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Hulthén plus Hellmann potentials are adopted as the quark-antiquark interaction potential for studying the mass spectra of heavy mesons.
We solved the radial Scbdinger equation analytically using the Nikiforov-Uvarov method. The energy eigenvalues and corresponding wave
function in terms of Laguerre polynomials were obtained. The present results are applied for calculating the mass of heavy mesons such as
charmoniumecz and bottomoniunbb. Four special cases were considered when some of the potential parameters were set to zero, resulting
into Hellmann potential, Yukawa potential, Coulomb potential, and Hulthotential, respectively. The present potential provides satisfying
results in comparison with experimental data and the work of other researchers.
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1. Introduction The Hultken potential takes the form [9]
) Aoe—ar
The study of the fundamental or constituent blocks of matter Vi(r)= Tl _e—ar’ (1)

has been for long time a fascinating field in physics. In the i , i
nineteenth century, the atom was considered to be the fuherea is the screening parameter an is the poten-

damental particle, the one from which all matter was comdial strength which is sometimes identified with the atomic

posed. This idea was used to explain the basic structure of gfumPer when the potential is used for atomic phenomena
elements [1]. [10]. Itis a short-range potential which is applied in many

branches of physics, such as nuclear and particle physics,

The problem of what were considered to be fundamenz, e physics, solid state physics, and chemical physics

tal particles was resolved by the quarks. Because of th(fl 12]
heavy masses of the constituent quarks, a good description The Hellmann potential which is a superposition of an

of many _features of these systems can _be obtained usIng NOBg action Coulomb potential and a Yukawa potential can be
relativistic models where the quark-antiquark strong 'merac'expressed as [13]

tion is described by a phenomenological potential [2]. Heavy
guarkonium systems have turned out to provide extremely V() = A n Age=or ?
useful probes for the deconfined state of matter because the o ro

force between a heavy quark and_ anti-quark is We_aken_e\g,here the parameterd, and A, denote the strength of
due to the presence of gluons which lead to the dissociacoylomb and Yukawa potentials respectivelyenotes the
tion of quarkonium bound states [3]. The quarkonia W'thscreening parameter, ands the distance between two par-
heavy quark and antiquark and their interaction are well degicles. These potentials have been used to study bound state
scribed by the Sckidinger equation (_SE) [4]. _The solution problems by many researchers [14-20]. Recently, Inyaing
of the spectral problem for the SE with spherically symmet-5) [21] obtained the Klein-Gordon equation solutions for the
ric potent@ls is of major concern in describing the spectray,kawa potential using the Nikiforov-Uvarov (NU) method.
of quarkonia [5]. Potential models offer a rather good de-the energy eigenvalues were obtained both in a relativistic
scription of the mass spectra of systems such as a bottomgy,g pon-relativistic regime. They applied the results to cal-
nium, and charmonium [6]. In simulating the interaction po- o jate heavy-meson masses of charmonigrand bottomo-
tentials for these systems, confining-type potentials are gensium be. Apart from that, many researchers have provided
erally used. The holding potential is the so-called Come"approximate solutions to SE using different methods with
potential with two terms, one of which is responsible for thecgrnel potential. For instance, Vega and Flores [22] ob-
Coulomp ipteraction of the quarks and the other correspondg,ined the approximate solutions of the Sidinger equation
to a confining term [7]. with the Cornell potential using variational method and super
The solutions to the SE can be established only if wesymmetric quantum mechanics (SUSYQM). Abu-Shady
know the confining potential for a particular physical system.al. [23] studied the N-dimensional radial Sédinger equa-
Till now, there are only a few confining potentials, like the tion using the analytical exact iteration method (AEIM), in
harmonic oscillator and the hydrogen atom, for which solu-which the Cornell potential is generalized to finite tempera-
tions to the SE are found exactly [8]. ture and chemical potential. In addition, Ciftci and Kisoglu
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[24], solved non-relativistic arbitrary |-states of quarkonium  We substitute Egs. (5) and (6) into Eq. (4) and obtain
through asymptotic iteration method (AIM). An analytic so-

