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Quantum mechanics of particles trapped in a Laḿe
circle or Lamé sphere shaped potential well
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Ground state and 1st excited state energies and wave functions were calculated for systems of one or two electrons in a 2D and 3D potential
well having a shape intermediate between a circle and a square or a sphere and a cube. One way to define such a potential well is with a step
potential and a bounding surface of form|x|q + |y|q + |z|q = |r|q, which converts from a sphere to a cube whenq increases from2 to infinity.
This kind of geometrical object is called a Lamé surface. The calculations were done either with implicit finite difference time stepping in
the direction of negative imaginary time axis or with quantum diffusion Monte Carlo. The results demonstrate how the volume and depth
of the potential well affect theE0 more than the shape parameterq does. Functions of two and three parameters were found to be sufficient
for fitting an empirical graph to the ground state energy data points as a function of well depthV0 or exponentq. The ground state and first
excited state energy of one particle in a potential well of this type appeared to be very closely approximated with an exponential function
depending onq, when the well depth and area or volume was kept constant while changing the value ofq. The model is potentially useful
for describing quantum dots that deviate from simple geometric shapes, or for demonstrating methods of computational quantum mechanics
to undergraduate students.
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1. Introduction

The model of an electron or some other particle confined in-
side a potential well of some shape, depth and volume is use-
ful in many applications despite its simplicity. Examples of
this include color centers in crystalline materials [1,2], quan-
tum dots in nanotechnology [3,4], pi electrons in conjugated
organic molecules [5] and electron bubbles in liquid ammo-
nia or liquid helium [6–8]. Despite the confinement of the
electron being a result of complex multi-particle interactions,
the particle-in-a-box model often produces at least qualita-
tively correct results.

1.1. Potential wells with simple geometry

Often a real-world object can be modeled with some excep-
tionally simple physical system. An electron in a potential
well with the shape of an exact cube or a sphere, and the po-
tential energyV stepping abruptly at the well boundary is one
example. In that situation, the potential energy of the electron
is (spherical case)

V (r) = V0Θ(r − ρ), (1)

or (cubic case)

V (x, y, z) = V0Θ(max(|x|, |y|, |z|)− L/2). (2)

Here theV0 is the depth of the well.Θ is the Heaviside theta
function,

Θ(x) =
{

0, whenx < 0,
1, whenx ≥ 0 , (3)

ρ is the radius of the circular or spherical potential well and
L is the side length of the cubic potential well. The vari-
abler is just the distance from the origin in 2D or 3D space:
r =

√
x2 + y2 or r =

√
x2 + y2 + z2. The functionV

appears in the time-independent Schrödinger equation, from
which the energy eigenvalues and eigenfunctions are calcu-
lated

− ~2

2m
∇2ψ(x) + V (x)ψ(x) = Eψ(x). (4)

Herex is a two- or three-dimensional vector.

1.2. Lamé circles and spheres

In real-world situations it can not always be assumed that the
electron is confined to an exactly spherical or cubic space.
The choiceV0 = ∞ is another crude approximation. A logi-
cal improvement to the model would be to define 2D curves
and 3D surfaces with a shape between a square and a circle
or cube and a sphere. One geometrical object of this type is
theLamé circle(or supercircle)

|x|q
aq

+
|y|q
bq

= rq, (5)

and the Laḿe sphere (orsupersphere)

|x|q
aq

+
|y|q
bq

+
|z|q
cq

= rq. (6)

Yet another name for these curves and surfaces issu-
perquadrics. The objects described by these equations, with
a = b = c = 1 (as in all cases studied in this article), become
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FIGURE 1. Wolfram Mathematica 11.2.0 plots of the surface defined by|x|q + |y|q + |z|q = rq for valuesq = 0.5, q = 1.0 q = 1.5,
q = 2.5, q = 3 andq = 4 from left to right and up to down. The parameterr has been set to value 1.

a circle or sphere whenq = 2 and a square or a cube when
q → ∞. The parameterr > 0 is the radius of the circle or
sphere that these shapes become whenq → 2. As a general
result, ann-dimensional solid of this shape has volume [9]

Vol(r, n, q) = (2r)n Γ(1 + 1/q)n

Γ(1 + n/q)
, (7)

whereΓ is the gamma function. To produce a set of surfaces
described by (6), having different values ofq but same con-
stant enclosed volumeV, the parameterr in Eq. (6) has to be
made a function ofq:

r := r(q) = 3

√
V

Vol(1, 3, q)
, (8)

or the equivalent for a 2D Laḿe circle.
3D surfaces of shapes given by Eq. (6) with a = b = c =

1 are shown in Fig. 1.
The system with a potential well bounded by a Lamé

curve has been studied earlier by Beraet al. [10], but only
for the 2D case and with infiniteV0. In this article, the results
will be extended to the equivalent 3D systems with several
finite values ofV0 allowed.

A similar method of analytical geometry exists for con-
verting a sphere continuously into aPlatonic solid(regular

octahedron, dodecahedron or icosahedron instead of a cube)
[11,12], and it can be expected that the energy eigenvalues of
an electron in that kind of potential well approach the spher-
ical case when more faces are added to the polyhedron.

1.3. Experimental methods

A practical system that can be modelled as one or more elec-
trons in a 1 to 3-dimensional potential well is the quantum
dot (QD), which is a nanometer-scale semiconductor particle
having an absorption/emission spectrum similar to a system
of electrons confined in a potential well of equivalent size.
An electron in a large QD has a lower ground state energy
than one in a small QD, just like an electron in a short versus
long 1D square well. One complication in this theory of QDs
is the –possibly position-dependent– difference of electron
and holeeffective massesto their normal value or the value in
bulk semiconductor [13]. This kind of nanoparticles can be
produced by chemical or mechanical means such as molecu-
lar beam epitaxy or chemical vapor deposition [14], and their
shape can be probed by methods such as measuring their spin
and parity oscillations in a magnetic field [15]. Information
about the effect of shape changes, as in the model systems of
this article, on the electronic spectrum of the system can also
be utilized for quantum dot shape determination. Conversely,
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this also means that QDs with desired spectral properties can
be produced by tuning their shape in an appropriate way.

