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Hulthén plus Hellmann potentials are adopted as the quark-antiquark interaction potential for studying the mass spectra of heavy mesons.
We solved the radial Schrödinger equation analytically using the Nikiforov-Uvarov method. The energy eigenvalues and corresponding wave
function in terms of Laguerre polynomials were obtained. The present results are applied for calculating the mass of heavy mesons such as
charmoniumcc̄ and bottomoniumbb̄. Four special cases were considered when some of the potential parameters were set to zero, resulting
into Hellmann potential, Yukawa potential, Coulomb potential, and Hulthén potential, respectively. The present potential provides satisfying
results in comparison with experimental data and the work of other researchers.

Keywords: Schr̈odinger equation; Nikiforov-Uvarov method; Hulthén potential; Hellmann potential; heavy mesons.

DOI: https://doi.org/10.31349/RevMexFis.67.482

1. Introduction

The study of the fundamental or constituent blocks of matter
has been for long time a fascinating field in physics. In the
nineteenth century, the atom was considered to be the fun-
damental particle, the one from which all matter was com-
posed. This idea was used to explain the basic structure of all
elements [1].

The problem of what were considered to be fundamen-
tal particles was resolved by the quarks. Because of the
heavy masses of the constituent quarks, a good description
of many features of these systems can be obtained using non-
relativistic models where the quark-antiquark strong interac-
tion is described by a phenomenological potential [2]. Heavy
quarkonium systems have turned out to provide extremely
useful probes for the deconfined state of matter because the
force between a heavy quark and anti-quark is weakened
due to the presence of gluons which lead to the dissocia-
tion of quarkonium bound states [3]. The quarkonia with
heavy quark and antiquark and their interaction are well de-
scribed by the Schrödinger equation (SE) [4]. The solution
of the spectral problem for the SE with spherically symmet-
ric potentials is of major concern in describing the spectra
of quarkonia [5]. Potential models offer a rather good de-
scription of the mass spectra of systems such as a bottomo-
nium, and charmonium [6]. In simulating the interaction po-
tentials for these systems, confining-type potentials are gen-
erally used. The holding potential is the so-called Cornell
potential with two terms, one of which is responsible for the
Coulomb interaction of the quarks and the other corresponds
to a confining term [7].

The solutions to the SE can be established only if we
know the confining potential for a particular physical system.
Till now, there are only a few confining potentials, like the
harmonic oscillator and the hydrogen atom, for which solu-
tions to the SE are found exactly [8].

The Hulth́en potential takes the form [9]

V (r) = − A0e
−αr

1− e−αr
, (1)

where α is the screening parameter andA0 is the poten-
tial strength which is sometimes identified with the atomic
number when the potential is used for atomic phenomena
[10]. It is a short-range potential which is applied in many
branches of physics, such as nuclear and particle physics,
atomic physics, solid state physics, and chemical physics
[11,12].

The Hellmann potential which is a superposition of an
attraction Coulomb potential and a Yukawa potential can be
expressed as [13].

V (r) = −A1

r
+

A2e
−αr

r
, (2)