lution pf the N-dimensional radial S(ﬁnﬂingerequation with V(r,T) = _@ T B — Bor? + fs, @)
the mixture of vector and scalar potentials via the Laplace r

transformation method (LTM) were studied in Ref. [25]. Al- W
Jamel and Widyan [26] studied heavy quarkonium mass spec-
tra in a Coulomb field plus quadratic potential using NU Ap

here

method. Ibekweet al. [27] solved the radial SE with an ex- —fo= Az — A1 - mp(T)’

ponential, generalized, harmonic Cornell potential using the Ao (T 4 T

series expansion method. Their results were used to calculate 8, = omp(T)r Aomp( )’

the mass spectra of heavy-mesons. Al-Gtiral [28] ex- 2 12

amine heavy quarkonia characteristics properties in the gen- Asm3 (T)

eral framework of non-relativistic potential model consisting P2 = 6

of a Coulomb plus quadratic potential. Choui&hal. [29] Ao

proposed an approach to achieve quantum computation with By =5 — Asmp(T). (8)

atomics qubits in a cavity QED. Recently, researchers have

shown great interest in the combination of two or more po-  The first term in Eq. (7) is the Coulomb potential that de-
tentials in both the relativistic and non relativistic approach.scribes the short distance between quarks, while the second
The fundamental nature of combining two or more physi-term is a linear term featuring confinement.

cal potential models is to have a wider range of application

[30]. For example, the Cornell potential which is the com-

bination of the Coulomb potential with linear terms is used2. Approximate solutions of the Schbdinger

in studying the mass spectra for coupled states and for the equation with Hulth én plus Hellmann po-
electromagnetic characteristics of meson [31]. For instance,  tantial

William et al. [32] obtained bound state solutions of the

radial Schédinger equation by the combination of Héith  The Schadinger equation (SE) for two particles interacting
and Hellmann potential within the framework of Nikiforov- via potentialV'(r) in three dimensional space, is given by
Uvarov method. Also, Edett al. [33] obtained an approx- [34]
imate solution of the SE for the modified Kratzer potential
plus screened Coulomb potential model using the Nikiforov- j2pr(, 2 +1

T (2 vy - D) Ry =0, (9)

Uvarov method. In this present work, we aim to study the
SE with the combination of Hulim and Hellmann potential

analytically by using the NU method and apply the resultsWherel' 4, v, and h are the angular momentum quantum

to calculate the mass spectra of heavy quarkonium particles, nher, the reduced mass for the quarkonium particle, inter-

such as bottomonium and charmonium, in which the quarks,ice distance and reduced plank constant respectively. We
are considered as spinless particles for easiness, which h fﬁbstitute Eq. (7) into Eq. (9) and obtain

not been considered before using this potentials to the best o

dr?

our knowledge. The adoPiizd potential is O,f:?e form [32] 2R (r) 2B 218y 2uBir 2413572
Vi(r)= _Aoei_ _ Au + Age ’ A3) dr? K2 h2r K2 h2
1 —e-or r r
where A, A, and A, are potential strength parameters and 2ufBs (1 +1) R(r) — 10
« is the screening parameter. In other to make Eq. (3) temper- TRz g2 (r)=0. (10)
ature dependent, the screening parameter is replaced with the
Debye massnp(T), which is temperature-dependent and | gt
vanishes af’ — 0 and we have,
Age~mo@r A Agemo(D)r (= 2fM(E 1= B3), = 200
V(T,T)**W*TJrf- (4) h? h?
We carry out a series expansion of the exponential terms |, _ 2l‘51’ oy = 2182 v =1(1+1). (11)
in Eq. (4) up to order three in order to model the potential to h? h?
interact in the quark-antiquark system and this yields, Substituting Eq. (11) into Eq. (10), we have
e~mp(Dr m2 (T)r?
= mmp(D) T (8) )
T T 6 d*R(r) o 9 7
—mp (T s~ + | (+— —air+ar”— 5 |R(r) =0.
e mp (T)r _ 1 1 mD(T)fr (6) dT T T
L—emor — mp(T)r 2 12 ' (12)
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Transforming the coordinate of Eq. (12) we set
1 Comparing Eg. (19) and Eg. (A1) we obtain

T =—. (13)
r

Differentiating Eq. (13) and simplifying we have

d*R 2dR 1d°R 5z

2 T T (14) @

o " rear AT o' =2z, o'(z)=2. (21)
Substituting Egs. (13) and (14) into Eqg. (12) we have

7(z) =2z, o(x)=a?

