tential forr À α−1.

4. Regular Domain Walls

Let a(z) be the metric factor of a domain wall correspond-
ing to a regularized version of the RS brane [16–21]. Fol-
lowing [22], it is possible to estimate at least the order of
corrections as follows. Asymptotically, (where the effects of
wall thickness are negligible) the metric factor of a regular-
ized wall resembles the RS solution:a(z) ∼ − ln(1 + α|z|).
Hence, forz À α−1 the quantum mechanics potential (21)

VQM −→ 5
2

(
5
2

+ 1
)

1
z2

. (46)

In Ref. [22], it is shown that for aVQM with asymptotic be-
havior similar to (46), the density of the state on the wall is
determined byψm(0) ∼ (m/α)(5/2)−1 in such a way that,
the corrections to the electrostatic potential (28) go asr−5

and they are negligible compared to the Coulomb term from
a critical radius determined by the parameters of the regular
scenario.

5. Singular Domain Walls

The domain walls are understood as solutions to the coupled
Einstein-scalar field system whereφ interpolates between the
minimums of the scalar potential. However, there is another
family of walls whereV (φ) does not have minimums, butφ
interpolates among the lower values of the scalar potential.
These scenarios are called singular domain walls, and like
standard walls, they can locate gravity [11].

Next, let us explore the four-dimensional effective be-
havior of the vector field on the singular scenario reported
in [11] wherein in conformal coordinate (3), the warp factor,
the scalar field, and potential are given by

a(z) = − ln cosh(αz), α > 0. (47)

φ =

√
3
2

αz , (48)

and

V (φ) = 3 α2

[
1− 3

4
cosh2

(√
2/3φ

)]
. (49)

Notice that the scalar field interpolates between±∞, and
the scalar potential has a maximum inφ = 0. On the other
hand, the scalar curvature for this geometry is determined by

R = 14α2

[
1− 3

2
cosh(2αz)

]
(50)

which diverges forz → ±∞. Thus, the solution represents
a wall embedded in a five-dimensional spacetime that inter-
polates between two subspace with naked singularities in the
horizon.

To calculate the electrostatic potential (28), the density of
states associated to (20) with

VQM = m2
0̄ −

7
5
m2

0̄ cosh−2(αz) , m0̄ ≡
5
2
α , (51)
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is required. In this case, we can see that the zero mode is
separated from continuous modes by a mass gap defined by
m0̄.

By considering the change of variableξ = αz, the equa-
tion (20, 51) takes the form of a Schrödinger equation with a
potential of P̈oschl-Teller [23],

−1
2

d2

dξ2
ψ(ξ)− 35

8
cosh−2(ξ)ψ(ξ) = Eψ(ξ) , (52)

where

E =
25
8

(
m2

m2
0̄

− 1
)

, (53)

with bounded states determined by

E0 = −25
8

, ψ0 = N0 cosh−5/2(ξ) , (54)

and

E1 = −9
8

, ψ1 = N1 cosh−5/2(ξ) sinh(ξ), (55)

such that

m2
0 = 0, m2

1 =
16
25

m2
0̄, N2

0 =
16
15π

m0̄. (56)

Regarding the free states, under the change of variable

u = tanh(ξ), (57)

the differential equation (52) takes the form of a Legendre
equation

d

du

[(
1− u2

) d

du
ψ

]
+

[
35
4

+
2E2

(1− u2)

]
ψ = 0 , (58)

whose solutions are the associated Legendre functions of the
first and second kind, of5/2 grade and orderµ = ±√−2E,
given by

Pµ
5/2(u) =

1
Γ(1− u)

(
1 + u

1− u

)µ/2

× 2F1

[
−5

2
,

7
2
; 1− µ;

1− u

2

]
, (59)

Qµ
5/2(u) =

√
πΓ(7/2 + µ)

6
eiπµ(u2 − 1)µ/2

u7/2+µ

× 2F1

[
7
4

+
µ

2
,
9
4

+
µ

2
; 4;

1
u2

]
. (60)

The functionsPµ
5/2 andQµ

5/2 are orthogonal for|1 − u| < 2
and|u| > 1, respectively; in particular, the change (57) satis-
fies |1− u| < 2. Hence

ψm(u) =
Nm

2

[
Am

(
Γ−Pµ

5/2(u) + Γ+P−µ
5/2(u)

)

− i
(
Γ−Pµ

5/2(u)− Γ+P−µ
5/2(u)

) ]
(61)

whereΓ− = Γ(1− µ) andΓ+ = Γ(1 + µ).
The solution is doubly degenerate [15] and satisfies the

following boundary conditions

ψc
m(0−) = ψc

m(0+) = 0 , ψ′cm(0−) = ψ′cm(0+) , (62)

ψd
m(0−) = ψd

m(0+) , ψ′dm(0−) = ψ′dm(0+). (63)

Therefore, the density of the state inz = 0 is determined by

zr

∣∣ψd
m(0)

∣∣2 = Γ−Γ+Pµ
5/2(0)P−µ

5/2(0) . (64)

Now, the integral in the electrostatic potential saturates
for m À m0̄, and in this case, the states (64) reduces to

zr

∣∣ψd
m(0)

∣∣2 ' 1− 49
16

m2
0̄

m2
. (65)

By substituting the modes (54), (55) y (65) in (28), we obtain

U(r) ∼ 1
r

(
−33

16
− 49

16
m0̄r ln m0̄r +

1−m0̄r

m0̄r

)
(66)

where the dominant term forr ¿ α−1 is the order ofr−2

such that the electrostatic interaction on the four-dimensional
sector of the scenario is defined for a five-dimensional poten-
tial.

