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In a previous work reported in this journal, the thermodynamical propertigsvedve superconducting ground states close to half filling
were obtained by using a generalized Hubbard model. In the present work, extended s*\ayenetry superconducting ground states
are considered within the same model and a comparison is made between these two symmetries for those properties depending on the carrier
density @) and first- ¢) and second-neighbot’] electron hopping parameters. Fgrwave superconducting states, the electron-electron
interaction Hamiltonian parameters is fixed as in #heave case withA¢t = 0.5 eV, At = 0.05 eV, and two cases were studidd;= 0

andU = 2 eV. Without considering the diluted regime (— 0), in the intervaln € [0, 1], for both symmetries, the maximum critical
temperaturesI(. max) at optimal doping(op) are lower than those attained at high electron densities|1, 2]. The superconducting gap at

T = 0 K and the corresponding ground state enety)( for all the carrier concentrations, were also obtained. The superconductor state
with d-wave symmetry does not depend Grand a supremum fatop(rnop,sup), Where bothle max (1op,+» @and Eg(ngp are minimum, can

be found close to half filing. However, in general, fos &wave superconductdf, m.x and E4 attain their minimum values at different
(nop, t') points and auqp supcannot be properly defined.
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1. Introduction metry superconducting gap [6]. In this context, L. Arez
and C. Wang showed that when both next-nearest neighbor

The Hubbard model (HM) was proposed by J. Hubbard inhopping {') and next-nearest-neighbor correlated hopping

1963 [1] in order to understand the extensive variety of physintéraction \t) are taken into account,dwave supercon-

ical properties of transition metals (TM) with narrow elec- ducting ground state can be found in a two-dimensional lat-

tronic bands, and since then till nowadays it has been useif€ [7]- This generalized Hubbard model allows to describe

as a basic model to study diverse phenomena, such as a2y properties of superconducting ground states in a square

ferromagnetism and charge density waves [2], both phenorﬂ"-"ttice with different superconducting gap symmetries [8-10].
ena also related to high: superconductors. Moreover, it is In a previous work [11], we studied how the critical tem-
widely accepted that the single-band Hubbard model is an agperatureT,. of d-wave superconducting states on a square
propriate starting point to describe the electronic correlationattice depends on the electron density énd the second-
on the copper-oxygen planes of the cuprate superconductoreighbor hopping () for a given set of electron-electron
[3]. In particular, the hole superconductivity proposed by J.interaction parameterg/(V, At, Ats). In other words, for
Hirsch [4], based on a generalized Hubbard model that ineach value of’, we calculated’.(n) and the particular value
cludes nearest neighbor hoppinygnd the so-called nearest- nqp(t’) whereT, is maximum is called the optimal density.
neighbor correlated hopping interactiof#), could explain  Moreover, we also studied the particular vatug s,,where
superconducting states with an extendesymmetry energy  the minimum value off.(nop) is found. This value, which
gap. However, the inclusion of the next-nearest-neighbocorresponds to the minimum value of the critical temperature
hopping could play a crucial role in the competition betweenamong the set formed by the maximum valueg gthas been
antiferromagnetism and superconductivity in cuprate superdubbed the supreme value Bf (T max,sup). Moreover, we
conductors [5]. Moreover, phase sensitive experiments haveave found that the minimum superconducting ground state
shown that the cuprate superconductors hadenave sym-  energy is attained at this particular valug sup[11].
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By locating nop.sup for a fixed Atz = 0.05 eV, critical Within the mean-field BCS formalism [10], we obtain the
temperatures of . ~ 40 K and7. ~ 100 K, can be found following two coupled integral equations which determine
that correspond to L,a .. Sr,CuQ, and YBgCu3O,_, with the superconducting gafy, (k) with symmetrya = s*,d,

At = 0.1 eV andAt = 0.5 eV, respectively [11]. and the corresponding chemical potentiglfor a given tem-

