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In this paper, we propose the method of functional variable for finding soliton solutions of two practical problems arising in electron-
ics, namely, the conformable time-conformable Generalized Zakharov-Kuznetsov equation (GZKE) and the conformable time-conformable
Generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahoney equation (GZK-BBM). The soliton solutions are expressed by two types of
functions which are hyperbolic and trigonometric functions.
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1. Introduction

Nonlinear partial differential equations (PDEs) are largely
used to model various physical events such as shallow wa-
ter waves, hydrodynamic, physics of plasmas, solid state
physics, fluid mechanics, kinematics in chemistry, optic
fibers, and chemistry among others. As consequence, the
solutions of such equations and, particularly, the traveling
wave equation solutions are of interest and become more sig-
nificant when the impact in these fields is considered. The
mathematical theory of these solutions is also significant to
support the reliability of the proposed methods. Some re-
cent approaches have begun to draw attention, for example;
the exp(ϕ(χ))-expansion method [1], the modified Khater
method [2], the symmetry analysis and fractional logistic
function methods [3], the modified exponential expansion ap-
proach [4], the Sardar-subequation method [5], the extended
rational sine-cosine and rational sinh-cosh methods [6], the
Nucci’s reduction method [7], simple hyperbolic function
ansatzes [8] and so on [9-26].

Here, we plan to employ the method of functional vari-
able to set solutions of the following equations

Dµ
t u + αunux + β(uxxx + uxyy) = 0, n > 1, (1)

and

Dµ
t u + ux − α(un)x+β(utxx + uxyy) = 0, n > 1, (2)

whereα, β andn are arbitrary chosen nonzero constants and
0 < µ ≤ 1. In recent years, some exact solutions for GZKE

have been obtained by using different methods; for example,
Wazwaz [27] used the extended form of the tangent hyper-
bolic method to construct solutions to the GZKE describing
plasma waves. By the extended type trial equation method,
new solitary solutions for the GZKE were obtained in [28].
Mothibi and Khalique [29] used the method based on the sim-
plest equation to report some solutions to the GZKE in new
forms. El-Ganaini [30] used the transform defined by Cole-
Hopf with the method of first integral to obtain the complex
solutions of the Eq. (1). Deng [31] expressed the solutions of
the GZKE in travelling wave forms by the hyperbolic func-
tion method in extended form. Furthermore, some exact so-
lutions of the GZK-BBM equation have also been found in
some more studies using extended form of the trial equation
method, the approach of sine-cosine functions, method of
tanh-expansion, andG′/G-expansion approach [28,32,33].

In Refs. [34,35], Zerarkaet al. defined the method based
on functional variable to determine solutions for a many
classes PDEs in linear or nonlinear forms. The technique of
functional variable has been successfully employed to non-
linear problems. Aminikhahet al., [36] employed it to solve
the system of generalized form of the Drinfel’d-Sokolov–
Wilson (DSW), Davey-Sterwatson (DS) and Bogoyavlenskii
models. Liu and Chen [37] found solutions to the Klein–
Gordon (KG) model, and the Hirota–Satsuma (HS) coupled–
KdV model with both time conformable derivatives by us-
ing the same method. In another study, the solutions to the
general forms of KG equation, the Camassa–Holm(CH) in
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two space dimensions, the Kadomtsev-Petviashvili and the
Schr̈odinger equations are reported in [38] by the same ap-
proach. Eslamiet al., [39] applied the method of func-
tional variable to construct the solutions of some problems
such as Zakharov model in general aspect, general evolution
termK(m,n) model, long-short wave resonance interaction
model defined in two space dimensions, and power law non-
linear Schr̈odinger equation.

Some required definitions of the recently defined deriva-
tive, namely Khalil’s derivative (KCD), and some significant
properties are briefly given below. Significant properties like
chain rule or derivative of power functions are also given
without proofs. The proofs can be found in the recent related
literature.

Definition 1. Supposef : (0,∞) → R, be a function. Then,
KCD of f of orderµ is expressed

Dµ
t f(t) = lim

ε→0

f(t + εt1−µ)− f(t)
ε

, (3)

in the whole positive half space for the orderµ ∈ (0, 1].
Some significant properties of the KCD can be summarized
below.

Theorem 3.Let µ ∈ (0, 1], andf andg be differentiable for
the orderµ at a pointt. Then,

(i) Dµ
t (af(t) + bg(t)) = aDµ

t f(t) + bDµ
t g(t), ∀ a, b ∈ R.