6. Discussion

In this paper, the mechanics of Ghoroku-Nakamura [2] for
confining vector fields on the RS brane was extended to self-
gravitating domain walls in a five-dimensional bulk.

This was achieved by considering the coupling of the vec-
tor boson with the scalar field of the wall. We found that
the four-dimensional degrees of freedom of the vector field
can be expanded in terms of a basis of eigenstates of the
Schr̈odinger equation, free of tachyonic states. In the electro-
static potential, the ground state defines the Coulomb inter-
action on the wall, while the massive state density generates
corrections to the potential.

When mechanism (2) is applied on the RS brane, the bulk
cosmological constant plays the role of mass for the vec-
tor field while the brane tension defines the parameter cou-
pling with the wall. The corrections generated by the massive
states in the electrostatic potential (28) are exponentially sup-
pressed, and the standard electromagnetism can be recovered
on the brane from a critical radius similar to the gravitational
case.

In the case of thick brane, the mechanism was applied on
regularized versions of the RS scenario and singular walls. In
the first case, in agreement with the Csaki theorem [22], we
find that deviations to the Coulomb law are the order ofr−5.
In the second case, the deviations are not negligible, and the
electrostatic interaction goes tor−2 on the four-dimensional
sector of the wall.

Rev. Mex. F́ıs. 67 (3) 415–421
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Notice that theory (2) is covariant but not gauge-invariant
due to the presence of the quadratic term in the action. This
can also be seen in the four-dimensional effective theory (see
Appendix),

L(4)
A =−1

4
f2

αβ+
∑

n

[
−1

4
(
fn

αβ

)2 − 1
2

(
mnan

µ + ∂µan
5

)2
]

+4
∑
p,q


 lim

zr→∞

zr∫

−zr

dz∂za ψqϕp


 ∂µap

5 aq
µ

+
2
3

∑
p,q

mp

mq


 lim

zr→∞

zr∫

−zr

dz e2aV (φ(z))ψpψq


 ap

5a
q
5

(67)

with

fαβ = ∂αaβ − ∂βaα, fn
αβ = ∂αan

β − ∂βan
α, (68)

where we have consideredAb → e−a/2Ab and

Aµ(x, z) = aµ(x) ψ0(z) +
∑

n6=0

an
µ(x) ψn(z), (69)

A5(x, z) =
∑

p6=0

ap
5(x) ϕp(z), (70)

such thatϕn = (−∂z +5/2 ∂za)ψn/mn is the supersymmet-
ric partner ofψn for mn 6= 0 [12]. In (67), the first two terms
correspond to the Maxwell action foraµ and the Stueckel-
berg action for the massive vectoran

µ. The absence of gauge
symmetry is due to the final two terms; the second to last is
a term of interaction betweenap

µ andan
5 via the dynamics of

the scalar modes∂µan
5 , and the last one corresponds to mas-

sive terms for(an
5 )2 whenn = p and to interaction terms

betweenan
5 andap

5 whenn 6= p.
In a forthcoming paper, we look forward to reporting a

gauge-invariant generalization of (2) and justify the term of
interaction between vector fields.

This work was supported by IDI-ESPOCH under the
project FCPI167.

Appendix

A. The eigenvalues problem

To find the four-dimensional effective theory (67), we have
considered

∞∫

−∞
dz

∫
d4x LA −→ lim

zr→∞

zr∫

−zr

dz

∫
d4x LA, (A.1)

where the spacetime is bounded by two regulatory branes,
each with negative tension and located at±zr. Under this
approach, it is possible to expand the components ofAb in
terms of a discrete base of functions with support along the
extra dimension.

In this sense, consider the operators

Q = ∂z +
5
2
a′ and Q+ = −∂z +

5
2
a′. (A.2)

If ψn is the set of states of the eigenvalues problem

QQ+ψn = m2
nψn,

Q+ψn

∣∣∣
±zr

= 0, n = 0, 1, 2, 3, . . . (A.3)

with m2
n ≥ 0 (because the differential operator is factoriz-

able) then,ϕn is the set of states of the problem

Q+Qϕn = m2
nϕn, n = 1, 2, 3, . . . (A.4)

whereϕn = Q+ψn/mn for all mn 6= 0. Hence,ψn y ϕn

always come in pairs, except for the zero modes ofψn (see
Ref. [12] for details). On the other hand, the orthonormality
relationship for each discrete set of functions is determined
by

zr∫

−zr

dz ψnψp = δnp and

zr∫

−zr

dz ϕnϕp = δnp. (A.5)

For a five-dimensional vector fieldAb, the components
expand as indicated in (69) and (70) whereψ0(z) ∼ e5a(z)/2.
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