Motivated by this scenario, in this work the critical tem- peraturel” and electron density (electrons per lattice site)
perature of systems with an extendedvave (s*) super-
conducting gap as a function of and ¢’ (for a given set 5 ,
of electron-electron interaction parameters) has been stud- A — _L//V , Aa(K) tan

a k,k',0
ied. Considering that théwave superconducting state arises 872 Eo (k')

from theV and At interactions, while the*-wave one orig- MIBZ

inates from bothA¢ and At;, V will be set to zero to keep o (Ea(k )) di di @
a minimum set of parameters. It is worth mentioning that 2kpT e

for d-wave superconductorg] does not change the super- a2 (K)o Ea(K)

conducting critical temperature [7,10], whereas fbiwave n—1= 2 // Ba(k) tanh < 2]% T > dkzdky. (5)
superconductor hinders the superconducting gaps and the Bz B

critical temperatures [7,10]. In contrast with tievave case ) o

[11], the results show that, for the-wave case, the mini- _Here lBZ refers to the first Brillouin zone of a square
mum of T..(nep) it is not attained at the same value naf, lattice, defined as

(andt’) where the minimum ground state energy is found, al- S -

though forU = 2 eV, the minimum of7,(nqp) and E, are {a, a} [a7 a]

attained close to half filling but at slightly different values of
nop. The different behaviors found fak-wave ands*-wave  andf,, (k) is the quasi-particle energy given by:
symmetries are related to the fact that, for the latter case the

superconducting gap has an isotropik,) and anisotropic Eo(k) = /(enr(K) + pa)? + AZ(K), (6)
(A, ) amplitudes. '

where (eprr(K)) is the mean field (MF) dispersion relation
2. The model given by

Within the single-band Generalized Hubbard Hamiltonian emr(K) = Enr + 2tap(cos[kzal + cos[kyal)
[10],_With Qn-site eIec'Fro_n-eIectr_on Co_ulombic interaction + 4t cos(kga) cos(kya), @)
(U), inter-site Coulombic interactiori/), first-(At) and sec-

ond neighbor At3) correlated-hopping interactions, the in- with:

teraction (i k) between electrons with antiparallel spins

in the reciprocal space can be written as [10,11]: Eyp = (g + 4V> n, 8)

Vik.q = U +VB(k —K') + At(Blk +q] + B[k +q]
+ Bk" +q] + B[k +a] + Ats(y[k + 9,k +q]
+7(=k +0q,-k"+0q))], (1)

whereq is the wave vector of the centre of mass of the two
interacting electrons with relative wave vectérandk’.
For a square lattice with lattice parametewe have [11]:

thyr =t +2nAts, )
tyr =t + nAt, (20)

wheret andt’ are the nearest and next-nearest neighbor hop-
ping parameters. Here we take< 0. Once the electron-
electron interactiortj 4 of Eq. (1) is replaced into Eq. (4)
and the possible superconducting gap solutions itand
B(K) = 2(cos[kza] + cos[kyal), (2) s*-wave symmetries are considered (first column of Table I),

, , , we obtain the equations shown in the second column of Ta-
y(k - k') = 4 cos[kya] cos[kya] + 4 cos[k,a] cos[kyal. (3)  ple .

TABLE |. Superconducting gap equations fbrands*-wave symmetries.

Superconducting gap Superconducting-gap equation
d-wave
Ag(k) = Ag(cos|kza] — cos[kyal) 1=- (Vfif?)a:jBﬂé (kos{k“”‘;]éj(is){kya}]z) tanh <;E,?B('¥> dkydky (11)
s*-wave
Agx(K) = As + Ag«(coslkza] — cos[kyal) Agx = —4At3(I2Asx + [1AS) — 4AAH(T1 A+ + ToAS) (12)
Ay = —U(1As+ + IoAg) — 4AAL(IL1 A + 1 AS) (13)
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For the s*-wave symmetry superconducting gap- (k) = A, + Ag«(coslkza] + cos[kyal), Ay and A« denote the
isotropic and anisotropic gap amplitudes, respectively, and the intdgffals! = 0, 1, 2, are given by

cos[kza] + cos[kya])! Es-(K)
I= i //BZ 2Es-(K) tanh< okt e ) (14)

The critical temperaturel(), can be determined from Eq. (11), or from Eqgs. (12) and (13) together with Eq. (5) by
considering thaf\, (7" = T..) = 0. In this case, the equations in Table |, can be reduced to those shown in Table II.