where the parametersA1 and A2 denote the strength of
Coulomb and Yukawa potentials respectively,α denotes the
screening parameter, andr is the distance between two par-
ticles. These potentials have been used to study bound state
problems by many researchers [14-20]. Recently, Inyanget
al. [21] obtained the Klein-Gordon equation solutions for the
Yukawa potential using the Nikiforov-Uvarov (NU) method.
The energy eigenvalues were obtained both in a relativistic
and non-relativistic regime. They applied the results to cal-
culate heavy-meson masses of charmoniumcc̄ and bottomo-
nium bc̄. Apart from that, many researchers have provided
approximate solutions to SE using different methods with
Cornell potential. For instance, Vega and Flores [22] ob-
tained the approximate solutions of the Schrödinger equation
with the Cornell potential using variational method and super
symmetric quantum mechanics (SUSYQM). Abu-Shadyet
al. [23] studied the N-dimensional radial Schrödinger equa-
tion using the analytical exact iteration method (AEIM), in
which the Cornell potential is generalized to finite tempera-
ture and chemical potential. In addition, Ciftci and Kisoglu
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[24], solved non-relativistic arbitrary l-states of quarkonium
through asymptotic iteration method (AIM). An analytic so-
lution of the N-dimensional radial Schrödinger equation with
the mixture of vector and scalar potentials via the Laplace
transformation method (LTM) were studied in Ref. [25]. Al-
Jamel and Widyan [26] studied heavy quarkonium mass spec-
tra in a Coulomb field plus quadratic potential using NU
method. Ibekweet al. [27] solved the radial SE with an ex-
ponential, generalized, harmonic Cornell potential using the
series expansion method. Their results were used to calculate
the mass spectra of heavy-mesons. Al-Ounet al. [28] ex-
amine heavy quarkonia characteristics properties in the gen-
eral framework of non-relativistic potential model consisting
of a Coulomb plus quadratic potential. Chouikhet al. [29]
proposed an approach to achieve quantum computation with
atomics qubits in a cavity QED. Recently, researchers have
shown great interest in the combination of two or more po-
tentials in both the relativistic and non relativistic approach.
The fundamental nature of combining two or more physi-
cal potential models is to have a wider range of application
[30]. For example, the Cornell potential which is the com-
bination of the Coulomb potential with linear terms is used
in studying the mass spectra for coupled states and for the
electromagnetic characteristics of meson [31]. For instance,
William et al. [32] obtained bound state solutions of the
radial Schr̈odinger equation by the combination of Hulthén
and Hellmann potential within the framework of Nikiforov-
Uvarov method. Also, Edetet al. [33] obtained an approx-
imate solution of the SE for the modified Kratzer potential
plus screened Coulomb potential model using the Nikiforov-
Uvarov method. In this present work, we aim to study the
SE with the combination of Hulth́en and Hellmann potential
analytically by using the NU method and apply the results
to calculate the mass spectra of heavy quarkonium particles
such as bottomonium and charmonium, in which the quarks
are considered as spinless particles for easiness, which have
not been considered before using this potentials to the best of
our knowledge. The adopted potential is of the form [32]

V (r) = − A0e
−αr

1− e−αr
− A1

r
+

A2e
−αr

r
, (3)

whereA0, A1, andA2 are potential strength parameters and
α is the screening parameter. In other to make Eq. (3) temper-
ature dependent, the screening parameter is replaced with the
Debye massmD(T ), which is temperature-dependent and
vanishes atT → 0 and we have,

V (r, T ) = − A0e
−mD(T )r

1− e−mD(T )r
− A1

r
+

A2e
−mD(T )r

r
. (4)

We carry out a series expansion of the exponential terms
in Eq. (4) up to order three in order to model the potential to
interact in the quark-antiquark system and this yields,

e−mD(T )r

r
=

1
r
−mD(T ) +

m2
D(T )r2

6
+ · · · (5)

e−mD(T )r

1− e−mD(T )r
=

1
mD(T )r

− 1
2

+
mD(T )r

12
+ · · · . (6)

We substitute Eqs. (5) and (6) into Eq. (4) and obtain

V (r, T ) = −β0

r
+ β1r − β2r

2 + β3, (7)

where

−β0 = A2 −A1 − A0

mD(T )
,

β1 =
A2m

2
D(T )r
2

− A0mD(T )
12

,

β2 =
A2m

3
D(T )
6

,

β3 =
A0

2
−A2mD(T ). (8)

The first term in Eq. (7) is the Coulomb potential that de-
scribes the short distance between quarks, while the second
term is a linear term featuring confinement.

2. Approximate solutions of the Schr̈odinger
equation with Hulth én plus Hellmann po-
tential

The Schr̈odinger equation (SE) for two particles interacting
via potentialV (r) in three dimensional space, is given by
[34]

d2R(r)
dr2

+

(
2µ

~2
(Enl − V (r))− l(l + 1)

r2

)
R(r) = 0, (9)

where l, µ, r, and~ are the angular momentum quantum
number, the reduced mass for the quarkonium particle, inter-
particle distance and reduced plank constant respectively. We
substitute Eq. (7) into Eq. (9) and obtain

d2R(r)
dr2

+

[
2µEnl

~2
+

2µβ0

~2r
− 2µβ1r

~2
+

2µβ2r
2

~2

− 2µβ3

~2
− l(l + 1)

r2

]
R(r) = 0. (10)

Let,

ζ =
2µ

~2
(Enl − β3), α0 =

2µβ0

~2
,

α1 =
2µβ1

~2
, α2 =

2µβ2

~2
, γ = l(l + 1). (11)

Substituting Eq. (11) into Eq. (10), we have

d2R(r)
dr2

+

(
ζ +

α0

r
− α1r + α2r

2 − γ

r2

)
R(r) = 0.