—& + az — [z’

d*R(x) 2dR 1 We substitute Eq. (21) into Eq. (A9) and obtain
+——+ — |+ a2
dx? zdr x4
m(z) = £1/e — az + (B + k)z2. (22)
(0% (0%
+— ny] R(z) = 0. (15)
r T To determine:, we take the discriminant of the function

Next, we propose the following approximation scheme onunder the square root, which yields
the terma; /z andaw /2.

Let us assume that there is a characteristic ragjas the b a? — 40
meson. Then the scheme is based on the expansiap/af - 4e
andas /2% in a power series aroung, i.e. arounds = 1/r,
in the z-space up to the second order. This is similar to the
Pekeris approximation, which helps to deform the centrifugal

term such that the modified potential can be solved by the NU m(z) =+ (M — E) ) (24)
method [35]. 2Ve Ve

Setti =z —¢and =0,it b ded . . .
into aesler;?eys ofxp ow e?SnaséroundJ 0,1t can be expande For a physically acceptable solution, we take the negative
' part of Eq. (24) which is required for bound state problems

(23)

We substitute Eq. (23) into Eg. (22) and have

o a1 3! ! AN and differentiate; this yields
= = = =—=(1+2) , 16 ISy
r  y+o S(1+Y%) 0 ( ) (16) N
. . / [ —
which yields m(x) = NG (25)
oy 3 3z 2 17
P ) + EN 17) Substituting Egs. (21) and (25) into Eq. (A7) we have
Similarly, ar  2e
=2 — — + —. 26
Qs 6 8r 3z (@) ’ Ve " Ve (20)
ﬁ = Q9 57 - g + 574 . (18)

Diff iating Eq. (2 h
By substituting Eqgs. (18) and (17) into Eq. (15) , we ob- ifterentiating Eq. (26) we have
«

tain () =2 - —. (27)

d*R(z) 2xdR(z) 1 9 Ve
e = —&-ﬁ[—a—i—aﬂc—ﬂx |R(z) =0, - -
(19) By using Eqg. (A10), we obtain
where 9
o — 43¢ @
6az 3oy A=—""—57 (28)
€(<+625)’ 4e 2./
3 Sa and using Eq. (A11), we obtain
a:(521+a0— 532>7 ne
An = — —nZ —n. (29)
(5] 30&2 \/g
Equating Eqgs. (28) and (29), the energy eigenvalues of

| Eq. (10) are given

But = Ay (; - mjfsT)) T Agmp(T) (37"55(” i (T) - 1) ,
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24 Ay ump(T) Ao 8uAam3 (T)
B w {Az At mD(T)} + gz [PAzmo(T) — 5 31253 0)
8pu 1 112 pAym?
pAsmp, (T) mp(T)]  pAomp(T)
Z Z 1— —
nhg \/{H 2} T e 5 61257
2.1. Special cases
In this subsection, we obtain the special case by setting some parameters to zero.
1. When we setly = A; = 0, we obtain the energy eigenvalues for Yukawa potential
2
, —2pAy  3uAsmi(T) 8uAam3(T)
3mp(T h 2 252 - 253
B = Aump (1) (220 () -1) - & P 3129 @
a n—i—l l—i-l—i- +MA2m%(T) 1_mD(T)
2 2 h243 )
2. When we sefl; = A — 2 = 0, we obtain the energy eigenvalue for H@thpotential
2
2pdo  Aopmp(T)
2 2 252
E”l _ AO (; _ mi((sT)) _ ;Lf h mD(T) . 2h%9 (32)
s n+ 1 + Z+1 _ MALZD(T)
2 2 6h243
3. When we setlj, we obtain the energy eigenvalue for Hellmann potential
2
2u 3Aaum2(T)  8uAam3(T)
3mp (T h? 25 (A1 — Az) + 252 - 253
Enp = Aomp(T) (55() —mp(T) - 1) - B - W7o 3h%0 (33)
o 2o i L] 4 pdemd@ () mo(D)
2 2 h243 )