TABLE Il. Critical temperature equations fdf ands*-wave symmetries.

Superconducting gap symmetry Critical temperature equation
dwave L= - ] (e ek (Bl ) dkodk, 9)

s*-wave 1= (I? — IIo)(4Ats — (4A1)?) + 4At31, 4+ Uly + 8ALL (16)

where

// (coslkza —|—cos[k a))!
471'2 2|5MF — s>

1BZ

\EMF(k) - Ms*|
kT, dkzwdky. a7

On the other hand, the ground state eneigy () per site
can be obtained from the following equation [12]:

1 ~
Eg,a = ﬁ<'¢)g,a|HMF|wg,a>

X tanh (

1
- E Z(fMF,a[k] + Ea[k])

U
— ) 2. (18
Z 2 E@ alt <4 * V> " (18)
where H,,r is the mean field Hamiltonian of the system FIGURE 1. The critical temperaturelt) (open light gray circles)
[10,11], N, is the number of lattice sites, versus the electronic density)and the next-nearest neighbor hop-
ping parametet’ for V = 0, At = 0.5 eV, At; = 0.05 eV and
Evra =emr(K) — pas U = 2 eV. The gray circles correspond to local maxirfia {,..)

of the critical temperature as a functiorvofor a givent’. The pro-
B tog jections of these curves on the plame- ¢’ are marked with small
Vg,a =0k (Uk,a + Uk,acmc_k,l)|¢> gray dots and the values afwhereT. m.x occur are the optimal
is the ground state BCS-like wave function for singlet pairs.electron density or optimal doping.
The probability amplitudes to find the statgs?, —k |) oc-

and

Cupied (unoccupied) amc—a(uk—a) are given by perconduclting gap and = O, At = 0.5 eV andAtg .:
0.05 eV. Figure 1 showd.(n,t') for U = 2 eV. Notice

/1 1 Ea(K) that the highest values df. occur at high electron densi-
Uk = 2 N E.(k))’ tiesn. From these data, the maximumBf ,,.x as a func-

tion of n can be extracted for each value tfand the par-
£.(K) ticular value ofn(nep) at which this maximum is attained is
(1 + > (19) recorded. These values®f ... at the optimal dopingr{,p)
are marked with open gray circles in Fig. 1. Figure 2 shows
Notice thatf , +u , = 1. the isotropicA  (nop(t')) (Open gray circles) and anisotropic
Ag-(nop(t')) (open black circles) superconductingwave
3. Results gap amplitudes at the optimal doping,(t’)) for each value
of ¢’ for the same systems shown in Fig. 1. Figure 3 shows
We investigated the critical temperature as a function of thehe corresponding ground state energiesefvave super-
electron densityr() and the next-nearest neighbor hoppingconducting states at the optimal doping for each value of
parameter(() for a system with an extendedwave *) su-  t/,i.e., Ey ¢« (nop(t')), calculated with
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minimum of T, max (@among the set of maximuffi. ) occur

at the same value oy, [11]. This could be related to the
fact that thes*-wave superconducting gap has two gap am-
plitudes(A;, Ag-) that atT,. become zero at the same time,
whereas afl’ = 0 they could even have different sign. In
contrast, thel-wave superconducting gap only has a single
superconducting gap amplituda ;).