1.4. Computational approach

The methods applied in this article are numerical, with
ground state and first excited state energies obtained with
quantum diffusion Monte Carlo (QDMC) or Implicit finite
differencing (IFD) on imaginary time axis. The system is a
2D or 3D potential well with boundary described by Eqs. (5)
and (6). The parametersa, b andc all have value1 , so the
well is not oblong in any particular direction. The system
contains one or two confined electrons. A suitable nonlinear
fitting function is sought for the data points of ground state
energyE0 as a function ofq andV0. This is done to make it
easier to estimate theE0 for other values ofq, V0 by interpo-
lation. With spectroscopic data and these results, it may be
possible to estimate whether an electron-trapping cavity in a
real material is more close to sphere or cube in shape.

Both the QDMC and IFD methods for finding the ground
state are based on the time evolution of an initial state
|Ψ(0)〉 = c0|ψ0〉 + c1|ψ1〉 + c2|ψ2〉 . . . written as a linear
combination of the eigenstates ofĤ, |ψn〉:

|Ψ(t)〉 = c0e
−iE0t/~|ψ0〉

+ c1e
−iE1t/~|ψ1〉+ c2e

−iE2t/~|ψ2〉 . . . . (9)

Here it is assumed that̂H has no explicit time dependence
in Schr̈odinger picture. Defining an imaginary time coordi-
nate with equationt = −iτ , the time evolution in terms ofτ
is

|Ψ(τ)〉 = c0e
−E0τ/~|ψ0〉

+ c1e
−E1τ/~|ψ1〉+ c2e

−E2τ/~|ψ2〉 . . . . (10)

Provided that theEn form an increasing sequence
of positive numbers, the state vector|Ψ(τ)〉 of (10) ap-
proaches something proportional to|ψ0〉 when τ →
∞. This allows the numerical calculation of the ground
state wave functionψ0(x) = 〈x | ψ0〉. The eigen-
value E0 can be obtained by following the expecta-
tion value 〈Ψ(τ)|Ĥ|Ψ(τ)〉/〈Ψ(τ) | Ψ(τ)〉, or the value of
ĤΨ(x, τ)/Ψ(x, τ) at some constant positionx, during the
simulation.

The difference between the QDMC and IFD methods is
that in QDMC the diffusive imaginary-time dynamics is mod-
elled as a system of random walkers with a source term al-
lowing creation and destruction of them. The IFD method
calculates actual wave functions that do not have to be real
and positive valued.

2. Numerical methods

The diffusion Monte Carlo calculation was done with a C++
source code described in [16] and appropriately modified to

fit this particular problem. The code utilizes atomic-like units
with Planck constant and electron mass set to~ = me =
1. In the two-electron calculations, the Coulomb constant
(4πε0)−1 and the elementary chargee also have value1. The
implicit finite differencing with an imaginary time coordinate
was done with a script written in R language. There the unit
system is also one where both length and energy are dimen-
sionless.

2.1. Transcendental equation and shooting method for
q = 2 and q = ∞

2.1.1. Solution with non-algebraic equations forq = 2 and
q = ∞

The calculation of the energy eigenvalues for a finite square,
cubic or spherical potential well is described in most basic
QM textbooks such as [17]. The method is based on the
graphical solution of a non-algebraic (transcendental) equa-
tion. For a 1D square well with potential energy

V (x) =
{ −V0, when|x| < L

2

0, when|x| ≥ L
2

, (11)

the equation is

α tan
(

αL

2

)
= β (12)

for the even states such as the ground state, and

α cot
(

αL

2

)
= −β (13)

for the odd states like the 1st excited state. The quantitiesα
andβ are defined as

α =
(

2m

~2
(V0 + E)

)1/2

and

β =
(
−2m

~2
E

)1/2

. (14)

These equations can be solved graphically after a straight-
forward conversion to units where~ = m = 1 and to the con-
vention ofV being0 inside the well andV0 outside it. The
ground state energy of a square 2D or cubic 3D potential well
is just2 or 3 times theE0 calculated for this 1-dimensional
system. Also, the first excited state energyE1 of a 2D square-
shaped potential well with side lengthL is the sum ofE0 and
E1 of the 1D potential well of lengthL.

The equation for solving energy eigenvalues of a 3D
spherical potential well,

V (r) =
{ −V0, whenr < a

0, whenr ≥ a
, (15)

is of form
K cot Ka = −λ, (16)

with

K =
[
2m

~2
(E + V0)

]1/2

and λ =
(
−2mE

~2

)1/2

. (17)
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However, Eq. (16) is only for rotation invariant eigen-
states with zero angular momentum, of which the ground
state is one example. For numerical work, these quantities
have to be made dimensionless and shifted to make the inte-
rior of the potential well haveV = 0 as defined in this article.

2.1.2. Shooting method

For the 2D circular potential well, the corresponding equation
contains special functions, and the result can more easily be
obtained with theshooting methodfor theL = 0 eigenstates.
The Schr̈odinger equation can be cast into polar coordinates

− ~
2

2m

(
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2

)
ψ(r, θ)

+ V0Θ(r − ρ)ψ(r, θ) = Eψ(r, θ), (18)

which simplifies for the rotation invariant ground state

− ~
2

2m

(
∂2

∂r2
+

1
r

∂

∂r

)
ψ(r)

+ V0Θ(r − ρ)ψ(r) = Eψ(r). (19)

The equation above can be solved numerically by chang-
ing to dimensionless variables and choosing a trial value of
E and a small numberε ¿ 1. Then it is integrated by finite
difference starting fromr = ε (not r = 0, to avoid problems
with the singular multiplier1/r in the polar Laplacian) with
initial conditionsψ(ε) = 1 andψ′(ε) = 0. The value of
E is adjusted until the radial wave function doesn’t blow up
to negative or positive infinity near the potential stepr = ρ.
The smallest value ofE with this property can be taken as
an approximation forE0. The same procedure can also be
applied for finding the energiesEn of other rotation invariant
eigenfunctions of the Hamiltonian, but the first excited state
with energyE1 is not one of those.