4. When we setly = As = mp(T) = 0, we obtain the
energy eigenvalues for Coulomb potential
Substituting Egs. (21) and (37) into Eq. (A5) we have

_ pAL
En = 202(n + 1 + 1)2’ (34) yn(z) = Bne(QE/I\/g)x(a/\/g)
The result of Eq. (34) is very consistent with the result % a (e(28/w\/5)x(2n—[a/\/5])) ) (38)
obtained in Eq. (36) of Ref. [33]. dzn
To determine the wavefunction, we substitute Eqgs. (21) The Rodrigues’ formula of the associated Laguerre poly-
and (24) into Eqg. (A4) and obtain nomials is
2e 1
dp [ « a L(@/vE) ( ) _ 1 ee/ve yorve
() )
dn
Integrating Eq. (35), we obtain X o (e‘(%/zﬁ)m@"‘[a/‘/ﬂ)) . (39)
P(x) = 2~ (/2VE)ele/2VE), (36) Where
1
By substituting Egs. (21) and (24) into Eq. (A6) and inte- 1= Bn- (40)
grating, we obtain '
Hence,
p(x) = a~(@/VE) = (2e/ave) (37) 9
%M=WWKNJ. (41)
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Substituting Egs. (36) and (41) into Eq. (A2) we obtain the wavefunction of Eq. (10) in terms of Laguerre polynomial as

— (o e _—(E/x & (a3 > 26
D) = By~ (@/2VE /2 [(/V7) <wx/5> 42)

whereN,,; is normalization constant, which can be obtained from

/|Bnl(7°)|2dr _ (43)
0

3. Results

We calculate the mass spectra of the heavy quarkonium system such as charmonium and bottomonium that have the quark and
antiquark flavor, and apply the following relation [36,37]

M =2m + E,, (44)

wherem is quarkonium bare mass atig),; is energy eigenvalues. By substituting Eq. (30) into Eq. (44) we obtain the mass
spectra for Hultén plus Hellmann potential as

M = 2m + Ao (; _ m’ZgT)) + Ay (T) (3“”‘;5(:” _m(T) — 1)

2

3
T PRI P} AP ) R T

| w NI > 3257 s
8y 1 1\?  pdom? .
1 1 pAomp(T) (o mp(T)\  pAemp(T)
ntg \/(l * 2) T e (1 5 6125

3.1. Discussion of results

i | mp = 4.823 andm,. = 1.209, respectively [40]. Then,
We calculate the mass spectra of charmonium and bottomgy,q corresponding reduced mass age= 2.4115 and u. =
nium for states from 1S tq 1F, b)_/ using E.q. (45). The free paq go45. The Debye massup(T) is taken as 1.52 GeV by
rameters of Eq. (45) are fitted with experimental data by sOlVjiting with experimental data. We note that calculation of
ing two algebraic equations. Experimental data are obtaineg5ss spectra of charmonium and bottomonium are in a good
from [38,39]. For bottomoniundb and charmoniumcc  4greement with experimental data as well as the work of other
systems we adopt the numerical values of these masses as._

TABLE |. Mass spectra of charmoniumin (GeV) for Hiéthplus ~ TABLE Il. Mass spectra of bottomonium in (GeV) for Huéth