A a»maxl \t\

Tables Il and IV summarize the superconducting gap
amplitudesA; andA;- , the Fermi energiesqr), ie., the
chemical potentials &' = 0 K, and the ground state ener-
gies (E,) for s*-wave superconducting states with optimal
doping (uop) close to those where the minimum B ;,,.x
(nop = 0.55) and the minimum of&, (nq, = 0.63) are at-
tained, for systems withh =2 eV, V =0, At = 0.5 eV and
Atz = 0.05 eV. In general, for high electron optimal densi-
tiesT, max IS higher than at low electron densities. However,
FIGURE 2. Superconducting gap amplitudes, max, for @ = s in the case ofl-wave superconducting states with large elec-
(open gray circles) and = s* (open black circles) evaluated at tron densitiess) above have filling.e. n € [1,2], which
the optimal carrier concentration or doping,(t') considering the  correspond to low hole densities;{ = 2 — n), the Fermi
same set of parameters as in Fig. 1. energy at the under doped hole regimg K ny, op) does not
lie within the single-electron band and no Fermi surface is en-
countered. This electron-density zone could be related to the
pseudo gap regime of cuprate superconductors which is char-
acterized by the disappearance of Fermi surface [13]. Fig-
ure 4 shows the optimal electron density or doping, for
s*- (open circles) and-wave (open squares) superconduct-
ing states with the same parameters as in Fig. 2 and for dif-
ferent values of’. Notice that fort’ € [0.4]t|,0.5t|], nop(t’)
coincide for boths*- and d-wave superconducting states and
these occur at low densitidss., ngp € [0,0.365]. This is due
to the fact that for these values#f the van Hove singularity
of the single-particle electronic density of states (DOS) of a
square lattice with firsttf and second neighbot’) hoppings
at the bottom of the band is enhanced, as shown in the inset
of Fig. 4, where the DOS faf = 0.45¢ andn = 0.15 (black
line) is depicted. The black arrow in the figure indicates this
enhancement in comparison with the DOS for= 0.352|¢|
andn = 0.55 (grey line). Due to this increment of the DOS,
both superconducting states are enhanced at low carrier con-
centrations close to the bottom of the band. Also, in Fig. 4,
the black solid and the gray solid symbols correspond to the
minima of 7, .« andE, ., respectively, for each symmetry
Eq. (18) withU = 2 eV (open gray circles) and = 0 (open . Observe that fod-wave superconductors these two min-
black circles). For the case witi = 2 eV, T, ,.x has a ima (solid squares) occur at almost the same optimal electron
minimum atne, = 0.55, whereask, .- has a minimum at ~ density(nqp = 0.805) [11], whereas for*-wave supercon-
nep = 0.63. This is in contrast to what happens in tiie ~ ductors they occur at different optimal doping, = 0.55
wave case where both the minimum of the energy and th@ndngp, = 0.63 (solid circles), respectively.

E g_sss / \t\

FIGURE 3. Ground state energy (open gray circles) evaluated at
the optimal carrier concentration or doping,(t') considering the
same set of parameters as in Fig. 1 together with the Base0
(open black circles).

TaBLE Ill. Physical properties fog*-wave superconducting states close to minimalpf..x for At = 0.5 eV, Ats = 0.05 eV, and
U=2eV.

—t'/t Nop T max (K) E, (eV) Asx (eV) As (V) Er (eV)

0.354 0.54 137.15 -0.620463 0.0140545 -0.0192207 -0.759190

0.352 0.55 137.03 -0.623059 0.0138245 -0.01885295 -0.733963
0.35025 0.56 137.04 -0.625388 0.0135944 -0.01849778 -0.708160
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TaBLE IV. Physical properties fog*-wave superconducting states close to minimalEgf,- for At = 0.5 eV, Atz = 0.05 eV, and
U=2eV.

—t'/t Nop T max (K) Eg4 (eV) Ag+ (eV) As (eV) Er (eV)
0.33875 0.62 138.17 -0.632258 0.0122655 -0.0162540 -0.555360
0.3370 0.63 138.60 -0.632309 0.0120629 -0.0159037 -0.529490
0.3350 0.64 139.09 -0.631959 0.0118857 -0.0155746 -0.504122
0.6 T T . T <= A L L =
L L]
04k w%%% | il s ]
L n':'nu |
02f MOy - 11 ]
V\u L [ 4
:T’ 00} — t=0.45/], n=0.15 B S 0 O
— £=0.325|t], n=0.55 - .
1 o <
W
02F,! 4
or 1tk ]
FO [
04+ + J 4
1 ol ]
-4 -2 0 E/Itl 2 4 L} : :
_06 1 1 | 1
0.0 0.2 0.4 0.6 0.8 1.0 Sl J Lt . 4
-3 -2 -1 0 1 2 3
Ny, s
d)
FIGURE 4. Optimal doping as a function of the next-nearest- kxa
neighbor hoppingriep(t')) for s*- (open circles) and-wave (open
squares) superconducting states, for the same systems shown in 90