2.2. Quantum DMC for one particle in 2D and 3D

The diffusion Monte Carlo results for both 2D and 3D were
calculated with values of2 ≤ q ≤ 20 and50 ≤ V0 ≤ 20000.
The result for each combination ofq andV0 was calculated
4 times and averaged to one data point. The time step length
in both 2D and 3D simulations was∆t = 10−5, the energy
update parameter wasα = 40 and the maximum allowed
number of random walkers was105 (2D) or 9 × 105 (3D).
Simulated time length was 20 units, and 1/4 from the begin-
ning of the energy output file was discarded before averaging
the remaining energy values to an estimate forE0.

The results were plotted as graphs where eitherV0 or q
was kept constant and the other varied. Particle mass was set
to 1 in all calculations. The area of a 2D potential well was
kept constant atA = 4 when changing the value of the expo-
nentq, and the volume of the 3D potential well was kept at
V = 8. This was done by definingr = r(q) as in (8).

Calculations for well depths of 600, 2000 and 20000 were
also done similarly for a 3D well of volumeV = 2.0 to see

the effect of volume change on the ground state energy. In
theV = 2.0 calculation, the time step was∆t = 5 × 10−6,
the maximum number of walkers was 90000, length of simu-
lation was9.0 time units and the energy update parameterα
had value100.0.

In preliminary calculations, it was seen that an exponen-
tial function of type

E0(q) = A0 − (A0 −A1)eA2(q−2) (20)

fits well in the data points ofE0 as a function ofq, and a
rational square root function

E0(V0) = A0 − A1√
V0

(21)

to the data points ofE0 as a function ofV0. Making Eq.
(20) more complex by converting it to a sum of two exponen-
tials did not add any more accuracy in the fit. Both kind of
graphs (as a function ofq or V0) can be used for estimating
the ground state energy for intermediate values ofq andV0 by
interpolation. There is no obvious theoretical reason for the
E0(V0) andE0(q) to be close to these functions; the reason
for calculating the nonlinear fit is just to predict the behavior
of the functions between calculated data points.

The results were plotted and the iterative nonlinear fits
calculated with the Linux application Grace-5.1.25. The
obtained values of fitting parametersA0, A1 and A2 were
recorded for all cases. Another way to do the curve fit is to
fix A0 andA1 to values predicted by a transcendental equa-
tion or with the shooting method, and leave onlyA2 free.

2.3. Quantum DMC for two particles in 2D

2.3.1. Basic parameters

The problem of two electrons in the same potential well was
numerically investigated only in 2D to limit the computation
time. Instead of having onlyq andV0 as parameters, the area
of the potential well was also varied to see its effect onE0.
The maximum number of random walkers in these simula-
tions was 30000 and the time step was3× 10−6. The energy
update parameterα needed to have higher value, up to120,
than in the 1-particle version to give better accuracy.

The value ofq in these results was either2, 8 or∞. The
well depth wasV0 = 200 or 20000. The size of the potential
well was parametrized with a variables, with the area of the
potential well beingπ whens = 1 andπs2 for other values
of s. In other words,s is a multiplier of all linear dimensions
of the system. The parameters was varied froms = 1 to 4
in steps of0.5. In addition to the ground state energyE0, the
mean electron-electron distancer12 was extracted from the
output wave function.
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2.3.2. Electron-electron interaction energy

The position representation Hamiltonian of two interacting
electrons confined in a supercircular potential well is

Ĥ = − ~2

2me

(∇2
1 +∇2

2

)
+ V̂conf +

e2

4πε0r̂12
, (22)

where the∇2
1 and∇2

2 are two-dimensional Laplacians act-
ing on the coordinates of the 1st and 2nd electron. The op-
eratorV̂conf represents the confining potential that jumps by
amountV0 when an electron crosses the boundary of the su-
percircle. The term proportional to(r̂12)−1 is the electron-
electron interaction energy, and becomes just(r̂12)−1 in
the dimensionless calculations with atomic units. Ifx1, y1

are the coordinates of first electron andx2, y2 are those of
second electron, the value used for distancer12 is r12 =√

(x1 − x2)2 + (y1 − y2)2 + ε. The ε here is some small
positive constant that prevents division by zero in the calcu-
lations. In this work, its value wasε = 10−3 and one simula-
tion was done withε = 10−5 to verify that this doesn’t affect
the values ofE0 significantly.

A system of only two electrons does not require any spe-
cial care to antisymmetrize the ground state wave function,
because the two electrons can have opposite spins.

2.4. Implicit finite-differencing for one particle in 2D

2.4.1. Description

In the simplest possible case of a 1D quantum system, the
time-dependent Schrödinger equation is made discrete by re-
placing the wave functionΨ(x, t) with an arrayΨk

j . The
j is a position index andk a time index. If the coordi-
nate system is defined so that the interesting part of the sys-
tem is on the spatial intervalx ∈ [0, xmax] and the tem-
poral interval t ∈ [0, tmax], then the equivalence is like
Ψk

j ↔ Ψ(j∆x/M, k∆t/N). Here theM is the maximum
value of the position index,N the maximum value of time
index,∆x = xmax/M and∆t = tmax/N .