Hellmann potential, 1. = 1.209 GeV, u = 0.6045 GeV, 4y = plus Hellmann potential,nt, = 4.823 GeV, p = 2.4115 GeV,
—1.693 GeV, A; = 20.654 GeV, A; = 0.018 GeV,d = 0.2 GeV, Ap = —1.591 GeV, A; = 9.649 GeV, A, = 0.028 GeV,§ = 0.25
mp(T) = 1.52 GeV,h = 1). GeV,mp(T) = 1.52 GeV,h = 1).
State Present work [35] [24] Experiment State Present work [35] [24] Experiment
[38,39] [38,39]
1S 3.096 3.096 3.096 3.096 1S 9.460 9.460 9.462 9.460
2S 3.686 3.686 3.672 3.686 2S 10.023 10.023 10.027 10.023
1P 3.521 3.255 3.521 3.525 1P 9.861 9.619 9.9630 9.899
2P 3.772 3.779 3.951 3.773 2P 10.238 10.114 10.299 10.260
3S 4.040 4.040 4.085 4.040 3S 10.355 10.355 10.361 10.355
4S 4.262 4.269 4.433 4.263 4S 10.579 10.567 10.624 10.580
1D 3.768 3.504 3.800 3.770 1D 10.143 9.864 10.209 10.164
2D 4.146 - - 4.159 2D 10.306 - - -
1F 3.962 - - - 1F 10.209 - - -
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searches as presented in Tables | and Il. It is important to
note that the values obtained are improved in comparisod Conclusion
with works like that of Ref. [35], as shown in Tables | and Il
in which the author investigated the N- radial SE analyticallyin this study, we adopted Hukm plus Hellmann poten-
when the Cornell potential was extended to finite temperatial models for quark-antiquark interaction. The potential
ture. was made to be temperature dependent by replacing the
We also plotted the mass spectra energy as a function afcreening parameter with Debye mass which vanishes at.
potential parameters and Debye mass. In Figs. 1 and 2, tiEhe Schédinger equation is analytically solved using the
mass spectra energies increases to a peak and later decreas#sforov-Uvarov method. We obtained approximate solu-
as potential parameters and increases, respectively. In Fig.tbns of the eigenvalues and eigenfunction in terms of La-
the mass spectra converges at the beginning, but spreads auterre polynomials. We applied the present results to calcu-
and decrease monotonically with the increase in potential pdate heavy-meson masses such as charmoriyrand bot-
rameterd,. Figure 4 show the increase in mass spectra as themoniumbb for states 1S to 1F which are in good agreement
Debye mass increases, for various angular quantum numbemsith experimental data and the work of others. Four special
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cases were considered when some of the potential parametevbereB,,; is the normalization constant ap:) the weight
were set to zero, resulting into Hellmann potential, Yukawafunction which satisfies the condition below;
potential, Coulomb potential, and Huéh potential, respec-

tively. Different plots of mass spectra versus different poten- (o(x)p(x)) = 7(2)p(x), (A.6)
tial parameters and Debye mass were analyzed and discussed.
where also

Appendix

) o 7(x) = 7(z) + 27 (). (A7)
A. Review of Nikiforov-Uvarov (NU) method
The NU method was proposed by Nikiforov and Uvarov [41- ~ For bound solutions, it is required that
43] to transform Sclirdinger-like equations into a second-
order differential equation via a coordinate transformation 7'(z) < 0. (A.8)

x = z(r), of the form
o)+ 20 + G i) =

T\ /
wheres (z), ando(z) are polynomials, at most second degree
and7(x) is a first-degree polynomial. The exact solution of

The eigenfunctions and eigenvalues can be obtained us-
ing the definition of the following functior (x) and param-
eter )\, respectively:

(A.1)

Eqg. (A1) can be obtained by using the transformation. m(z) =
2
U(z) = p(a)y(x). (A.2)
. : . o'(x) — 7(x) -
This transformation reduces Eq. (Al) into a + —o(x)+ ko(x) (A.9)
hypergeometric-type equation of the form 2
o(x)y”(x) + 7(x)y'(z) + Ay(x) =0.  (A3) g
The functiong(x) can be defined as the logarithm deriva-
tive A=k_+7"(z). (A.10)
¢'(x) _ m(x)
= —, (A.4)
d(x)  o(z) The value oft can be obtained by setting the discriminant

With = (z) being at most a first-degree polynomial. The in the square root in Eq. (A9) equal to zero. As such, the new
second part ofy(z) beingy(z) in Eq. (A2) is the hyperge- eigenvalues equation can be given as
ometric function with its polynomial solution given by Ro-

drigues relation as

t

Bu d*
p(x) dz»

y(z) = [0" (z)p(x)], (A.5)

—1
") =

(n=0,1,2,...).

A+ nt'(z) +

(A.11)
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