(ii) Dµ
t (tδ) = µtδ−µ, ∀ µ ∈ R.

(iii) Dµ
t (f(t)g(t)) = (Dµ

t f(t)) g(t) + (Dµ
t g(t)) f(t).

(iv) Dµ
t

(
f(t)
g(t)

)
=

(Dµ
t f(t)) g(t)− (Dµ

t g(t)) f(t)
g2(t)

.

Moreover, iff is differentiable in classical meaning, then the
relation is validDµ

t f(t) = t1−µ(df/dt).
In Ref. [8], the rule of chain for the KCD was established.

Theorem 4. Supposef : (0,∞) → R be a function satisfy-
ing the required conditions to derivative it of orderµ and dif-
ferentiable in classical meaning and assume thatg is another
function that satisfies differentiability conditions in classical
sense in the range off ; then,

Dµ
t (fog)(t) = t1−µg′(t)f ′(g(t)). (4)

2. The method of functional variable

Consider the nonlinear time-conformable PDE, whose time
derivatives are KCD,

P (u,Dµ
t u, ux, uy, D2µ

t u, . . .) = 0, (5)

whereu = u(x, y, t) solves Eq. (5), the subscripts denote
derivatives in partial sense.

The wave transform

u(x, y, t) = U(ξ), ξ = x + y − c
tµ

µ
,

Dµ
t (.) = −c(.)ξ, (.)x = (.)ξ,

(.)y = (.)ξ, D2µ
t (.) = c2(.)ξξ, (6)

and consequently, the partial differential equation (5) trans-
forms to the ordinal differential equation

G(U,Uξ, Uξξ, Uξξξ, . . .) = 0. (7)

Then, assume that the unknown function denoted by capital
U is the functional variable satisfying

Uξ = F (U), (8)

and the derivatives ofU in various orders are

Uξξ =
1
2
(F 2)′,

Uξξξ =
1
2
(F 2)′′

√
F 2,

Uξξξξ =
1
2
[(F 2)′′′F 2 + (F 2)′′(F 2)′]

... (9)

whereF ′ = dF/dU , F ′′ = d2F/dU2 and so on.
The Eq. (7) is an ODE and it can be reduced by employ-

ing U,F and its derivatives given in Eq. (9) into Eq. (5) to
give

G(U,F, F ′, F ′′, F ′′′, . . .) = 0. (10)

This form admits to generate solutions in wide classes cover-
ing many traveling waves described by trigonometric or hy-
perbolic functions. Integrating Eq. (10) gives some new ex-
pressions in terms ofF . Combining Eq. (8) and other rela-
tions satisfying required conditions leads to set the solutions
of the focused initial problem.

3. The GZKE with time conformable deriva-
tives

In the present section, we derive solutions in traveling vari-
ous wave forms of the GZKE with time conformable deriva-
tives by using the method of functional variable described in
Sec. 2.

Using the transformu(x, y, t) = u(ξ), whereξ is defined
in Eq. (6), the Eq. (1) is transformed to an ODE

−cU +
α

n + 1
Un+1 + 2βUξξ = 0, (11)

or

Uξξ =
c

2β
U − α

2β(n + 1)
Un+1. (12)
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Following Eq. (9), one can easily deduce

1
2
(F 2)′ =

c

2β
U − α

2β(n + 1)
Un+1, (13)

from Eq. (12) . The integral of Eq. (13) with zero integral
constant yields

F 2 =
c

2β
U2 − α

β(n + 1)(n + 2)
Un+2, (14)

or

F = ±
√

c

2β
U

√
1− 2α

c(n + 1)(n + 2)
Un. (15)

From (8) and (15) we find that
∫

dU

U
√

1− 2α
c(n+1)(n+2)U

n
= ±

√
c

2β
(ξ + ξ0), (16)

whereξ0 is a constant of integration. Finally, by completing
the integration in Eq. (16), two cases of solutions of the time-
conformable GZKE after a straightforward algebraic manip-
ulation.

