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1. Introduction Recently, Cheng, Primulando and Spinrath introduced a
novel approach to Brownian motion as an effect produced by
After the pioneering discovery of Robert Brown of the diffu- he presence of dark matter. They showed that, by assuming
sive motion of granules of 1/4000th to 1/5000th of an inchthat any movable target particle is actually in a bath of dark
in size, extracted from pollen grains of the pladlarkia  matter, if dark matter has some interaction with ordinary mat-
pulchella[1], a precise understanding of this phenomenony, the effect will be the generation of some random motion
—since then known as Brownian motion— was established igf the target particle, which is conceptually similar to Brow-
the classic works of Albert Einstein [2], William Sutherland njan motion [10]. On the other hand, recent research lead by
[3], Marian Smoluchowski [4], and Pierre Langevin [5]. On the author of this paper suggests that dark matter does not
the basis of different arguments, they derived the linear timgyist as a primary physical reality but derives from oppor-
dependence of the mean squared displacement tune energy density fluctuations, associated to virtual pairs of
9 9 n particles-antiparticles, in a polarized three-dimensional (3D)
{r(1) = /T P(r,t)dV = 2dDt, @) quantum vacuum which is endowed with a fluctuating vis-
cosity. In this way, in the light of the Cheng, Primulando and
%pinrath insight, the suggestive perspective is opened that, at
a fundamental level, Brownian motion emerges from the in-
teraction between ordinary matter and a polarized 3D quan-
(7 1) = 1 exp (_7“2) . @) tum vacuum characterized by a fluctuating viscosity. In this
’ (47 Dt)d/2 4Dt paper our aim is to explore this possibility.

In Egs. (1) and (2), an important role is played by the The paper is _structured as follows. In Sec. 2 we will re-
diffusion coefficient D, which is given by the Einstein- V€W the foundations of the 3D quantu_m vacuum model de-
Smoluchowski-Sutherland relation velqped by th(=T autho.r. In Sec. 3 we will deve!op the mathe-

ksT  (R/NA)T matical formalism which ;hows how th_e polarlzeq BD quan-
= = , (3) tum vacuum endowed with a fluctuating viscosity induces

T mp Brownian motion on a target particle. In Sec. 4 we will ap-
wherem is the mass of the particle,is the viscosity of the  ply the mathematical formalism of our 3D quantum vacuum
ambient fluid,R is the gas constanly 4 is Avogadro’s num-  model of Brownian motion in the context of a Friedmann-
ber. The diffusion coefficient (3) prompted a long series ofRobertson-Walker (FRW) spatially flat geometry. In Sec. 5,
relevant experiments on diffusive motion, such as Jean Pee will summarize the results of the paper.
rin’s systematic observations which provided the introduction
of single particle tracking protocols [6,7], those due to Ivar ) . )
Nordlund, who suggested time-resolved recordings using 8- 1he foundations of the three-dimensional
moving film plate and thus getting around the need to aver-  quantum vacuum model with a fluctuating
age over ensembles of test particles [8], and those of Eugen viscosity
Kappler, who first mapped out the Gaussian Boltzmann dis-
tribution of the equilibrium distribution of the angles to very In order to see why and in what sense the Brownian motion
high precision [9]. of a particle can be considered as an emerging phenomenon

in d spatial dimensions, and the Gaussian nature of the prob
bility density function for &-initial condition (Green'’s func-
tion)
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2 D. FISCALETTI

from a polarized 3D quantum vacuum characterized by a flucin terms of fundamental fluctuations of the quantum vacuum

tuating viscosity, we need first to realize the interpretation ofenergy density (and therefore of peculiar excited states of the

ordinary particles of the Standard Model and the concept 08D vacuum), in the range of the ultra-low frequencies, corre-

polarized 3D quantum vacuum characterized by a fluctuatingponding to excited states of the 3D quantum vacuum which

viscosity in the light of some current research. do not act as a perfect superfluid medium, but are character-
The model of 3D quantum vacuum proposed by the auized by a certain (fluctuating) viscosity of the form

thor in a series of recent works [11-20], postulates that the

appearance of ordinary matter derives from an opportune ex- p(t) = pcos(§2t), @)

cited state of the 3D q_uantum vacuum defined by the quanturgnd thus correspond to RS processes which produce only the
vacuum energy density

bare mass of the virtual particles (namely without the self-

me2 interaction which is able to make the particlgsible).
P=PpE = 4) The polarization of the 3D quantum vacuum is due to RS
processes involving a background of elementaasturbative
where the Planck energy density massyh/ni2Apgu, (Wheren is the number of the virtual
.2 ( particles in the volume into consideration af@,, g, is the
PpE = ’l’3 = 4,641266 x 10''3  J/n?, (5) change of the quantum vacuum energy generating the appear-
P ance of matter at a rest mass inb&restate) determined by a

perturbativefluctuation of the quantum vacuum energy den-

can be defined as tlground stateof the 3D quantum vac- F>-' _
sity given by relation [23]

uum, andm andV are the mass and volume of the particle,

respectively. pihc?
The excited state of the 3D quantum vacuum correspond- Apperturbative= —75 A (8)

i . ) S nVIZApguE,

ing to the appearance of this material particle is therefore

characterized by the change of the energy density As regards the explanation of the flat rotation curves of

) the spiral galaxies, the perturbative fluctuation of the quan-
ApgoE = ppi — p = me (6) tum vacuum energy density (8) can mimic the action of dark
Vv matter in the sense that it provokes an exchange of the energy

with respect to the ground state. Moreover, the modePf the rotating galactic matter with the quantum vacuum fluc-
predicts that ordinary matter emerges from elementaryuations, which generates, in regime ultra-low frequencies, a
reduction-state (RS) processes of creation/annihilation of virSort of breathing of the galaxy which can be described by the
tual particles of the vacuum medium. In particular, in epis-Small fluctuations in time of the orbital speed

temological affinity with a recent approach proposed by Li- r & 2

cata and Chiatti where quantum jumps are processes of entry Virt) = — Z l—exp|—=———1| ], 9)
. - - ) 2rn 4 > (%)

and exit from the usual temporal domain to a timeless vac i=1 n

uum [21,22], a real quantum massive particle of the Standar\%here

Model is here given by the sum oftsre mass produced by

the virtual particles of the 3D quantum vacuum, and an addi- Apperturbativd’ 12\

tional term associated with the self-interaction, which is re- Z(t) =4 (F)thp> sin(Qnt) + 07, (10)

sponsible of the actuappearancevisibility, tangibility of n "

the particle. In Egs. (9) and (10), the paramet@y, is an oscillation
This model of the 3D quantum vacuum, despite the confrequency while the parametey, is given byo,, = 4¢/Q,,,.