(12)
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Transforming the coordinate of Eq. (12) we set

x =
1
r
. (13)

Differentiating Eq. (13) and simplifying we have

d2R

dr2
+

2
r3

dR

dx
+

1
r4

d2R

dx2
. (14)

Substituting Eqs. (13) and (14) into Eq. (12) we have

d2R(x)
dx2

+
2
x

dR

dx
+

1
x4

[
ζ + α0x

+
α1

x
+

α2

x2
− γx2

]
R(x) = 0. (15)

Next, we propose the following approximation scheme on
the termα1/x andα2/x2.

Let us assume that there is a characteristic radiusr0 of the
meson. Then the scheme is based on the expansion ofα1/x
andα2/x2 in a power series aroundr0, i.e. aroundδ ≡ 1/r0,
in thex-space up to the second order. This is similar to the
Pekeris approximation, which helps to deform the centrifugal
term such that the modified potential can be solved by the NU
method [35].

Settingy = x − δ and aroundy = 0, it can be expanded
into a series of powers as;

α1

x
=

α1

y + δ
=

α1

δ
(
1 + y

δ

) =
α1

δ

(
1 +

y

δ

)−1

, (16)

which yields

α1

x
= α1

(
3
δ
− 3x

δ2
+

x2

δ3

)
. (17)

Similarly,

α2

x2
= α2

(
6
δ2
− 8x

δ3
+

3x2

δ4

)
. (18)

By substituting Eqs. (18) and (17) into Eq. (15) , we ob-
tain

d2R(x)
dx2

+
2x

x2

dR(x)
dx

+
1
x4

[−ε + αx− βx2]R(x) = 0,

(19)

where

−ε =
(

ζ +
6α2

δ2
− 3α1

δ

)
,

α =
(

3α1

δ2
+ α0 − 8α2

δ3

)
,

β =
(

γ +
α1

δ3
− 3α2

δ4

)
. (20)

Comparing Eq. (19) and Eq. (A1) we obtain

τ̃(x) = 2x, σ(x) = x2

σ̃(x) = −ε + αx− βx2

σ′ = 2x, σ′′(x) = 2. (21)

We substitute Eq. (21) into Eq. (A9) and obtain

π(x) = ±
√

ε− αx + (β + k)x2. (22)

To determinek, we take the discriminant of the function
under the square root, which yields

k =
α2 − 4βε

4ε
. (23)

We substitute Eq. (23) into Eq. (22) and have

π(x) = ±
(

αx

2
√

ε
− ε√

ε

)
. (24)

For a physically acceptable solution, we take the negative
part of Eq. (24) which is required for bound state problems
and differentiate; this yields

π′(x) = − α

2
√

ε
. (25)

Substituting Eqs. (21) and (25) into Eq. (A7) we have

τ(x) = 2x− αx√
ε

+
2ε√

ε
. (26)

Differentiating Eq. (26) we have

τ ′(x) = 2− α√
ε
. (27)

By using Eq. (A10), we obtain

λ =
α2 − 4βε

4ε
− α

2
√

ε
, (28)

and using Eq. (A11), we obtain

λn =
nα√

ε
− n2 − n. (29)

Equating Eqs. (28) and (29), the energy eigenvalues of
Eq. (10) are given

Enl = A0

(
1
2
− mD(T )

4δ

)
+ A2mD(T )

(
3mD(T )

2δ
−m2

D(T )− 1
)

,
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− ~
2

8µ




2µ

~2

[
A2 −A1 +

A0

mD(T )

]
+

µmD(T )
δ2δ2

[
3A2mD(T )− A0

2

]
− 8µA2m

3
D(T )

3~2δ3

n +
1
2

+

√[
l +

1
2

]2

+
µA2m

2
D(T )

~2δ3

[
1− mD(T )