The casec/β > 0 gives the hyperbolic traveling wave
solutionsu(x, y, t)

u1,2(x, y, t) = ±
(

c(n + 1)(n + 2)
2α

sech2

×
[
n

2

√
c

2β

{
x + y − c

tµ

µ
+ ξ0

}]) 1
n

, (17)

u3,4(x, y, t) = ±
(
− c(n + 1)(n + 2)

2α
csch2

×
[
n

2

√
c

2β

{
x + y − c

tµ

µ
+ ξ0

}]) 1
n

. (18)

FIGURE 1. The graphical representations of a) bright and b) singular soliton solutions given in Eq. (17) and (18) with the suitably chosen
parametric valuesn = 1, a = 1, b = 1, c = 1, y = 0, m = 1 are given respectively. The graphical representations of c) bright and d)
singular soliton solutions given in Eq. (19) and (20) with the suitably chosen parametric valuesn = 2, a = 1, b = 1, c = 2, y = 0, m = 1
are.
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The casec/β < 0 gives the periodic traveling wave solu-
tionsu(x, y, t)

u5,6(x, y, t) = ±
(

c(n + 1)(n + 2)
2α

sec2

×
[
n

2

√
− c

2β

{
x+y−c

tµ

µ
+ξ0

}]) 1
n

, (19)

u7,8(x, y, t) = ±
(

c(n + 1)(n + 2)
2α

csc2

×
[
n

2

√
− c

2β

{
x+y−c

tµ

µ
+ξ0

}]) 1
n

. (20)

It should be noted that the solutions given in Eq. (17) and
Eq. (18) are soliton solutions, in bright and in singular forms,
respectively, whilst Eq. (19) and Eq. (20) are singular peri-
odic solutions.

4. Time-conformable GZK-BBM equation

In the present Section, we set solutions of the time-
conformable GZK-BBM equation by using the method of
functional variable described in Sec. 2.

The two dimensional wave transformu(x, y, t) = u(ξ),
whereξ is defined in Eq. (6), the Eq. (7) is

(1− c)U − αUn + β(1− c)Uξξ = 0, (21)

Uξξ = − 1
β

U − α

β(c− 1)
Un. (22)

Following Eq. (9) results from Eq. (22) in an expression
for the functionF (U)

1
2
(F 2)′ = − 1

β
U − α

β(c− 1)
Un, (23)

F 2 = − 1
β

U2 − 2α

β(c− 1)(n + 1)
Un+1, (24)

FIGURE 2. The graphical representations of a) bright and b) singular soliton solutions given in Eq. (27) and (28) with the suitably chosen
parametric valuesn = 2, a = 1, b = −2, c = 0.5, y = 0, m = 1 are. The graphical representations of c) bright and d) singular soliton
solutions given in Eq. (29) and (30) with the suitably chosen parametric valuesn = 2, a = 1, b = 1, c = 2, y = 0, m = 1 are.
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or

F = ±
√
− 1

β
U

√
1 +

2α

(c− 1)(n + 1)
Un−1. (25)

From Eqs. (9) and (26) we deduce that
∫

dU

U
√

1 + 2α
(c−1)(n+1)U

n−1
= ±

√
− 1

β
(ξ + ξ0), (26)

whereξ0 is a constant of integration. Finally, by complet-
ing the integration in Eq. (26), two cases of travelling wave
solutions of the GZK-BBM equation with conformable time
derivatives after a straightforward algebraic manipulation.

Case1/β < 0 gives the hyperbolic traveling wave solu-
tionsu(x, y, t)

u1,2(x, y, t) = ±
(

(1− c)(n + 1)
2α

sech2

×
[
n− 1

2

√
− 1

β

{
x + y − c

tµ

µ
+ ξ0

}]) 1
n−1

, (27)

u3,4(x, y, t) = ±
(
− (1− c)(n + 1)

2α
csch2

×
[
n− 1

2

√
− 1

β

{
x + y − c

tµ

µ
+ ξ0

}]) 1
n−1

, (28)

which represent bright and singular soliton solutions, respec-
tively.

Case1/β > 0 gives the periodic traveling wave solutions
u(x, y, t)

u5,6(x, y, t) = ±
(

(1− c)(n + 1)
2α

sec2

×
[
n− 1

2

√
1
β

{
x + y − c

tµ

µ
+ ξ0

}]) 1
n−1

, (29)

u7,8(x, y, t) = ±
(

(1− c)(n + 1)
2α

csc2

×
[
n− 1

2

√
1
β

{
x + y − c

tµ

µ
+ ξ0

}]) 1
n−1

, (30)

which are singular periodic solutions.

5. Conclusion

In this paper, the hyperbolic and trigonometric wave-type so-
lutions are constructed for the time conformable forms of the
GZK and the time-conformable GZK-BBM equations. The
compatible traveling wave transforms defined in two space
dimensions reduce the governing equations to some ODEs.
Defining a new variable in function form modifies the re-
sulted ODE. The following effort is to solve these ODEs by
integration techniques. Due to the good performance of the
method of functional variable, it is believed that this method
is a promising technique in handling a wide variety of time-
conformable PDEs.
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19. L. Akinyemi, M. Şenol, and S. N. Huseen, Modi-
fied homotopy methods for generalized fractional perturbed
Zakharov-Kuznetsov equation in dusty plasma.Adv. Dif-
fer. Equ.2021 (2021) 45,https://doi.org/10.1186/
s13662-020-03208-5 .