sideration of a series of specific hypotheses regarding the r@hese two parameters determine a wide spectrum of the vis-

lations between the states of the vacuum and a variable quanesity coefficients which is discrete with equidistant position

tum vacuum energy density, has the merit to suggest interesdf each component and is condensed in the pQint 0

ing perspectives of unification of gravity and quantum and ofand imply that the strongest contribution to the vorticity

a completion of the Standard Model where the action of thegives modes with frequencies close to zero. On the ba-

Higgs boson emerges as the interplay of opportune fluctussis of the treatment provided in [23], under the constraints

tions of the quantum vacuum energy density (see, in particuF = 1027 m?/s,Q,, = 107! s7!, andn = 25, the param-

lar, [20]). etero,, = 4¢/Q,, ranges from 10000 to 300000 light years,
On the other hand, on the basis of the results obtainedhich reproduces the diameter of the ordinary spiral galax-

in [23], in our model of 3D quantum vacuum, the action of ies and the orbital speed (9) determined by pleeturbative

dark matter, which is invoked to explain the rotation curvesfluctuation of the quantum vacuum energy density (8) can

of galaxies, is assimilated to a more fundamental concept aéxplain the stabilized behaviour of the speed of the arms of

polarization of the vacuum characterized by a fluctuating visspiral galaxies, with increasing distance from the core of the

cosity. In this regard, in our theory, the crucial point is thatgalaxy, compatibly with the experimental observations (and

the flat rotation curves of the spiral galaxies may be explaineth agreement with the results obtained by Sbitnev in [24]),
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BROWNIAN MOTION AND POLARIZED THREE-DIMENSIONAL QUANTUM VACUUM 3

reproducing the observed flattening of the orbital speeds 8. Brownian motion induced by the polarized
spiral galaxies, in terms just of the fluctuations of virtual par- three-dimensional quantum vacuum with a
ticles of the vacuum, namely of the polarization of the vac- fluctuating viscosity

uum generated by its fluctuating viscosity.

It must be emphasized that the introduction of a polarizedifter seeing what is ordinary matter and what is the conse-
quantum vacuum characterized by a fluctuating viscosity aguence of the polarization of the vacuum in presence of a
the ultimate origin of the behaviour of the rotation curves offluctuating viscosity, we can now analyse how emerges the
the spiral galaxies can be considered physically relevant (anBrownian motion of a material particle in this background.
somewhat necessary, according to our point of view) for aWhen a test particle moves in space, it has the possibility to
least two orders of motivations. On one hand, because dheet regions of space characterized by a fluctuating viscosity

the inability of dark matter to explain the so-called Baryonic&nd thus to interact with regions of the 3D quantum vacuum
Tully-Fisher Relationship which are in the specific peculiar excited state associated with

the perturbative fluctuation of the 3D quantum vacuum (8). In
order to describe the interaction between the dressed massive
test particle and the perturbative fluctuation of the quantum
vacuum (8), one can introduce the diffusion coefficient:

where m2c?n

D=———.
QApperturbativé/
Taking account of (8), Eq. (11) can be expressed as

MB = AU47

(11)
A= (47£6) Mgkm s,

. hHZIIQ)quvEO
between the baryonic mass of the galadys and the =——

galaxy’s constant outer rotational velocity On the other 2u

hand, because Milgrom’s Modified Newtonian Dynamics In this way, the probability density function of Gaussian
[25-27], the most prominent alternative approach to dark mathature, invoked by the original treatments of Albert Einstein
ter, that postulates the inertia of an object varies with accelef2], William Sutherland [3], Marian Smoluchowski [4] and
ation in a manner that reproduces the Baryonic Tully-FishePierre Langevin [5], in our approach reads

(12)

Relationship and turns out to be in good agreement with the . 1

galactic rotational curves, however is not able to explain in P(mt) = 5 919 /2
a natural way the flatness of our universe, still requiring the <47rh n lpquvE0>
existence of dark matter in order to explain the accelerated 2uh

expansion of space. Instead, our approach of polarized quan-

tum vacuum characterized by a perturbative fluctuation of 5
r

the quantum vacuum energy density can face these issues in X exp — | (13)
a natural way. Moreover, it is compatible with the results 45" L, ApguE, "
of other interesting approaches existing in the current litera- 20

ture which provide an alternative to dark matter and Modifiedang the Einstein-Smoluchowski-Sutherland relation becomes
Newtonian Dynamics. For example, in a series of papers [28- En2I2A
32], Penner proposed the idea that the gravitational field of a " 2PquEy kT - (B/Na)T
baryonic mass induces an energy contribution from the vac- 2p mn mn
uum which leads naturally to the Baryonic Tully-Fisher Rela-which yields
tionship [28], leads to excellent agreement with the rotational 2k nT

i - . HEB
curves of galaxies [29, 30] as well as the velocity dispersion 0= A, (15)
and shear measurements taken with the Coma cluster [31]. In =2 PqvEo
an analogous spirit, in [33] Roshan and Rahvar studied the In other words, in our theory of the Brownian motion, the
dynamics of large-scale structures, such as the time evolueal macroscopic viscosity of the ambient flyidan be seen
tion of exponential disk galaxies, in the context of a non-localas a collective property which is generated by more funda-
theory of gravity. Our theory of 3D quantum vacuum charac-mental properties of the 3D quantum vacuura, the per-
terized by a perturbative fluctuation of the quantum vacuunturbative fluctuation of the quantum vacuum energy density
energy density has epistemological affinities with the backwhich describes the polarization of the vacuum determined
ground of these models of explanation of dynamics of galaxby a fluctuating viscosity.
ies which are alternative to dark matter and therefore can be Now, the crucial point regarding how the Brownian mo-
considered as a physically plausible starting-point in order tdion of a test particle emerges in the polarized vacuum with a
throw new light as regards the description of the dynamicdgluctuating viscosity, invoked by our theory, is the following.
of large-scale structures and to build novel scenarios in oufhe ultimate source of the Brownian motion is the perturba-
cosmological theories. tive fluctuation of the quantum vacuum energy density (8),