As described in [19], theCrank-Nicolson methodis a way
to turn the discrete version of the Schrödinger equation into
an implicit scheme that preserves unitarity. This is done by
approximating the evolution operator̂U∆t with the Cayley’s
form

Û∆t = e−iĤ∆t ≈ 1− 1
2 iĤ∆t

1 + 1
2 iĤ∆t

, (23)

where the units have been chosen so that~ = 1. Noting that
Ψk+1

j = Û∆tΨk
j , this approximation leads to the result

(1 +
1
2
iĤ∆t)Ψk+1

j = (1− 1
2
iĤ∆t)Ψk

j . (24)

If the operatorĤ is simply a sum of a kinetic and poten-

tial energy term as in (4), the equation is

Ψk+1
j − i

4
∆t

(
Ψk+1

j+1 − 2Ψk+1
j + i∆tVj + Ψk+1

j−1

[∆x]2

)
= Ψk

j

+
i

4
∆t

(
Ψk

j+1 − 2Ψk
j + Ψk

j−1

[∆x]2

)
− i∆tVj . (25)

With Vj the array of position-dependent potential energy
values. This is a tridiagonal system of linear equations for
solving the arrayΨk+1

j whenΨk
j is known. The Eq. (25) can

be colloquially described as a statement that “the result of
propagating the stateΨk

j forward in time by half a timestep
is the same as that of propagatingΨk+1

j backwards by half a
timestep”.

2.4.2. 2D systems

In the 2D case, the discrete object replacing the wave func-
tion Ψ(x, y, t) is a three-index arrayΨl

j,k, with j, k position
indices andl a time index. In that situation, the equation cor-
responding to (25) is

Ψl+1
j,k − i

4
∆t

(
Ψl+1

j+1,k − 2Ψl+1
j,k + Ψl+1

j−1,k

[∆x]2

+
Ψl+1

j,k+1 − 2Ψl+1
j,k + Ψl+1

j,k−1

[∆x]2

)
+ i∆tVj,k = Ψl

j,k

+
i

4
∆t

(
Ψl

j+1,k − 2Ψl
j,k + Ψl

j−1,k

[∆x]2

+
Ψl

j,k+1 − 2Ψl
j,k + Ψl

j,k−1

[∆x]2

)
− i∆tVj,k. (26)

Here it is assumed that the spatial step size is the same∆x
to bothx andy directions. However, this equation cannot be
written as a tridiagonal system anymore, and this makes the
computational cost of the problem increase very rapidly with
increasing size of the discrete x-y grid. More specifically, the
number of arithmetic operations needed for solving a tridiag-
onal system ofn equations andn unknowns scales asO(n)
while that for a general linear system scales asO(n3).

2.4.3. Operator splitting

One way to circumvent this problem for large discrete sys-
tems is to approximately divide every time step to three parts.
In the first part, the x-direction kinetic energy is accounted for
by solving

Ψl+1/3
j,k − i

4
∆t

(
Ψl+1/3

j+1,k − 2Ψl+1/3
j,k + Ψl+1/3

j−1,k

[∆x]2

)

= Ψl
j,k +

i

4
∆t

(
Ψl

j+1,k − 2Ψl
j,k + Ψl

j−1,k

[∆x]2

)
. (27)
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The second equation is the same for y-kinetic energy:

Ψl+2/3
j,k − i

4
∆t

(
Ψl+2/3

j,k+1 − 2Ψl+2/3
j,k + Ψl+2/3

j,k−1

[∆x]2

)

= Ψl
j,k +

i

4
∆t

(
Ψl+1/3

j,k+1 − 2Ψl+1/3
j,k + Ψl+1/3

j,k−1

[∆x]2

)
, (28)

and the third equation is just a multiplication with a complex
phase factor

Ψl+1
j,k = exp (−i∆tVj,k) Ψl+2/3

j,k . (29)

The justification of doing this is that for∆t ¿ 1, the evo-
lution operatorÛ∆t can be approximately divided to parts

Û∆t = e−iĤ∆t = exp
(
−i∆t(K̂x + K̂y + V̂ )

)

≈ e−iK̂x∆te−iK̂y∆te−iV̂ ∆t (30)

despiteK̂x, K̂y andV̂ not necessarily commuting. This re-
sults from the Trotter product formula [18].

Both (27) and (28) can be written as tridiagonal matrix-
vector equations, and the multiplication (29) is a trivial calcu-
lation. The time step∆t has to be smaller than when solving
the dynamics from (26), but thisoperator splittingmethod
still produces a significant increase in computational speed
for large grids of points(j, k). This operator splitting method
and its modifications have been used, for instance, in [20] in
the context of wavepacket dynamics and in [18] to factorize
operators in quantum statistical mechanics.

2.4.4. Simulation parameters

In the actual simulations, the domain in xy-plane was a
square with opposing corners at(0, 0) and (3.4, 3.4). This
domain is large enough to contain any potential well of area
4.0 and shape given by (5) with 2 ≤ q < ∞. Enough grid
points are also left outside the well for the wave function to
practically reach zero before the boundaries of the domain
(given that the depth of the well isV0 ≥ 2000). The cen-
ter of the potential well is at(x, y) = (1.7, 1.7), and the
spatial discretization contains850 × 850 points. The func-
tion “Solve.tridiag” from the limSolve package was used for
solving the linear systems in R.

The time step was∆t = 10−4 in all cases, and the simu-
lation length on imaginary time axis had to betmax > 1.5 for
good convergence. Once the ground state quantitiesE0 and
〈x |ψ0〉 were calculated by this scheme, the 1st excited state
was obtained in the same way with the ground state com-
ponent removed fromΨ on each time step with projection:
|Ψ〉 7→ |Ψ〉 − 〈ψ0 |Ψ〉|ψ0〉.