Fig. 2. The solid black and gray circles correspond to the minimum 0.010 120 — 60
T. max and Ey ., respectively. Inset: Single-particle electronic -
densities of states for systems with two different second-neighbor

; . L 150 \,30
hoppingst’ and optimal densitiesop. 0.005

~
. . . >
Figure 5(a) depicts the Fermi surface (FS) for a system @
with n = 055, U = 20eV,V = 0, At = 0.5 eV ot

<

0.000 | 180 060
and At; = 0.05 eV which correspond to the minimum of

Temax. Notice that the FS consists of two disconnected

parts, one electron-like (circle at the center of the first Bril- 0.005 210"

330
louin zone) and another one with branches as hole-like FS. 4

Figure 5(b) shows the single-particle excitation energy gap

(Ao) for this s*-wave superconducting state as a function og
of polar anglep = tan~'(k,/k,), which is defined as the
minimum value ofE;- (k) (Eq. 6) along the direction i&-
space given by [10,11]. Observe that, although the super- FIGURE 5. a). Fermi surface for a square lattice with= 0.55,
conducting gap has an extended s-wave symmetry given by = 0-352|t[, V = 0, At = 0.5 eV, Atz = 0.05 eV andU = 2
Ag(K) = Ay 4 Age[cos(kga) + cos(kya)], Ao(¢) has a eVv. I_:or this case the Fermi energyhs = 70.7*34 eV. b). Single
very complex pattern with two types of antinodes with dif- Particle excitation energy gap(¢)) for an s”-wave supercon-
ferent values, the larger ones at— 0°, 9C°, 180°, 270, _duc_tor with the sariltla parameters as in Fig. 5. The polar aggle (
and the lower ones at = 45, 135, 225, 315, and four is given by = tan™" (ky /ka).

nodal lines atp = 30, 60°, 120°, 150°. This complex pat-
tern comes from the interplay between the dispersion relatio

240 300

b) 270

Hwe ground-state energy df and s*-wave superconducting

k) (Eq. 7) andA.,. (k) which e, (K). states depend on the electron density n and the first- and
eur (k) (Ea. 7)an (k) which appear irt- (k) second-neighbor hopping parameterand¢’. Within the
4. Conclusions BCS formalism, thei-wave superconducting properties are

calculated by solving the coupled integral Egs. (5) and (11),
In summary, within the generalized Hubbard model, we havevhereas the*-wave superconducting properties are obtained
comparatively studied how the critical temperature and thdy means of Eq. (5) together with Egs. (12) and (13). The
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ground state energyFl,) was obtained for all the optimal
electron concentrations.§,) wherel, is maximum for each
value oft’. Fort’ e [0.4]t],0.5|t|], nop is located close to
the bottom of the band and it is the samedoands* -wave  s*-wave, such ag-wave symmetry, to elucidate if this fact
systems, since for these valueg/athe van Hove singularity is only a peculiarity ofl-wave superconducting states or if it
at the bottom of the band is enhanced. Also, at low electrorrould have more profound implications.

densities, the behavior ef -wave superconducting states dif- In a future work, we will study the possible supercon-
fer from that observed in d-wave superconductors where thducting symmetries that can be found in a cubic or tetragonal
minimum of the set of maximum critical temperatures (thelattice within the generalized Hubbard model.

supremum off,. ... ) is attained at the same parameter space

point (n,t") where the ground state energy is minimum. This

does not occur fos*-wave superconductors where the supre-Acknowledgments
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