: (14)
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4 D. FISCALETTI

which can be seen as an external potential acting on the tegtm vacuum

particle, as a sort of polarized bath inside which the test par-
ticle moves and which therefore produces a friction onto the VietP) (Lov +[0- VU] | +VQ — v9Q
: c ot c Ot
particle.
Now, in order to provide a mathematical treatment of the + M . (WOJ‘ _ WO’O)
Brownian motion inside our model, we will make our calcu- ot
lations, for' sakg of S|mpI|C|ty, inside a geodesic plcture for n Vu(t) (8(u)w“7i B ﬁauw%")
a test particle instead of using the hydrodynamic flows of n
a typical fluid volume element. This simplification may be Vu(t) 4 o
considered physically plausible by virtue of the fact that the +— =@ — 59, m"7) = 0. (18)

geodesics for a test particle in the polarized 3D quantum vac-

uum are dynamically equivalent to the hydrodynamic flows A for Eq. (17) and (18)J7 = cv is the real velocity of

in the interior of a fluid volume element of the same vacuumthe fluid associated with the fluctuations of the quantum vac-
In fact, in the model of the 3D quantum vacuum, as shown byusum, while@ is the quantum potential which describes the
the author of this paper in [14], the perturbative fluctuation ofinfluence through the pressures that arise between ensembles
the quantum vacuum energy density (12) mimicking the acof virtual particles populating the vacuum and is given by re-
tion of dark matter in the explanation of the observed flattendation

ing of the orbital speeds of the spiral galaxies in a geodesic " D2 1 92

picture, may be associated to a energy-momentum tensor of ) = Vplnip2 =— (vapqu — >

the form < 2o
D? 1[0 2
+ Y] [VAquEo]2 - |:8quUE\1:|
™ = (¢ + p)uru” + pnt¥ + TI*, (16) PqvEC ¢ t
_ h*c*n 9,0"R (19)
wheree and p are functions per unit volume expressed in 28pgur,V R

i w i i . .
units of pressure ang"” is the metric tensor having the where R is the square root of the density distribution of the

spacelil.<e signatyre ("+’+’.+)' Iq Eq. (16) the crugial term iS\/irtual particles in the vacuum and is the diffusion coeffi-
I1*¥ which describes the viscosity of the vacuum in a hydro—Cient given by

dynamic picture. In other words, we can say that the term
I1#* indicates that the 3D quantum vacuum acts, in general, he*n

as a non-perfect fluid medium characterized by a given de- D= m
gree of viscosity, and can be considered as the hydrodynamic

counterpart of the perturbative fluctuation of the quantum In light of the considerations we have made here, there
vacuum energy density (8). By virtue of the correspondencés & direct physical correspondence between the geodesics
between the terrfil** and the perturbative fluctuation of the emerging from the interaction with the perturbative fluctua-
guantum vacuum energy density, the motion of a test partition of the quantum vacuum energy density and the hydrody-
cle in the 3D quantum vacuum treated in terms of geodesic8amic flows in the vacuum acting as a non-perfect fluid. As a
which emerge from the interaction with the perturbative fluc-consequence, we can develop our treatment of the Brownian
tuation of the quantum vacuum energy density, turns out ténotion of a test particle in the 3D polarized quantum vac-
be dynamically equivalent to its motion in terms of hydrody- Uum, as a toy-model inside a geodesic picture, without the
namic flows resulting from the interaction with the viscosity Necessity to use a hydrodynamic picture.

term IT** of a typical fluid element of the vacuum. In par-  Now, our toy-model of the Brownian motion of a test par-
ticular, the orbital speed (9) determined by the perturbativeicle in the 3D polarized quantum vacuum can be mathemat-
fluctuation of the quantum vacuum energy density may bécally formulated by starting from the following Safutinger
seen as a collective hydrodynamic property which emerge§duation for the coupled system test particle+perturbative
from the fundamental energy-momentum tensor (16) in thdluctuation of the quantum vacuum energy density:

(20)

sense that it corresponds to a vorticily= V x V of the 9 5
vacuum satisfying equation zha—w = (= +U+ __phe” + H v (21)
geq ot - om nlf,ququ APquEU
03 L ut)e where ¢ is the wave function of the systemm is the
5 T@- V)V = mVQCU, (17)  mass of the Brownian particlgj is the momentum opera-
qu g

tor of the Brownian particle[/(r) is an external potential
acting on the Brownian particle only (due to the interac-
which derives directly from the following generalized tion with the virtual sub-particles of the 3D quantum vac-
Navier-Stokes equation for the excited states of the 3D quarium), (uhc? /nlf)quv E,) is the perturbative potential due
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BROWNIAN MOTION AND POLARIZED THREE-DIMENSIONAL QUANTUM VACUUM 5

to the fluctuating viscosity of the vacuum accounting for the and the Hamilton-Jacobi equation

particle-bath interaction anH ,,,,, is @ pure bath Hamil-

tonian (associated with the polarized vacuum). By virtue of

its statistical nature, the wave function which is solution of 75,V +mV - VV + bV =

(21) can be expressed as= ®¢, whereg is the wave func- )

tion of the Brownian particle ané is the conditional wave v/ (Q LU+ _ phe” TS) ’ (25)
function of the perturbative fluctuation of the quantum vac- A pgu s,

uum energy density. By following the treatment of Tsekov

in [34], if one substitutes) = ®¢ in Eq. (21), after some whereV = (VA — br)/m, p = n/AV, wheren is the num-

mathematical manipulations, one obtains: ber of the virtual particles in the volum&V and
=2 2
m%:<pU __phe” ,
ot 2m "l APgu s, Q= PtP n <VP> Ve (26)
bA  b(p- b P gm \ p am p
_T5+_<pr+rpg¢, 22)
m 2m

is the quantum potential which is responsible of quantum ef-

tion whereT is the temperatures is the Boltzmann entropy fectg and thus of non-local .corrglations in this background..ln
of the particlep is the friction coefficient of the particle asso- the light of the results obtained in [20], the quantum potential
ciated with its interaction with the polarized vacuum (which (26) ¢an also be expressed in a similar form to (19), namely

measures the resistance produced by the polarized vacuumig
the Brownian motion of the test particle}y = [p - dr is b oo
the action (which depends on the particle wave functpn _yh tp2 h=c™n
The quantity(uhc? /nl2Apgui,) — T'S means that the work p 402, 5, V?
required to remove quasi-statistically the quantum Brownian

particle from the bath of the polarized vacuum at constant X <V2quon -
temperature and volume depends on the perturbative fluctu-

ation of the quantum vacuum energy density. In the light 170 2
of Eq. (22), the polarized bath determined by the perturba- X ([VquUEO]Q - [quon} ) . (27)
tive fluctuation of the quantum vacuum energy density (12) c* [0t

not only decreases the kinetic energy of the test particle but
modifies its energy spectrum too because of the tetrm.