The initial stateΨ0
i,j was built from Gaussian functions

in a way that ensures that it wasn’t either even or odd to any
Cartesian direction w.r.t. the center of the potential well. This

was to make sure that the initial condition|ψ(t0)〉 isn’t or-
thogonal to either|ψ0〉 or |ψ1〉.

The eigenvaluesE0 and E1 were calculated forV0 =
2000 and V0 = 20000, and for all values ofq from the
set {2, 4, 6, 8, 10, 15}. After all data pointsE0(V0, q) and
E1(V0, q) were obtained, the function (21) was fitted to all
result sets.

In addition to that mentioned above, the 2nd excited state
energyE2 was calculated for theq = 2 case with both
V0 = 2000 andV0 = 20000. This was done by doing another
simulation where the wave function was orthogonalized with
both |ψ0〉 and|ψ1〉 on each time step. The reason for calcu-
lating this was that the first excited state|ψ1〉 and its energy
eigenvalueE1 can’t be obtained by the shooting method, be-
cause it is not rotation invariant. Comparison of theE2 from
IFD integration to the value solved with Eq. (19) is one way
to verify the correctness of the IFD method applied here.

3. Results

3.1. Ground state energy ofq = 2 and q = ∞ potential
wells

The results for theE0 of square/cubic systems with side
length2, obtained from the graphical solution of Eq. (12),
are on the left side of Table I.

The equivalent results for 2D circular or 3D spherical po-
tential wells, with area4 or volume8 are shown on the right
side of Table I. The former has been obtained with the shoot-
ing method and the latter with Eq. (16).

3.2. QDMC results for one particle in 2D or 3D

For both 2D and 3D, and for every value ofV0 from 50 to
20000, 12 ground state energy data points fromq = 2 to
q = 20 were obtained in the QDMC calculation. To each
point set of differentV0, the exponential function of (20) was
fitted to theE0(q) data. This was done both with all pa-
rametersA0, A1 andA2 free, or withA0 andA1 fixed to
the limiting values ofE0(q = 2) andE0(q →∞) for thatV0

TABLE I. The ground state energy,E0 of a particle of mass1 in a
2D or 3D potential well withq = ∞ (left table) orq = 2 (right
table), area 4.0 and height of potential barrierV0.

V0 E0 (square) E0 (cube) E0 (circle) E0 (sphere)

50 2.0380 3.0570 1.9140 2.7146

100 2.1518 3.2277 2.0102 2.8679

200 2.2378 3.3567 2.0821 2.9617

600 2.3308 3.4962 2.1591 3.0616

1200 2.3696 3.5544 2.1911 3.1028

2000 2.3912 3.5868 2.2087 3.1256

10000 2.4328 3.6492 2.2428 3.1696

20000 2.4430 3.6645 2.2511 3.1801
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FIGURE 2. QDMC ground state energies and 1- or 3-parameter exponential curve fits (20) for one electron in a 2D potential well of shape
(5) and area4.0, and with different values of exponentq. The units have been chosen so that~ = me = 1 and energy is dimensionless.

FIGURE 3. QDMC ground state energies and 1- or 3-parameter exponential curve fits (20) for one electron in a 3D potential well of shape
(6) and volume8.0, and with different values of exponentq. The dimensionless units are again~ = me = 1.

(Table I) and onlyA2 left free. Figures 2 and 3 show both the
E0 data points and the 1- or 3-parameter curve fits to the data
with a potential well of areaA = 4.0 or volumeV = 8.0.

The similarity of the 1-parameter (gray lines) and 3-
parameter (black lines) exponential fits in Figs. 2 and 3 re-
flects how accurately theE0 values calculated with QDMC
agree with those calculated by different means for theq = 2
andq = ∞ limiting cases (Table I).

Main important features in the data of Fig. 2 and 3 in-
clude that theE0 grows monotonically with increasingq in
all cases, and the difference inE0 betweenq = 2 andq = ∞
is in the range of 5-15%. Most of the change in ground state
energy in all data sets has already taken place whenq has
increased to value8 from the original2. The nonlinear fit
parameterA2 was between−0.30 and−0.20 for almost all
data sets.

Figure 4 shows the additional resultsE0(q) for the three
cases of a 3D potential well of smaller volume 2.0. The
graphs look similar to those for larger potential wells, except
for theE0 values being higher. The curve fit parameters of
Figs. 2 to 6 are also included as tables of numerical data in
the Appendix.

FIGURE 4. QDMC E0 values and 3-parameter exponential curve
fits (20) for one electron in a 3D potential well of shape (6) and
volume2.0, and with exponentq as the independent variable.

It is also possible to present the data as graphs withq and
V kept constant andV0 varied. The square root type function
(21) was fitted iteratively toE0(V0) data sets corresponding
to different values ofq. The parametersA0 andA1 in Eq. (21)
were free, and not pre-fixed, in each case. Figures 5 and 6
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FIGURE 5. QDMC ground state energies of one electron as function ofV0 for a supercircular potential well of area 4.0, shape given by
Eq. (5) and several values of exponentq. The square root type curve fits of Eq. (21) are also shown in the figure.

FIGURE 6. QDMC ground state energies of one electron as function ofV0 for a superspherical potential well of volume 8.0, shape of Eq. (6)
and several values of exponentq. The square root type curve fits of Eq. (21) are also shown in the figure.

show the data points and curve fits, withV0 on the horizontal
axis andE0 on the vertical.

3.3. QDMC results for two particles in 2D

The QDMC ground state energies,E0, for two interacting
or non-interacting electrons in a 2D potential well of depth
V0 = 200 or V0 = 20000 are shown in Fig. 7 with the value
of parameters varying from1.0 to 4.0. The area of the poten-
tial well is A = π whens = 1 regardless of what the value
of q is andA = πs2 for other values ofs, to make the results
easier to compare. Forq = 2 it holds thats = r, for q = 8
the relation iss ≈ 1.1162r and forq = ∞, s ≈ 1.1284r
with r as in Eq. 5. More generally, for a given value ofq
and2-dimensional space the connection betweens andr is
s =

√
Vol(r, 2, q)/π with Vol(r, n, q) as in Eq. (7).