δ

]
− µA0mD(T )

6~2δ3




. (30)

2.1. Special cases

In this subsection, we obtain the special case by setting some parameters to zero.
1. When we setA0 = A1 = 0, we obtain the energy eigenvalues for Yukawa potential

Enl = A2mD(T )
(

3mD(T )
2δ

−m2
D(T )− 1

)
− ~2

8µ




−2µA2

~2
+

3µA2m
2
D(T )

~2δ2
−8µA2m

3
D(T )

3~2δ3

n+
1
2

√[
l+

1
2
+

]2

+
µA2m

2
D(T )

~2δ3

[
1−mD(T )

δ

]




2

. (31)

2. When we setA1 = A− 2 = 0 , we obtain the energy eigenvalue for Hulthén potential

Enl = A0

(
1
2
− mD(T )

4δ

)
− ~2

8µ




2µA0

~2mD(T )
− A0µmD(T )

2~2δ2

n +
1
2

+

√[
l+

1
2

]2

− µA0m
2
D(T )

6~2δ3




2

. (32)

3. When we setA0, we obtain the energy eigenvalue for Hellmann potential

Enl = A2mD(T )
(

3mD(T )
2δ

−m2
D(T )− 1

)
− ~2

8µ




2µ

~2
(A1 −A2) +

3A2µm2
D(T )

~2δ2
− 8µA2m

3
D(T )

3~2δ3

n +
1
2

+

√[
l +

1
2

]2

+
µA2m

2
D(T )

~2δ3

(
1− mD(T )

δ

)




2

. (33)

4. When we setA0 = A2 = mD(T ) = 0, we obtain the
energy eigenvalues for Coulomb potential

Enl =
µA2

1

2~2(n + l + 1)2
. (34)

The result of Eq. (34) is very consistent with the result
obtained in Eq. (36) of Ref. [33].

To determine the wavefunction, we substitute Eqs. (21)
and (24) into Eq. (A4) and obtain

dφ

φ
=

(
ε

x2
√

ε
− α

2x
√

ε

)
dx. (35)

Integrating Eq. (35), we obtain

φ(x) = x−(α/2
√

ε)e(ε/x
√

ε). (36)

By substituting Eqs. (21) and (24) into Eq. (A6) and inte-
grating, we obtain

ρ(x) = x−(α/
√

ε)e−(2ε/x
√

ε). (37)

Substituting Eqs. (21) and (37) into Eq. (A5) we have

yn(x) = Bne(2ε/x
√

ε)x(α/
√

ε)

× dn

dxn

(
e(2ε/x

√
x)x(2n−[α/

√
ε])

)
. (38)

The Rodrigues’ formula of the associated Laguerre poly-
nomials is

L(α/
√

ε)
n

(
2ε

x
√

ε

)
=

1
n!

e(2ε/x
√

ε)xα/
√

ε

× dn

dxn

(
e−(2ε/x

√
x)x(2n−[α/

√
ε])

)
. (39)

where

1
n!

= Bn. (40)

Hence,

yn(x) ≡ L(α/
√

ε)
n

(
2ε

x
√

ε

)
. (41)
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Substituting Eqs. (36) and (41) into Eq. (A2) we obtain the wavefunction of Eq. (10) in terms of Laguerre polynomial as

ψ(x) = Bnlx
−(α/2

√
εe−(ε/x

√
ε)L(α/

√
ε)

n

(
2ε

x
√

ε
,

)
(42)

whereNnl is normalization constant, which can be obtained from

∞∫

0

|Bnl(r)|2dr = 1. (43)

3. Results

We calculate the mass spectra of the heavy quarkonium system such as charmonium and bottomonium that have the quark and
antiquark flavor, and apply the following relation [36,37]

M = 2m + Enl, (44)

wherem is quarkonium bare mass andEnl is energy eigenvalues. By substituting Eq. (30) into Eq. (44) we obtain the mass
spectra for Hulth́en plus Hellmann potential as

M = 2m + A0

(
1
2
− mD(T )

4δ

)
+ A2mD(T )

(
3mD(T )

2δ
−m2

D(T )− 1
)

− ~2

8µ




2µ

~2

[
A2 −A1 +

A0

mD(T )