Moreover, as regards the friction coefficigntobservations vacuum describes the geometry via the presspresnd ps

of rotation curves of spiral galaxies can set th? bounds. IBhat arise by the collisions between the virtual particles pop-
fac_t, in order to reproduce t_he observed flattenm_g of the roLllating the vacuum. In this picture, the collective excitations
tation curves of spiral galaxies, a reasonable estimate for th(gzf the virtual particles of the physical vacuum (which pro-
friction coefficient appearing in I_Eq. (22) is represented byvide the polarized bath determining the Brownian motion of
the_byalueb ~ mil, and, thus, if one assumes the Valuethe test ordinary particle) define therefore a mesoscopic level
10 Kglfor thimass of the test material particle, one hagypjch s characterized by a degree of non-locality. The delo-
b~ 107" Kg-s™. . __calization degree regarding the mesoscopic level of these col-
IT qrder to explore the consequences of.the- npn-llne ective excitations may also be evaluated by defining a Bell
Schidinger Eq. (22) - and in order to study its limit CasesIength of the vacuum ultimately associated with the osmotic

5 d_>l 0 and Tf_’ oo - we _recaﬁt this eg“a“?” by the pressure arising as a consequence of the motion of the virtual
adelung transformation, writing the wave function as particles in the vacuum:

Equation (22) turns out to be a nonlinear Satinger equa-

2 h202 n2

< 73 8PquE > t a3 s
& or °) " 8D, V2

Equation (27) shows that the quantum potential of the

t = Re' /", (23)
By substituting (23) into Eq. (22) and separating real and Luvacuum= 2 (28)
imaginary parts, one obtains a continuity equation \/_ (E)Q L9 ’
dp h P P
-+ — A) = 24
o T V(evA) =0, (24)
| which, by following [20], may be expressed as
2
h
Lquantum: < ) (29)

D’I’L\/‘Tj (— [vquvE0}2 + Ciz [%quon}Q - qu’UEO [vapquO - %%quvlfg})
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6 D. FISCALETTI

whereD,, = (¢?*nh)/2ApguE,V -
On the basis of relation (29), the points where the quan- . .
tum potential (27) tends to zero —which correspond to an in- In light of Eqs. (27) and (29) one can evaluate the condi

. . ti in which th ibuti fth ial, de-
finite value of the Bell length of the vacuum (29)- indicate lons in which the contributions of the quantum potential, de

the boundary of the region where the virtual particles of thescnblng_the quantum effe_cts in the Broyvnlan motion _Whlch
vacuum are delocalized. Therefore the following re-readin e negligible for all practical purposes in the thermodynamic
of the motion of the test.particle in the bath provided by theqlmlt_ become relevant. In this regard, one can use the con-

sideration that, in the light of some recent research, the maxi-

polarized 3D vacuum b_ecomes perm|35|ble:_ the virtual par_t"mum de-localization of a quantum system corresponds to the
cles of the vacuum which are associated with a perturbative

fluctuation determined by a fluctuating viscosity generate value 1 of the Bell length [22]. By applying this constraint,

%ne obtains the following simple relation which are satisfied
Brownian motion of the test particle and the interaction be- 9 P

. : . .~ by the number of virtual particles-antiparticles of the RS pro-
tween the test particle and the virtual particles of the medlunEy P P P

S - _cesses of the 3D quantum vacuum in the condition of max-
implies that the background of the processes can be describ rﬁum entanglement, and thus when the quantum effects de-
by a quantum potential of the vacuum (27) and thus by a Bell_ _ . ' . )

length of the vacuum (29), which turns out to be exclusively cribed by the quantum potential become relevant:
dependent on the rapidity of the variation of the quantum po-

tential (27) in the entire set of coordinates of the configuration v2p Vp 2
space and can be considered as a measure of the spatial length 27 - <p) =4,
on which non-local effects of the vacuum are generated in a
semi-classical description.

(30)

|  which, by taking account of relation (29), may be written as

16Ap3vEDV

n =
(_ [Vqu'UEU]2 + C% [%quvE‘o]z - quvEn [VQquvEU - C%%APQUEO])

(31)

Now, in the limit of zero temperature, the entropic term
in Eq. (22) drops out and the solutions of Egs. (24) and (25

are produced by the polarized vacuum, the first inertial term in
(z — €)? Egs. (34) and (35) is negligible with respect to the other terms
exp (— 952 ) and the solution i&2 = h4/t/mb; in the limitb — oo the
p= Q'T , (32) initial state will last forever because the Brownian particle
V2mog is constrained in a kinetic well and, as a consequence of the
and Heisenberg relations, in the quantum regime one has a re-
¢ 1 do, striction of the relaxation of the momentum dispersion.
V:aJr(x—f)U— T (33)

where the mean valugand dispersiom,. obey the following
dynamic equations

However, in general, the temperature, which is introduced
in Eg. (22) as a parameter describing the chaotic motion of
the bath virtual particles of the polarized vacuum, is the lo-

phe? cal non-equilibrium temperature. When the temperature is
92 9 B n2Apgu, increasing, one expects an increasing of the chaotic motion
ma € +ba €= . : (34)  of the virtual particles of the polarized vacuum. In the limit
12 of T — oo, the energetic scenario of non-equilibrium ther-
) — modynamics corresponds to a throughput of heat, namely a
m%ai + b%ai _ 4mo; (35) kinetic energy at the subquantum level, and one expects that
X

the test Brownian particle will not only receive kinetic en-

Equation (34) can be considered as a sort of generalizeergy from the thermodynamic environment, but, in order to

version of the Ehrenfest theorem in the polarized vacuumbalance the stochastic influence of the supplementary mo-
Equation (35) is a nonlinear equation by virtue of the presimentum fluctuations determined by the interaction with the
ence of the quantum potential. In the simple case of abperturbative fluctuation of the quantum vacuum energy den-
sence of friction effects of the polarized vacuum (namelysity, it will also dissipate heat into the environment. On the
b = 0) the solution of Egs. (34) and (35) is given by = basis of the “vacuum fluctuation theorem” introduced in [35],
02(0) + (ht/2mao2(0))? which describes the spreading of a the larger the energy fluctuation of the oscillating “system of
Gaussian wave packet. Instead, inthe case of strong frictiomterest” is, the higher is the probability that heat will be dis-

sipated into the environment rather than be absorbed.
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BROWNIAN MOTION AND POLARIZED THREE-DIMENSIONAL QUANTUM VACUUM 7