In the graphs, there is also a curve fit of formE0(r) ∝
r−2 made for eachq = 8 data point set. The energy eigen-
values of a set of non-interacting particles, in a potential well
deep enough for approximationV0 = ∞ to be valid, are pro-
portional to reciprocal square of the well diameter. From Fig.
7 it is easy to see that this type of function can be quite ac-

curately fitted to theq = 8 data points for noninteracting
electrons, even for the lower well depthV0 = 200, but not
accurately at all to the point sets with Coulomb potential in-
cluded.

The expectation values〈r12〉 are shown as function of
s for potential wells of both depths in Fig. 7. Parabolas
〈r12〉(s) = c2s

2 + c1s + c0 have also been fitted in each
set of data points, and the result is that each point set is close
to being on the same line with|c1| > 50|c2|.

The effect of making the parameterε (meant to pre-
vent division by zero when calculating the electron-electron
Coulomb potential) smaller by a factor of100 was also
tested in theq = 2, V0 = 200 case with two interact-
ing electrons. Figure 8 shows how much difference this
causes in theE0(s) data points. The valueε = 0.001 may
look large, especially when it’s inside the square root in
r12 =

√
(x1 − x2)2 + (y1 − y2)2 + ε, but the graph in Fig.

8 shows that not much improvement can be made by setting
a smaller value.

The Appendix contains the tables of numerical data for
E0 (Fig. 7) and〈r12〉 (Fig. 8) as a function ofr and for
different well depths.
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FIGURE 7. QDMC ground state energyE0 for two interacting or non-interacting (NI) electrons in a supercircular potential well of depth
V0 = 200 (left) or V0 = 20000 (right). The parameterq is the same as in Eq. (5) ands a linear scaling factor, with the area of the supercircle
beingπs2 for a given value ofs. An E0(s) ∝ s−2 nonlinear fit has been made to theq = 8 data points to demonstrate the difference caused
by the presence of Coulomb interaction.

FIGURE 8. QDMC expectation values〈r12〉 for two interacting or non-interacting (NI) electrons in a supercircular potential well of depth
V0 = 200 (left) or V0 = 20000 (right), parameterq as in Eq. (5) ands a linear scaling factor such that the area of the supercircle isπs2 for
a given value ofs.

FIGURE 9. The values ofE0(s), obtained with QDMC, for two
interacting electrons in a potential well withq = 2 andV0 = 200
and with two different values of cutoff parameterε.

3.4. Implicit time stepping results for one particle in 2D

When exponential functions of type (20) were fitted in theE0

andE1 values obtained with the IFD method and imaginary
time propagation, the parametersA0, A1 andA2 of Eq. (20)
were found to be as in Table II. The data pointsE0(q) and
E1(q) are shown with the nonlinear fits in Fig. 10.

TABLE II. The parametersA0, A1 andA2 of (21), with the non-
linear fit done toE0(q) andE1(q) values obtained with finite dif-
ference imaginary time propagation for a single electron in a 2D
potential well of area4.0, depthV0 and shape given by (5).

eigenvalue A0 A1 A2

E0 (V0 = 2000) 2.3896 2.2072 -0.25035

E1 (V0 = 2000) 5.9779 5.6029 -0.22288

E0 (V0 = 20000) 2.4366 2.2448 -0.25274

E1 (V0 = 20000) 6.0957 5.6985 -0.22526
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FIGURE 10. Energy eigenvaluesE0 (left) andE1 (right) for one electron in a 2D potential well of shape (5), area4.0 and depthV0 = 2000
or V0 = 20000. The results were calculated by imaginary time propagation done with implicit finite differencing and operator splitting. In
the left image, the equivalent QDMC results are also plotted for comparison.

The A0 values (limit of E at q → ∞) for the ground
states ofV0 = 2000 andV0 = 20000 are2.3896 and2.4366.
When these are compared to values in Table I,2.3912 and
2.4430, the error in the first case is less than0.1% and that in
the second, less than0.3%. The corresponding ground state
A1 values are2.2072 and2.2448, representing the limit of
E0 for q → 2. The equivalent values in Table I, calculated
with the shooting method, are2.2087 and2.2511. The dif-
ference between the IFD and shooting method values is less
than0.3% in both.

TheA0 values for the first excited state, calculated with
IFD method, were5.9779 and6.0957. The 1st excited state
energyE1 can also be calculated for theq → ∞ system
with Eqs. (12) and (13), and the results forV0 = 2000 and
V0 = 20000 are5.9779 and6.1073. The differences between
the IFD results and those from (12) and (13) are here less than
0.2%.

The value for the second excited state energyE2 from
the IFD simulations done forq = 2 case were11.6338 for
V0 = 2000 and11.8318 for V0 = 20000. When a shooting
method calculation was done for these two systems with a ro-
tation invariant 2nd excited state, the results were11.635 for
V0 = 2000 and11.861 for V0 = 20000. Here the percentual
error is again less than0.3%. The consistency betweenq = 2
andq = ∞ results obtained with different methods makes it
seem likely that the results of Fig. 10 are close to correct also
for values ofq between the two extremes.

4. Conclusion

In this work, the ground state energies of potential wells of
Lamé circle or Laḿe sphere shape were calculated for a large
number of combinations of well depthV0 and the exponentq
in Eq. (6). In most calculations the parameterr of (6) was
defined as a function ofq, r := r(q), to keep the area or vol-
ume of the potential well at aq-independent constant value.
It was also shown that simple functions of 2 or 3 parameters

can be accurately fitted in theE0(q, V0) data points, but there
is no obvious way to show mathematically that the function
E0(q) could be written as a sum of an exponential plus small
correction terms. Based on the more accurate data points in
Fig. 10, it does not even seem completely impossible that the
exponential dependence ofE0 on q with V0 andV kept con-
stant could be the exact solution of the problem.