]
+

µmD(T )
~2δ2

[
3A2mD(T )− A0

2

]
− 8µA2m

3
D(T )

3~2δ3

n +
1
2

+

√(
l +

1
2

)2

+
µA2m

2
D(T )

~2δ3

(
1− mD(T )

δ

)
− µA0mD(T )

6~2δ3




2

. (45)

3.1. Discussion of results

We calculate the mass spectra of charmonium and bottomo-
nium for states from 1S to 1F, by using Eq. (45). The free pa-
rameters of Eq. (45) are fitted with experimental data by solv-
ing two algebraic equations. Experimental data are obtained
from [38,39]. For bottomoniumbb̄ and charmonium cc̄
systems we adopt the numerical values of these masses as

TABLE I. Mass spectra of charmoniumin (GeV) for Hulthén plus
Hellmann potential, (mc = 1.209 GeV, µ = 0.6045 GeV, A0 =
−1.693 GeV,A1 = 20.654 GeV,A2 = 0.018 GeV,δ = 0.2 GeV,
mD(T ) = 1.52 GeV,~ = 1).

State Present work [35] [24] Experiment

[38,39]

1S 3.096 3.096 3.096 3.096

2S 3.686 3.686 3.672 3.686

1P 3.521 3.255 3.521 3.525

2P 3.772 3.779 3.951 3.773

3S 4.040 4.040 4.085 4.040

4S 4.262 4.269 4.433 4.263

1D 3.768 3.504 3.800 3.770

2D 4.146 - - 4.159

1F 3.962 - - -

mb = 4.823 and mc = 1.209, respectively [40]. Then,
the corresponding reduced mass areµb = 2.4115 andµc =
0.6045. The Debye massmD(T ) is taken as 1.52 GeV by
fitting with experimental data. We note that calculation of
mass spectra of charmonium and bottomonium are in a good
agreement with experimental data as well as the work of other
re-

TABLE II. Mass spectra of bottomonium in (GeV) for Hulthén
plus Hellmann potential, (mb = 4.823 GeV, µ = 2.4115 GeV,
A0 = −1.591 GeV,A1 = 9.649 GeV,A2 = 0.028 GeV,δ = 0.25
GeV,mD(T ) = 1.52 GeV,~ = 1).

State Present work [35] [24] Experiment

[38,39]

1S 9.460 9.460 9.462 9.460

2S 10.023 10.023 10.027 10.023

1P 9.861 9.619 9.9630 9.899

2P 10.238 10.114 10.299 10.260

3S 10.355 10.355 10.361 10.355

4S 10.579 10.567 10.624 10.580

1D 10.143 9.864 10.209 10.164

2D 10.306 - - -

1F 10.209 - - -

Rev. Mex. Fis.67 (3) 482–490
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FIGURE 1. Mass spectra variation with potential parameterA0 for
different quantum numbers.

FIGURE 2. Mass spectra variation with potential parameterA1 for
different quantum numbers

searches as presented in Tables I and II. It is important to
note that the values obtained are improved in comparison
with works like that of Ref. [35], as shown in Tables I and II
in which the author investigated the N- radial SE analytically
when the Cornell potential was extended to finite tempera-
ture.

We also plotted the mass spectra energy as a function of
potential parameters and Debye mass. In Figs. 1 and 2, the
mass spectra energies increases to a peak and later decreases
as potential parameters and increases, respectively. In Fig. 3
the mass spectra converges at the beginning, but spreads out
and decrease monotonically with the increase in potential pa-
rameterA2. Figure 4 show the increase in mass spectra as the
Debye mass increases, for various angular quantum numbers.

FIGURE 3. Mass spectra variation with potential parameterA2 for
different quantum numbers.

FIGURE 4. Mass spectra variation with the Debye massmD(T )

for different quantum numbers.