As a consequence of the motion of a very fast Brownian  According to Eq. (39) the quantum diffusion associated
particle, one has a complete destruction of the local thermowith the Brownian motion of the test particle in the polar-
dynamic equilibrium. Therefore, we must focus the attentionized bath is guided by the quantum potential and is influenced
on the relatively low velocities in order to be able to employ by the mediatory action of the perturbative fluctuation of the
the equilibrium statistical temperature, which occurs whemuantum vacuum energy density. In the case of strong fric-
the interaction of the test particle with the perturbative fluc-tion, Eq. (38) implies a dispersion-dependent quantum diffu-
tuation of the quantum vacuum energy density determines sion coefficient of the form
linear response. Under these constraints, one can linearize

. h2
Eq. (22) onV obtaining D = . 39
@ 4dmbo? (39)
P v v apv]orus L pg
mapP =V |V V@ U n2Apgur, By substituting (12) into (39), one finds
hy
op A P — 40
+mV - [pvv]> = b+ V- (pv [Q +U T (40)

B2 namely the dispersion of the wave packet turns out to be a
fic — TSD +0(V?). (36)  collective property generated by the polarized vacuum char-
npApquE, acterized by a fluctuating viscositye. by the perturbative

On the basis of the treatment of Tsekov in [34], since thefluctuation of the quantum vacuum energy density.
thermodynamic entropy As regards the problem of finding the exact solutions of
5 Eq. (37), there are obvious mathematical difficulties. How-
0 whe _ )
Si==- | Q+U+ —7—— TS ever, a reasonable assumption is that, at the first order, the ex-
or A PguE, ob ternal potential is a harmonic one of the foti= mw3z?/2
is the temperature derivative of the free energy, one can exVhere
ress
P Wo = Mpﬂ’ (41)
phc? hn
RQ+U+ —7—— TS ) ) _ ) _
nly ApquE, is the frequency associated with the motion of the virtual sub-
by integration o, thus obtaining: particles of the vacuum, namely
02 dp IAL2 - V2ma?
b—— = KpT PavE, ¥~
MorP o = KTV U= (42)

1 and that the polarized bath represented by the perturbative
X (pv/ NG {H + 2} ‘[dﬁ) (37) fluctuation of the quantum vacuum energy density provides a
0 correction in terms of dissipative, dispersive effects. Under
where the subscrigt indicates that in this relation the fric- these constraints, the general solution of the non-equilibrium
tion coefficientd is considered constant during the integra-Eq. (37) will be given by a Gaussian distribution at the lowest
tion on 3. Equation (37) is a non-linear differential equation order, plus corrections expressed by dissipative, dispersive
describing the quantum Brownian motion beyond the lineaterms linked with the perturbative fluctuation of the quantum
response. Instead, if the friction coefficient is not constantyacuum energy density:
and for example depends on the temperature, this means that

the interaction of the Brownian particle with the polarized ~_ exp(—[z —¢]?/203) (z—§)
vacuum corresponds to variable fluctuations of the quantun‘? /22 En2I2A
. . . z P pq’UE()
vacuum energy density which generate the maximum degree 5
of chaotic motion of the Brownian particle (and, in this re- H
gard, further research is obviously required in order to clarify (x — €)? (x—€)3
the physical details of these processes). 212 - 212 3
Moreover, at zero temperature, Eq. (37) becomes the fol- \/4lepqu”E°t 12¢2 (hnll’qu”EOt)
lowing non-linear equation describing a purely quantum dif- 2p 2
fusion (43)
0? ap
and
maEl TV =V
0 0
phe? —E+ (z—&)=00
x | pV {Q+ U+ ] . (38) _ Ot ot
( nl2ApguE, V= . . (44)
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8 D. FISCALETTI

The corresponding mean valgeand dispersiorwr, sat- whereD = (kgT)/b = (hn*I2ApguE,)/2p is the Ein-
isfy the foIIowing dynamic equations stein diffusion coefficient, which here can be seen as a collec-
tive property emerging from a more fundamental perturbative

2
atgf + b 5 + mwié = l;fic (45) fluctuation of the quantum vacuum energy density describing
p=PgvEo the polarized vacuum. In the light of Eq. (48), we can say that
o2 P the quantum potential, and thus the pressure provoked by the
mon + baa + 2m< — kT virtual particles of the vacuum, determine a relative increase
of the diffusion coefficient.

B ) Let us see now what are the consequences of equation

% / hQ . dﬂ J — 2%pT. (46) (48) at Igrge time; and :_it shprt times r(_asp.ectively. At _Iarge
dm?2o] times, since the dispersiar? increases in time, the action

_ _ o of the quantum potential can be neglected and thus the so-

Despite the mathematical difficulties, Egs. (45) and (46)ution of Eq. (48) tends asymptotically to the Einstein law

0

lead to obtain the equilibrium dispersion o2 = 2Dt, which here reads as
h ﬁﬁwo 272
2 _ hn2l2Apge
Ta <2mw0> COth( 2 ) s e L ”M’)" Eoy. (49)

which coincides with the results of statistical thermodynam-

ics, where nowsy is given by Eq. (41), namely On the contrary, at small times t the quantum term is dom-

inant and one can neglect the unity in the brackets of Eq. (48).
h2n In this way, one obtains a solution in terms of the expression

2 BApguE,
Tz = <47nquUE0> coth ( n ) 47 for the purely quantum diffusion

In other words we can say that, in our model, the equi-

librium dispersion emerges as a collective property which is oz ="h b’ (50)
generated by the fundamental frequencies of the 3D quantum
vacuum, given by (41). which here reads
Moreover, if one considers the case of a free Brownian
particle (oo = 0) in the high friction limit relevant to the Ein- 2 _p hn22Apgu eyt 51
stein I_aw of Brownian motion, Egs. (40) and (41) become the Tz = 2umkpgT (51)
following one:
8 At small times, in the thermodynamic limit, the back-
% —op| 1+ 02/ h? a3 (48) ground has the possibility to reach the maximum degree of
ot ) 4dmol non-locality expressed by the value 1 of the Bell length of
0 b the vacuum, where the constraint (31) holds. Therefore, the

| dispersions2 in this condition becomes

16Ap8, 5, V2 13ApguE,t

2 _
* 2umkpgT
- {Vquon }2 + ?g{%quon}z — Apgu, {V2quvE0ci2gT22quon} Hm

(52)

In the light of the formalisms (49), (51) and (52), a fun-
damental result of the approach to the Brownian motion de-
veloped in this chapter is the following. Both for large times packet in the Brownian motion of a test particle inside the
(when the action of the quantum potential is negligible) and3D quantum vacuum model, becomes permissible. It is the
for small times (when the action of the quantum potentialspecific interplay between the perturbative fluctuation of the
is dominant), the dispersion of the wave packet correspondjuantum vacuum energy density —associated with the pecu-
ing to the test particle is a collective property which emergediar excited state of the 3D quantum vacuum interacting with
from the perturbative fluctuation of the quantum vacuum enthe test particle— and the viscosity of the vacuum which im-
ergy density and thus from the polarized vacuum charactemplies that in some situations the dispersion of the wave packet
ized by a fluctuating viscosity. Therefore, the following re- is given by relation (49) and in some situations the dispersion
reading of the results regarding the dispersion of the waveof the wave packet is given by relation (51). In other words,
in the model of the Brownian motion here presented, we can
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BROWNIAN MOTION AND POLARIZED THREE-DIMENSIONAL QUANTUM VACUUM 9

say that the dominance of quantum effects or the dominance

of classical effects can be seen as collective behaviours which
X dN 2 9
emerge from a more fundamental interplay between the per- L = PA ——— ~83x10
turbative fluctuation of the quantum vacuum energy density dt mmkpT
and the viscosity of the vacuum, having a s'pecific; behaviour; P 20K A 1
and, in the thermodynamic limit, at small times, in the con- — - (54)
. . ) : : 10 mbarV T mm? | s
dition of maximum degree of non-locality the dispersion as-

sumes the peculiar form (52). where P is the pressured is the surface of the target; is
. . . ., the temperature; s is the Boltzmann constant. As regards

. At the enq of this septlon, we will makelsomt'a COr‘s'der'the pressure provided by the air molecules, one can assume
ations regarding numerical parameters which give rise to & vacuum system like in the LHC [36] or advanced LIGO
Brownian motion at intergalactic level, in light of the results 37] and for the temperature a cryonic system as in KAGRA
obtained at the end of Sec. 2. On the basis of the resul 8]. By assuming a target surface of 1 Mnthe variance
obtained in [10], the total event rate of interaction of ordi- of the Gaussian distribution of the recoil momenta from vir-

nary matter with the specific fluctuations of quantum vacuumy, -, particles of the medium mimicking dark matter and the

energy density mimicking the action of dark matter may beatmosphere on the basis of [10], is given by the following
expressed as follows: ’ ’

relation
2
o 2 = 8| 2P ASH T ~ 617
]V[T Pgve—N _ y m
R=(Z+N)’pg' v N pDM -~ 0.37
( + ) pqve—N Mmol ngé\{N Uque—N y P A 5t \/207 K92m2 (55)
DM DM 10-10 mbarmm2 0.1 nsV T s?
Z+N Pave—N M Pque—N
12 10-3' cm? 102 g 0.3 GeV/cn? where 6t are the data bins, which are of 0.1 ns in com-

mon optical measurements. From data bin to data bin we
hence expect a momentum uncertainty of ordes 9f,, ~

2.5 x 10724 Kg m/s. In every realistic experiment, we would
expect such minimal resolution of the recoil momentum gen-
erated by the interaction between the residual gas and the vir-
) tual particles of the 3D quantum vacuum.

whereZ and \V are the atomic number and the number of  \oreover, one must take into account the uncertainty of
neutrons respectively,t”  is the average cross section of the position measurement. The minimum position resolution

the virtual particles of the medium mimicking the action of jg rejated with the minimum momentum resolution by rela-
dark matter with the target nucleoi/r is the target mass, ijgn

M, is the molar mass of the target)’! = 0.3 GeV/cn?

20 MeV  oDM 1
¢ B (53)

X
MRM \ 341 Km/s

is the assumed value for the energy density associated with Gmin = Mrwodmin. (56)
the regions of quantum vacuum mimicking the action of dark . _ .
matter,52}1 is the velocity of the region of quantum vac- ~ As regards the frequenay,, since the rotating motion

uum into consideration. Here, it must be emphasized tha©f the spiral galaxies reproducing the observed flattening of
although the interaction rate has units of inverse time, it doethe orbital speeds is explained through a frequency of fluc-
not correspond to a well-defined frequency since the hits octuations of the viscosity of the polarized vacuum given by
cur at random intervals with random recoil momenta. As re<2, = 10~!* s*, we can assimilate the frequeney to this
gards the interaction between the target mass and the virtuslue. Therefore, by substituting, = 10~ Hz in Eq. (56),
particles of the medium mimicking the action of dark mat- in order to obtain a minimal momentum resolution of the or-
ter, here two are the main sources of these events of intefler of O(0~2*)Kg m/s, we will have a minimum position
action: neutrinos and hits from residual air molecules. Theesolutiond,,;, = 10~% m. This number corresponds to the
largest neutrino flux on Earth is from solar pp neutrinos withuncertainty of position which gives rise to the maximum re-
¢y &~ 6-10'° cm~2s~! at an energy of about 0.4 MeV corre- coil momentum for quantum vacuum with a energy of a few
sponding to a nucleon cross section to carbon of about! MeV with an order one uncertainty from the velocity distri-
cn?. This means that, if one assumed a target material pabution so that we can expect to potentially see a signal for

ticle of 102 g, in correspondence there is a neutrino evenfluctuations of quantum vacuum energy density mimicking
rate of O(0~14) s~ 1. the action of dark matter masses above that. In other words,

dmin = 107 m can be considered the minimum resolution
On the other hand, the differential event rate of airin the measurement of position which is associated with the
molecules hitting the target, after integrating over all veloci-Brownian motion of the polarized quantum vacuum repro-
ties, is given by relation ducing the observed flattening of the orbital speeds of spiral
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10 D. FISCALETTI

galaxies. Furthermore, with this choice the background fronof the quantum vacuum energy density. We will see how,
the residual air molecules is very efficiently suppressed anth the picture of a spatially-flat FRW geometry, the motion
we end up with an effective rate of interaction of ordinary of a scalar test particle in the 3D quantum vacuum undergoes
matter with the specific fluctuations of quantum vacuum enBrownian motion determined by the quantum vacuum energy

ergy density mimicking the action of dark matter density fluctuations associated with the elemenR®8pro-
cut s cesses of creation/annihilation of virtual particles.
Ram~ 5> 107" Hz. (57) By following the treatment of [41], we can say that the

equation of motion in a FRW spatially-flat geometry, for a

Taking account of the minimal position resolutiég;, = free particle, assumes the following form
e ’