The most surprising fact in this was that the multiplier
A2 in the optimal exponential function fit seemed to have a
similar value of−0.30 ≤ A2 ≤ −0.20 for all well depths,
volumes and both in 2D and 3D. Furthermore, most of the
variation in the value of that parameter appeared to be ran-
dom numerical error, because the value didn’t consistently
change to either direction when the well depth or volume was
altered. The variation in those values was greater for the 2D
potential wells for which the calculations were done with a
smaller number of random walkers. A simple back-of-the-
envelope way to approximate theE0 for someV0, V andq
could be to set theA0 andA1 of (20) to theE0(q = ∞) and
E0(q = 2) values obtained from the Eqs. (12) to (16) and
guess thatA2 ≈ −0.24.

In the case of 2D potential wells, calculations were also
made for the first excited state energyE1 of one electron, and
the ground state energyE0 and expected electron-electron
distance〈r12〉 of two electrons confined in a 2D Lamé circle.
The value of〈r12〉 was found to increase almost linearly as a
function of a scaling parameters.

In the cases where it was possible to compare results cal-
culated by different means for the same system, there was a
good agreement between QDMC, IFD imaginary time propa-
gation, shooting method and graphical solution results. Espe-
cially the consistency of the QDMC and more accurate IFD
results in the left image of Fig. 10 is a good sign that the
2D QDMC results are correct enough despite the significant
random error in individual data points (Fig. 2).

The results are an extension of those in Ref. [10], where
only 2D potential wells of infinite depth were considered. As
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remarked in that publication, this kind of results can be used
for estimating the cube- or spherelikeness of a real physical
potential well system, such as an electron in a quantum dot or
a vacant site of a crystal lattice. Another possible application
of the content of this article could be as an example problem
for students of computational chemistry and physics.

One problem related to the material in this article is the
behavior of twooppositelycharged particles in a 2D or 3D
potential well. This could be described as a hydrogen atom
[21, 22] or positronium [23] being compressed by an exter-
nal force, and the interparticle distance〈r12〉 would approach
some finite limiting value with increasing scaling parame-
ters.

It has probably been known since the early years of quan-
tum mechanics that a system of a particle interacting with a
3D spherical potential well doesn’t necessarily have even one
bound state, while one in a rectangular potential well always
does. The existence of a bound state in the spherical well
depends on whether itsV0 and radius are large enough. One
unanswered question is whether there exists some finite min-
imum value of the exponentq in Eq. (6) that guarantees the
existence a bound state for a potential well with that bound-
ing surface. One possible way to heuristically probe the situ-
ation would be to add more data points of lowV0 to the data
in Figs. 5 and 6 and extrapolate toV0 → 0, but an actual
mathematical proof would be a completely different task.

Appendix A

This Appendix contains tables of numerical data related to
the results presented in the main text. Tables III and IV con-
tain the values of parametersA0, A1 andA2 obtained when
fitting the exponential function of Eq. (20) to the data points
of E0 as function ofq with V0 andA = 4.0 or V = 8.0 kept
constant. The parameters were found with the “Non-linear
curve fitting” functionality of the Linux application Grace-
5.1.25, using at least 15 iterations. The 1-parameter fit was
done withA0 andA1 fixed to the valuesE0(q = ∞) and
E0(q = 2) calculated with the non-algebraic equations of
Subsec. 2.1, and the 3-parameter fit with all parameters being
variable. This data is for the systems with only one electron

TABLE III. The numbersA0, A1 andA2 of Eq. (20) obtained in the
three- (left) and one-parameter (right) fits to the data pointsE0(q)
of one particle in a 2D Laḿe circle potential well of area4.0.

V0 A0 A1 A2 V0 A2

50 2.0353 1.9259 -0.2172 50 -0.2322

100 2.1553 2.0077 -0.2136 100 -0.2206

200 2.2387 2.0894 -0.3030 200 -0.3252

600 2.3239 2.1613 -0.3209 600 -0.2979

1200 2.3783 2.2010 -0.1680 1200 -0.1989

2000 2.3978 2.2070 -0.2398 2000 -0.2567

10000 2.4259 2.2533 -0.2438 10000 -0.2385

20000 2.4428 2.2613 -0.1931 20000 -0.2059

TABLE IV. The numbersA0, A1 andA2 of Eq. (20) obtained in the
three- (left) and one-parameter (right) fits to the data pointsE0(q)
of one particle in a 3D Laḿe sphere potential well of volume8.0.

V0 A0 A1 A2 V0 A2

50 3.0568 2.7303 -0.2341 50 -0.2248

100 3.2389 2.8494 -0.2320 100 -0.2344

200 3.3644 2.9857 -0.2205 200 -0.2478

600 3.5278 3.0599 -0.2060 600 -0.2386

1200 3.5523 3.0950 -0.2394 1200 -0.2324

2000 3.6118 3.1186 -0.1973 2000 -0.2171

10000 3.6214 3.1539 -0.2866 10000 -0.2393

20000 3.6582 3.1786 -0.2545 20000 -0.2464

TABLE V. The numbersA0, A1 andA2 of Eq. (20) obtained in
the three-parameter exponential fit to the data pointsE0(q) of one
particle in a 3D Laḿe sphere potential well of smaller volume2.0.