20. M. Munawar, A. Jhangeer, A. Pervaiz, and F. Ibraheem, New
general extended direct algebraic approach for optical solitons
of Biswas-Arshed equation through birefringent fibers.Op-
tik 228 (2020) 165790.https://doi.org/10.1016/j.
ijleo.2020.165790 .

21. A. Jhangeer, A. Hussain, M. Junaid-U-Rehman, D. Baleanu,
and M. B. Riaz, Quasi-periodic, chaotic and travelling wave
structures of modified Gardner equation.Chaos, Solitons
and Fractals, 143(2020) 110578,https://doi.org/10.
1016/j.chaos.2020.110578 .

22. A. Hussain, A. Jhangeer, N. Abbas, I. Khan, and
E. S. M. Sherif, Optical solitons of fractional complex
Ginzburg-Landau equation with conformable, beta, and M-
truncated derivatives: a comparative study.Adv. Differ.

Equ. 2020 (2020) 612, https://doi.org/10.1186/
s13662-020-03052-7 .

23. E. C. Aslan, and M. Inc, Optical soliton solutions of the NLSE
with quadratic-cubic-Hamiltonian perturbations and modula-
tion instability analysis.Optik 196 (2019) 162661,https:
//doi.org/10.1016/j.ijleo.2019.04.008 .

24. A. Yusuf, M. Inc, A. I. Aliyu, and D. Baleanu, Optical solitons
possessing beta derivative of the Chen-Lee-Liu equation in op-
tical fiber. Front. Phys.7 (2019) 34,https://doi.org/
10.3389/fphy.2019.00034 .

25. R. Abazari, Application of extended tanh function method on
KdV-Burgers equation with forcing term.Rom. J. Phys, 59
(2014) 3.

26. A. Kurt, New Analytical and Numerical Results For Fractional
Bogoyavlensky-Konopelchenko Equation Arising in Fluid Dy-
namics.Appl. Math. 35 (2020) 101,https://doi.org/
10.1007/s11766-020-3808-9 .

27. A. M. Wazwaz, The extended tanh method for the Zakharov-
Kuznetsov (ZK) equation, the modified ZK equation, and its
generalized forms.Commun. Nonlinear Sci. Numer. Simul. 13
(2008) 1039,https://doi.org/10.1016/j.cnsns.
2006.10.007 .

28. S. T. Mohyud-Din, and A. Irshad, Solitary wave solutions of
some non linear PDEs arising in electronics.Opt. Quantum
Electron. 49 (2017) 130,https://doi.org/10.1007/
s11082-017-0974-y .

29. D. M. Mothibi, and C. M. Khalique, Conservation laws and
exact solutions of a generalized Zakharov-Kuznetsov equation.
Symmetry7 (2015) 949,https://doi.org/10.3390/
sym7020949 .

30. S. I. El-Ganaini, Travelling Wave Solutions of the Zakharov–
Kuznetsov Equation in Plasmas with Power Law Non linearity.
Int. J. Contemp. Math. Sci., 6 (2011) 2353.

31. C. Deng, New exact solutions to the Zakharov-Kuznetsov equa-
tion and its generalized form.Commun. Nonlinear Sci. Numer.
Simul. 15 (2010) 857,https://doi.org/10.1016/j.
cnsns.2009.05.011 .

32. A. M. Wazwaz, Compact and noncompact physical structures
for the ZK–BBM equation.Appl. Math. Comput.169 (2005)
713, https://doi.org/10.1016/j.amc.2004.09.
062 .

33. K. R. Adem, and C. M. Khalique, Conservation Laws and Trav-
eling Wave Solutions of a Generalized Nonlinear ZK-BBM
Equation,Abstr. Appl. Anal. 2014 (2014) 139513,https:
//doi.org/10.1155/2014/139513 .

34. A. Zerarka, S. Ouamane, and A. Attaf, On the method of func-
tional variable for finding exact solutions to a class of wave
equations.Appl. Math. Comput. 217 (2010) 2897,https:
//doi.org/10.1016/j.amc.2010.08.070 .