10~¢ m, the dispersion of the wave packet characterizing th

Brownian motion of the test particle, which is connected di- 1d, , fi
rectly to the perturbative fluctuation of the quantum vacuum ﬁ@(a u) = (60)
energy density and thus to the polarized vacuum character- = o
ized by a fluctuating viscosity, given by relation (49) at large'While, if the particle is bounded, becomes
times, and by relation (51) at small times, respectively be- du;  fi + fex
comes a (61)
thZ;quvEU 19 . o
B e R Ve 1 (58)  Wherea is the scale factor of the FRW metrif, is a quantum
force linked with the fluctuations of the quantum vacuum en-
at large times, and ergy density fexx = 2m(a/a)u’ is the external force respon-
sible of the bound state of the particle. The fluctuating force
272 in the FRW geometry may be expressed as
" | hn212ApguE, _ 10712 (59) g y may p
ZMkaT fz = q072ai¢(A,0perturbativé, (62)

at small times. We can say that Egs. (58) and (59) can be con-

sidered the fundamental constraints which provide the con/N€ré®(Apperumativd iS @ scalar field depending on the per-

ditions in order to have a Brownian motion at intergalacticwrbat've fluctuation of the quantum vacuum energy density,

level q is the mass of the particle. Equation (62) expresses the fact

that, in the 3D quantum vacuum characterized by a FRW ge-
] . ) ) ) ometry, the force acting on the test particle, which is owed
4. Brownian motion in a three-dimensional o the 3D quantum vacuum, is linked with the scale factor as
guantum vacuum characterized by an ana- well as the perturbative fluctuation of the quantum vacuum
log FRW geometry energy density.
Now, as regards the Brownian motion of a free particle in
The spatially-flat FRW spacetime, by predicting and de-analog FRW geometry, by integrating (60) —and taking Eq.
scribing cosmological phenomenon such as the Cosmic Mi¢62) into account— one obtains the following expression for
crowave Background Radiation and formation of both largethe correlation function for the velocity in terms of the fluc-
scale structure and light elements (hydrogen, deuterium, heuating force:
lium, etc.), can be considered the Standard Model of Cos-
mology. It provides the best scheme for the observational (u;(t1, Apperurbative 3%; (t2, 2 pperturbative 3)
data to describe our large-scale homogeneous and isotropic

2
expanding universe [39,40]. As a consequence, it is interest- = % // dtydts
ing to explore the quantum Brownian motion determined by mea
guantum vacuum fluctuations in the context of a spatially-flat X {@(t1, Apperurbative 10 (t2, Apperturbative ) pryy  (63)
FRW spacetime.

In this regard, in the recent paper [41] Bessa and his col- Here, since the correlation function for the scalar field
laborators Bezerra, Bezerra de Mello and Mota, by studyingn the conformal 4-dimensional FRW spacetime is related to
the effects of quantum scalar field vacuum fluctuations orMinkowski flat spacetime by relation
scalar test particles in an analog model for the FRW spatially
flat geometry, found that the particles can undergo Brown- {(&(11, Apperurbative 162, A pperturbative 3) ey
ian motion with a nonzero mean squared velocity induced by 1 1
the quantum vacuum fluctuations due to the time dependent ~ — ™ (m)a” (12)
background and th_e presence of the boundarles._ X (@11, Apperturbative 10 (172, A pperturbative 3 ) gy (64)

Here, by following the philosophy that underlies Bessa’s
research, we want to analyse the motion of a test particle iwheren is the conformal time, defined @ = a(n)dn, the
the context of our model of 3D quantum vacuum charactersubscript in the right-hand side denotes that the vacuum fluc-
ized by a FRW geometry and by a perturbative fluctuatiortuation is taken in a flat spacetime, Eq. (63) becomes
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BROWNIAN MOTION AND POLARIZED THREE-DIMENSIONAL QUANTUM VACUUM 11

In this case, the proper velocity is given by

<Ui (tla Apperturbzﬂive ])Uz (t27 APperturbative §>

2
= mailaiz // dmidns

X <¢(7717 APperturbative J)¢(7727 APper’[urbative §>ﬂat' (65)

<Ui (771 > APperturbative J)Ui (772a APperturbative 3 >

q*a? —2 2
= Waﬂaﬂ // dmidnaa™=(n1)a™=(n2)

X <¢(7717 APperturbative J)¢(772a Apperturbative §> (71)
Taking account that = au, Eq. (65), in terms of, may be

written in the form As regards the proper velocity, by comparing Egs. (66)

and (71), we can note that, differently from free particles,
in the case of bounded particles, the scale factor appears in
the integrand of Eq. (71). This is a consequence of the fact
that, for bounded particles, there is also an external force re-
sponsible of the bounded state of the particle. This external
. - . force cancels out locally the effects of the expansion and it is

: Equations (.62'66)’ |n_I|ght of the mathematlc_al f(?rma"just this cancellation that makes the time dependent scale fac-
ism developed in Sec. 3, |mply_ that, even_lf a particle is free,[Or appear in the integrand of Eq. (71), which represents the
the presence of the perturbatl\_/e flu_ctu_atlon of the qu_antunauamum dispersion in the velocity for bound particles, and
vacuum energy d(_ansny —_contalned InS|de_the scalar field not appear in Eq. (66), which represents the quantum disper-
generate a Brownian motion for these particles. sion in the velocity for the free particles.