V0 A0 A1 A2

600 8.5132 7.4299 -0.2790

2000 8.8176 7.7465 -0.2459

20000 9.0608 7.8903 -0.2851

TABLE VI. The parametersA0 andA1 of Eq. (21), with the non-
linear fit done to QDMCE0 data points of one electron in a 2D
(left) or 3D (right) potential well of shape (5) or (6), area 4.0 (2D)
or volume 8.0 (3D).

q A0 A1 q A0 A1

2 2.2735 2.4469 2 3.2149 3.3093

4 2.3461 2.8354 4 3.3835 3.8694

6 2.3924 2.8191 6 3.5055 4.2434

8 2.4025 2.7389 8 3.5850 4.3722

10 2.4350 3.0404 10 3.5948 4.0891

12 2.4516 3.1079 12 3.6685 4.5119

17 2.4478 2.8764 17 3.6755 4.6182

20 2.4487 2.9921 20 3.6769 4.4172

in the 2D or 3D potential well, and corresponds to the results
of Figs. 2 and 3. The Table V contains the parametersA0,
A1 andA2 for theV0 = 600, V0 = 2000 andV0 = 20000
3D potential well of smaller volumeV = 2.0, with all three
parameters being free (Fig. 4).

The Table VI contains the parametersA0 andA1 from the
fitting of the square root type function (21) to the data with
E0 values as function ofV0 and withq andV kept constant.
The graphs of these functions and the associated data points
are shown in the Figs. 5 and 6 of the main article.

The Tables VII and VIII contain theE0 values of a sys-
tem of two electrons in a potential well of depthV0 = 2000 or
V0 = 20000, with the parameters (and the surface area of the
2D well) being variable. Parameters is defined ass=

√
V/π,
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TABLE VII. The ground state energy of two interacting or non-
interacting electrons in a 2D potential well of depthV0 = 200 and
shape given by Eq. (5) with q = 2, 8 or∞ andr defined as function
of s so that the area of the well isπs2.

s Non-interactingE0 InteractingE0

q = 2 q = 8 q = ∞ q = 2 q = 8 q = ∞
1.0 5.289 5.581 5.630 7.440 7.750 7.864

1.5 2.444 2.639 2.597 3.837 3.954 4.079

2.0 1.358 1.429 1.496 2.395 2.553 2.525

2.5 0.875 0.945 0.924 1.671 1.734 1.839

3.0 0.621 0.650 0.654 1.279 1.301 1.350

3.5 0.449 0.515 0.494 0.990 1.016 1.040

4.0 0.366 0.357 0.368 0.812 0.845 0.845

TABLE VIII. The ground state energy of two interacting or non-
interacting electrons in a 2D potential well of depthV0 = 20000
and shape given by Eq. (5) with q = 2, 8 or ∞ andr defined as
function ofs so that the area of the well isπs2.

s Non-interactingE0 InteractingE0

q = 2 q = 8 q = ∞ q = 2 q = 8 q = ∞
1.0 5.780 6.093 6.300 7.963 8.450 8.576

1.5 2.475 2.717 2.778 3.998 4.238 4.289

2.0 1.462 1.529 1.548 2.472 2.585 2.628

2.5 0.935 0.983 1.006 1.727 1.831 1.846

3.0 0.623 0.703 0.702 1.286 1.342 1.363

3.5 0.458 0.480 0.497 1.013 1.066 1.072

4.0 0.348 0.361 0.388 0.836 0.847 0.848

TABLE XIX. The electron-electron distance expectation value
〈r12〉 of two interacting or non-interacting electrons in a 2D po-
tential well of depthV0 = 200 and shape given by Eq. (5) with
q = 2, 8 or∞ and scaling factors as in first column.

s Non-interacting〈r12〉 Interacting〈r12〉

q = 2 q = 8 q = ∞ q = 2 q = 8 q = ∞
1.0 0.6697 0.6561 0.6540 0.7391 0.7262 0.7205

1.5 1.0381 1.0310 1.0155 1.1607 1.1571 1.1352

2.0 1.3901 1.3862 1.3800 1.5883 1.6066 1.5700

2.5 1.7640 1.7498 1.7674 2.0551 2.0651 2.0417

3.0 2.1498 2.1329 2.0900 2.5454 2.5502 2.4979

3.5 2.4908 2.4883 2.4797 2.9949 2.9614 2.9740

4.0 2.8618 2.8084 2.8041 3.4793 3.4610 3.4022

TABLE X. The electron-electron distance expectation value〈r12〉
of two interacting or non-interacting electrons in a 2D potential
well of depthV0 = 20000 and shape given by Eq. (5) with q = 2,
8 or∞ and scaling factors as in first column.

s Non-interacting〈r12〉 Interacting〈r12〉

q = 2 q = 8 q = ∞ q = 2 q = 8 q = ∞
1.0 0.6310 0.6209 0.6067 0.6854 0.6815 0.6728

1.5 0.9948 0.9776 0.9577 1.1115 1.1125 1.0952

2.0 1.3705 1.3608 1.3280 1.5655 1.5470 1.5145

2.5 1.7580 1.7177 1.6865 2.0356 2.0113 1.9551

3.0 2.0952 2.0799 2.1025 2.4730 2.4597 2.4444

3.5 2.4779 2.4407 2.3883 2.8936 2.9318 2.8509

4.0 2.8133 2.7750 2.8167 3.3847 3.3959 3.3985

s =
√
V/π, with V the area of the well. The same letterV

as for the volume of a 3D potential well is used here because
surface area is just its 2-dimensional equivalent. The data of
Tables VII and VIII is the same as used for producing Fig. 7
of the article.

The expectation values of the electron-electron distance,
in the ground state of two electrons in the 2D potential well,
are shown as a function ofs in Tables IX and X. Figure 8 of
the main article contains the same results. The quantity〈r12〉
increases almost linearly as a function ofs, but this property
would probably not hold for small radiis < 0.5 when the
confining force is not enough to keep both electrons inside
the potential well.
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