4. Conclusion

In this study, we adopted Hulthén plus Hellmann poten-
tial models for quark-antiquark interaction. The potential
was made to be temperature dependent by replacing the
screening parameter with Debye mass which vanishes at.
The Schr̈odinger equation is analytically solved using the
Nikiforov-Uvarov method. We obtained approximate solu-
tions of the eigenvalues and eigenfunction in terms of La-
guerre polynomials. We applied the present results to calcu-
late heavy-meson masses such as charmoniumcc̄, and bot-
tomoniumbb̄ for states 1S to 1F which are in good agreement
with experimental data and the work of others. Four special

Rev. Mex. Fis.67 (3) 482–490
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cases were considered when some of the potential parameters
were set to zero, resulting into Hellmann potential, Yukawa
potential, Coulomb potential, and Hulthén potential, respec-
tively. Different plots of mass spectra versus different poten-
tial parameters and Debye mass were analyzed and discussed.

Appendix

A. Review of Nikiforov-Uvarov (NU) method

The NU method was proposed by Nikiforov and Uvarov [41-
43] to transform Schr̈odinger-like equations into a second-
order differential equation via a coordinate transformation
x = x(r), of the form

ψ′′(x) +
τ̃(x)
σ(x)

ψ′(s) +
σ̃(x)
σ2(x)

ψ(x) = 0, (A.1)

whereσ̃(x), andσ(x) are polynomials, at most second degree
and τ̃(x) is a first-degree polynomial. The exact solution of
Eq. (A1) can be obtained by using the transformation.

ψ(x) = φ(x)y(x). (A.2)

This transformation reduces Eq. (A1) into a
hypergeometric-type equation of the form

σ(x)y′′(x) + τ(x)y′(x) + λy(x) = 0. (A.3)

The functionφ(x) can be defined as the logarithm deriva-
tive

φ′(x)
φ(x)

=
π(x)
σ(x)

. (A.4)

With π(x) being at most a first-degree polynomial. The
second part ofψ(x) beingy(x) in Eq. (A2) is the hyperge-
ometric function with its polynomial solution given by Ro-
drigues relation as

y(x) =
Bnl

ρ(x)
dn

dxn
[σn(x)ρ(x)], (A.5)

whereBnl is the normalization constant andρ(x) the weight
function which satisfies the condition below;

(σ(x)ρ(x))′ = τ(x)ρ(x), (A.6)

where also

τ(x) = τ̃(x) + 2π(x). (A.7)

For bound solutions, it is required that

τ ′(x) < 0. (A.8)

The eigenfunctions and eigenvalues can be obtained us-
ing the definition of the following functionπ(x) and param-
eterλ, respectively:

π(x) =
σ′(x)− τ̃(x)

2

±
√(

σ′(x)− τ̃(x)
2

)
− σ̃(x) + kσ(x) (A.9)

and

λ = k− + π′−(x). (A.10)

The value ofk can be obtained by setting the discriminant
in the square root in Eq. (A9) equal to zero. As such, the new
eigenvalues equation can be given as

λ + nτ ′(x) +
n(n− 1

2
σ′′(x) = 0,

(n = 0, 1, 2, ....). (A.11)

1. H. Mutuk, Mass Spectra and Decay constants of Heavy-Light
Mesons: A Case Study of QCD Sum Rules and Quark Model,
Adv. High Energy Phys. 2018 (2018) 8095653,https://
doi.org/10.1155/2018/8095653 .
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9. L. Hulthén, Über die Eigenl̈osungen der Schrödinger-
Gleichung des Deuterons,Ark. Mat. Astron. Fys. A28 (1942)
5.

Rev. Mex. Fis.67 (3) 482–490

https://doi.org/10.1155/2018/8095653�
https://doi.org/10.1155/2018/8095653�
https://doi.org/10.1140/epjc/s10052-008-0847-4�
https://doi.org/10.1140/epjc/s10052-008-0847-4�
https://doi.org/10.1140/epjc/s10052-015-3695-z�
https://doi.org/10.1140/epjc/s10052-015-3695-z�
https://doi.org/10.1016/j.heliyon.2020.e03738�
https://doi.org/10.1016/j.heliyon.2020.e03738�
https://doi.org/10.1155/2013/491648�
https://doi.org/10.1155/2013/491648�
https://doi.org/10.1155/2020/5901464�
https://doi.org/10.1155/2020/5901464�
https://doi.org/10.1155/2018/7269657�
https://doi.org/10.1155/2018/7269657�


APPROXIMATE SOLUTIONS OF THE SCHR̈ODINGER EQUATION WITH HULTHÉN-HELLMANN POTENTIALS. . . 489
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