As for the Brownian motion for bounded particles in the .
spatially-flat FRW geometry, by integrating Eq. (61) with a Moreover, we must observe that the scalar field depend-
' ' ing on the perturbative fluctuation of the quantum vacuum en-

null initial velocity, we obtain ergy densityp (A pperturbative Satisfies the Klein-Gordon equa-
tion

2
<’U¢(t1,7’1)1)1;(t2,7”2)> = #821812 // d?]ld’ﬂg

X <¢(7]1, A pperturbative 16(n2, A pperturbative 3>ﬂat' (66)

. 1 ;
u'(ty) = ooy /fl(t, A pperturbative) (67)

1 v
<\/§|>aﬂ[ 1V/glg"" 0,

wheret is the final time and the correlation function for the
coordinate velocity is

+ SR} (ZS(APperturbativt; =0 (72)
<Ui (tfa AIOperturbative J)Uz (tfa Apperturbative ﬁ>

1
L [
m

X <fl (tla APperturbative J)fZ (tQa APperturbative 2>FRW' (68)

where g#¥ is the metric characterizing the FRW geometry,
g = det(¢g""), R is the Ricci scalar¢ is the curvature cou-
pling. The solutiony(A pperurbaive Of EQ. (62) may be ex-
pressed as

By considering a fluctuating force (62) which satisfies the

constraintifi(tl, APperturbative :Dfi(t% APperturbative §>FRW 7’é
0 and{ f*(t, Apperurbative) )gryy = 0- from Eq. (68) one gets

<Ui (tl ; APperturbative J)Uz‘ <t27 APperturbative 3>
q2
= W&»l@g // dtldﬁga_l (tl)a_l (tz)

X <¢(7717 A pperturbative 16(n2, A pperturbative ﬁ> (69)

hpn* 2 Apgu e,
1672 pc?

>1/2
|x — xol ) , (73)

¢(Apperturbativé = (

y . 2pc?
ex — 1T
P W22 A pgor,

2uc? 2uc?

L1
ch

i _
nzl%quon HQZ%AquEo

When Eq. (66) is expressed in terms of the conformalypqre, s a parameter depending on the viscosity of the vac-

time, dt = a(n)dn, and in terms of the massless two point
function given by relation (64), it provides the following ex-
pression for the velocity dispersion of the bounded particles

<Ui (7717 A/)perturbative J)Ui(n% APperturbative §>
q2
= 5010 // dmdnza?(m)a”>(n2)

X <¢(7717 Al)perturbative J)¢(7727 APperturbative ﬁ> (70)

uum and the Newton gravitational constant on the basis of
relationp = (1 — 4G2uc? /nl3 Apgus,) ", o is the max-
imum of the amplitude of the wave function. In summary,
in the light of the Egs. (63)-(73), we can conclude that a test
particle with mass m moving with proper velocity vin a FRW
geometry exhibits a Brownian motion characterized by oscil-
lations in the physical vacuum as a consequence of the action
of the perturbative fluctuation of the quantum vacuum energy
density which is contained in the scalar fiel\ pperturbative -
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5. Conclusions and perspectives where R, denotes the radius of the core afdlescribes the
different types of the phenomenology associated with the dif-

Brownian motion emerges as a collective property qriginateqerem types of the galaxies. In particulgr= 1 corresponds

by a fundamental 3D quantum vacuum characterized by g high-surface-brightness galaxies, while- 2 corresponds

variable energy density as a consequence of the interactiqg |ow-surface-brightness galaxies and dwarf galaxies. The

between a test particle and an opportune perturbative fluctugptational curve can be computed by equating the gravita-

tion of the quantum vacuum energy density associated with §onal acceleration with the centripetal acceleration
fluctuating viscosity. The quantum diffusion associated with

the Brownian motion of a test particle is guided by the quan- 2V . 38 06

tum potential and is influenced by the mediatory action of — = 5 ApguE, <> - (75)
the perturbative fluctuation of the quantum vacuum energy roc Re+r) oOr

density. The perturbative fluctuation of the quantum vacuum .

energy density provides a correction in terms of dissipativeVNich gives
dispersive effects into the Brownian motion of the particle.

As a consequence, the dispersion turns out to be a collective 174 r 38 L)
property generated by the ultimate properties of the polar- o(r) = TC?quon (R+r> o
ized 3D quantum vacuum. The interplay between the per- ‘

turbative fluctuation of the quantum vacuum energy denSitX/vhereqs is the gravitational potential. By following [42], the

—associated with the peculiar excited state of the 3D quantug ., o the gravitational potential may be obtained by start-

vacuum interacting with a test particle—and the viscosity Ofiyq fom the following equation describing the Brownian cor-

the vacuum, having a specific behaviour, can be considergl (o to the classical trajectory of the galaxy:
the ultimate visiting card which generates Brownian motion

at intergalactic level, reproducing the observed flattening of
the orbital speeds of spiral galaxies. Moreover, the correla-
tion function for the velocity of a Brownian particle in a FRW
spatially-flat geometry, turns out to depend on a scalar fielqvheredr(t) is the Brownian correction of the classical tra-
which is directly correlated with the perturbative fluctuationiectory,dW (t) is a Gaussian Wiener-proceds is the diffu-
of the quantum vacuum energy density. sion coefficient given by Eq. (11) andis a drift-parameter

An interesting perspective introduced by our model lies in(having the dimension of velocity) that determines skewness
the interpretation of the deviation of the dynamics of galax-n the sense that a test particle tends to move in the direc-
ies from the Newtonian behaviour on large scales in terms ofion of the drift. - After some mathematical manipulations,
the Brownian motion generated by a perturbative fluctuatiorthe gravitational potential which allows us to reproduce the
of the energy density of the ultimate 3D quantum Vacuunﬁnomalous rotation of galaxies turns out to be given by rela-
characterized by processes of creation/annihilation of virtuallon
particles. In fact, another relevant topic to be addressed inside
our model would be the treatment of the anomalous rotations
of other type of galaxies. In order to extend our model to
other type of galaxies, according to the author, a possible way
could be represented by some fruitful considerations made re- % exp(—r/ro) . (78)
cently by Jurisch [42] that the phenomenon of anomalous ro- r
tation can be described by the equilibrium state of a stochas- , e ,
tic process in a picture where the weak-interacting limit of» Model based on this gravitational potential (78) can repro-
a metric-skew-tensor-gravity theory can be derived from th&luce the flatness of the tail of the velocityr) over a large
ordinary Brownian motion with spherical symmetry. In line distance, and the heavy attraction it provides, which corre-
with the treatment of Jurisch, one can start from a sphericafPOnds to the drift-motion of the Brownian trajectory towards

model of the quantum vacuum energy density of the form the centre of gravity, has the effect to generate a flat rotation
curve also on large distance. As regards the cosmological

3
) ’ (74) perspectives opened by this type of approach, further research
’ will give you more information.

(76)

drp(t) = —ydt + VDdW (t), (77)

v v uh
G Appesy + G| Apgem,
#(r) 2y ~PavEo * \/02 PavEo n212Apgv i,

quUEo (T) = qu’on (Rc +r
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