35. A. Zerarka, and S. Ouamane, Application of the method of
functional variable to a class of non linear wave equations.
World J. Model. Simul.6 (2010) 150.

36. H. Aminikhaha, A. R. Sheikhani, and H. Rezazadeh, Exact so-
lutions of some non linear systems of partial differential equa-
tions by using the method of functional variable.Mathematica,
56 (2014) 103.

Rev. Mex. F́ıs. 67050701

https://doi.org/10.1016/j.chaos.2018.01.002�
https://doi.org/10.1016/j.chaos.2018.01.002�
https://doi.org/10.1002/mma.6698�
https://doi.org/10.1002/mma.6698�
https://doi.org/10.1186/s13662-020-02830-7�
https://doi.org/10.1186/s13662-020-02830-7�
https://doi.org/10.1186/s13662-019-1964-0�
https://doi.org/10.1186/s13662-019-1964-0�
https://doi.org/10.1186/s13662-020-02787-7�
https://doi.org/10.1186/s13662-020-02787-7�
https://doi.org/10.1016/j.matcom.2020.10.017�
https://doi.org/10.1016/j.matcom.2020.10.017�
https://doi.org/10.1186/s13662-019-2397-5�
https://doi.org/10.1007/s40314-020-01212-9�
https://doi.org/10.1007/s40314-020-01212-9�
https://doi.org/10.1186/s13662-020-03208-5�
https://doi.org/10.1186/s13662-020-03208-5�
https://doi.org/10.1016/j.ijleo.2020.165790�
https://doi.org/10.1016/j.ijleo.2020.165790�
https://doi.org/10.1016/j.chaos.2020.110578�
https://doi.org/10.1016/j.chaos.2020.110578�
https://doi.org/10.1186/s13662-020-03052-7�
https://doi.org/10.1186/s13662-020-03052-7�
https://doi.org/10.1016/j.ijleo.2019.04.008�
https://doi.org/10.1016/j.ijleo.2019.04.008�
https://doi.org/10.3389/fphy.2019.00034�
https://doi.org/10.3389/fphy.2019.00034�
https://doi.org/10.1007/s11766-020-3808-9�
https://doi.org/10.1007/s11766-020-3808-9�
https://doi.org/10.1016/j.cnsns.2006.10.007�
https://doi.org/10.1016/j.cnsns.2006.10.007�
https://doi.org/10.1007/s11082-017-0974-y�
https://doi.org/10.1007/s11082-017-0974-y�
https://doi.org/10.3390/sym7020949�
https://doi.org/10.3390/sym7020949�
https://doi.org/10.1016/j.cnsns.2009.05.011�
https://doi.org/10.1016/j.cnsns.2009.05.011�
https://doi.org/10.1016/j.amc.2004.09.062�
https://doi.org/10.1016/j.amc.2004.09.062�
https://doi.org/10.1155/2014/139513�
https://doi.org/10.1155/2014/139513�
https://doi.org/10.1016/j.amc.2010.08.070�
https://doi.org/10.1016/j.amc.2010.08.070�


SOLITON SOLUTION OF GENERALIZED ZAKHAROV-KUZNETSOV AND ZAKHAROV-KUZNETSOV-BENJAMIN-BONA-MAHONY. . . 7

37. W. Liu, and K. Chen, The method of functional variable for
finding exact solutions of some non linear time-fractional dif-
ferential equations.Pramana, 81(2013) 377.https://doi.
org/10.1007/s12043-013-0583-7 .

38. A. Nazarzadeh, M. Eslami, and M. Mirzazadeh, Exact solu-
tions of some non linear partial differential equations using
functional variable method.Pramana, 81 (2013) 225.https:
//doi.org/10.1007/s12043-013-0565-9 .

39. M. Eslami, and M. Mirzazadeh, Functional variable method to
study non linear evolution equations.Open Eng.3 (2013) 451.
https://doi.org/10.2478/s13531-013-0104-y .

40. R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, A
new definition of fractional derivative,J. Comput. Appl. Math.
264 (2014) 65, https://doi.org/10.1016/j.cam.
2014.01.002 .

Rev. Mex. F́ıs. 67050701

https://doi.org/10.1007/s12043-013-0583-7�
https://doi.org/10.1007/s12043-013-0583-7�
https://doi.org/10.1007/s12043-013-0565-9�
https://doi.org/10.1007/s12043-013-0565-9�
https://doi.org/10.2478/s13531-013-0104-y�
https://doi.org/10.1016/j.cam.2014.01.002�
https://doi.org/10.1016/j.cam.2014.01.002�

