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Quantum mechanics of particles trapped in a Lang
circle or Lamé sphere shaped potential well
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Ground state and 1st excited state energies and wave functions were calculated for systems of one or two electrons in a 2D and 3D potential
well having a shape intermediate between a circle and a square or a sphere and a cube. One way to define such a potential well is with a step
potential and a bounding surface of fotm? + |y|? +|z|? = |r|?, which converts from a sphere to a cube whencreases fror to infinity.

This kind of geometrical object is called a Larsurface. The calculations were done either with implicit finite difference time stepping in

the direction of negative imaginary time axis or with quantum diffusion Monte Carlo. The results demonstrate how the volume and depth
of the potential well affect thé&, more than the shape paramejatoes. Functions of two and three parameters were found to be sufficient

for fitting an empirical graph to the ground state energy data points as a function of wellideptiexponeny. The ground state and first

excited state energy of one particle in a potential well of this type appeared to be very closely approximated with an exponential function
depending ory, when the well depth and area or volume was kept constant while changing the valu€ref model is potentially useful

for describing quantum dots that deviate from simple geometric shapes, or for demonstrating methods of computational quantum mechanics
to undergraduate students.
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1. Introduction p is the radius of the circular or spherical potential well and
) . _ L is the side length of the cubic potential well. The vari-

The model of an electron or some other particle confined ingpje; is just the distance from the origin in 2D or 3D space:

side a potential well of some shape, depth and volume is use- — | /2212 or r = /22 + 42 + 22. The functionV

this include color centers in crystalline materials [1, 2], quanyyhich the energy eigenvalues and eigenfunctions are calcu-
tum dots in nanotechnology [3, 4], pi electrons in conjugatedgied

organic molecules [5] and electron bubbles in liquid ammo- h? _,

nia or liquid helium [6-8]. Despite the confinement of the “omY Y00 + V)¥(x) = By (x). “)
electron being a result of complex multi-particle interactions,Herex is a two- or three-dimensional vector.

the particle-in-a-box model often produces at least qualita-

tively correct results. 1.2. Lameé circles and spheres

1.1. Potential wells with simple geometry In real-world situations it can not always be assumed that the
electron is confined to an exactly spherical or cubic space.
Often a real-world object can be modeled with some excepThe choicel;; = ~ is another crude approximation. A logi-
tionally simple physical system. An electron in a potentialcal improvement to the model would be to define 2D curves
well with the shape of an exact cube or a sphere, and the paind 3D surfaces with a shape between a square and a circle
tential energyl” stepping abruptly at the well boundary is one or cube and a sphere. One geometrical object of this type is
example. In that situation, the potential energy of the electrofhe Lane circle (or supercirclg
is (spherical case)

felt it _ g s
V(r) =VoO(r — p), 1) at T pe T
or (cubic case) and the Lard sphere (osuperspherg
V(e.y,2) = VoO(max([el, yl.|2]) - /2. (2) G O ©)
ad ba cd

Here thelj is the depth of the well® is the Heaviside theta

function Yet another name for these curves and surfacesuis

0, whenz < 0, perquadrics The objects described by these equations, with
O(z) = 1, whenz >0 ° B a—b=c=1 (asin all cases studied in this article), become
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FIGURE 1. Wolfram Mathematica 11.2.0 plots of the surface definedd§y + |y|? + |z|? = r? for valuesq = 0.5, ¢ = 1.0 ¢ = 1.5,
q = 2.5, ¢ = 3 andq = 4 from left to right and up to down. The parametehnas been set to value 1.

a circle or sphere wheip = 2 and a square or a cube when octahedron, dodecahedron or icosahedron instead of a cube)
q — oo. The parameter > 0 is the radius of the circle or [11,12], and it can be expected that the energy eigenvalues of
sphere that these shapes become when 2. As a general an electron in that kind of potential well approach the spher-
result, am-dimensional solid of this shape has volume [9] ical case when more faces are added to the polyhedron.

RL(1+1/g9)"
rl+n/q)’

whereT is the gamma function. To produce a set of surfaced® Practical system that can be modelled as one or more elec-

described by@), having different values of but same con- trons in a 1 to 3-dimensional potential well is the quantum
stant enclosed volumg, the parameter in Eq. [6) has to be dot (QD), which is a nanometer-scale semiconductor particle
made a function of: ’ having an absorption/emission spectrum similar to a system

of electrons confined in a potential well of equivalent size.

Vol (r,n, q) = (2r) (7)  1.3. Experimental methods

Vv An electron in a large QD has a lower ground state energy
ri=r(q) = \3/ Vol(1,3,q)’ (8)  than one in a small QD, just like an electron in a short versus
o long 1D square well. One complication in this theory of QDs
or the equivalent for a 2D Laéncircle. is the —possibly position-dependent— difference of electron
3D surfaces of shapes given by E6) witha = b = ¢ = and holeeffective massdse their normal value or the value in
1 are shown in Fig. 1. bulk semiconductor [13]. This kind of nanoparticles can be

The system with a potential well bounded by a l&am produced by chemical or mechanical means such as molecu-
curve has been studied earlier by Betaal. [10], but only  lar beam epitaxy or chemical vapor deposition [14], and their
for the 2D case and with infinitg,. In this article, the results shape can be probed by methods such as measuring their spin
will be extended to the equivalent 3D systems with severahnd parity oscillations in a magnetic field [15]. Information
finite values ofl/; allowed. about the effect of shape changes, as in the model systems of

A similar method of analytical geometry exists for con- this article, on the electronic spectrum of the system can also
verting a sphere continuously intoRdatonic solid(regular  be utilized for quantum dot shape determination. Conversely,
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this also means that QDs with desired spectral properties cdit this particular problem. The code utilizes atomic-like units
be produced by tuning their shape in an appropriate way. with Planck constant and electron mass sette= m, =
1. In the two-electron calculations, the Coulomb constant
1.4. Computational approach (47e)~* and the elementary charg@lso have valug. The
implicit finite differencing with an imaginary time coordinate
The methods applied in this article are numerical, withwas done with a script written in R language. There the unit

ground state and first excited state energies obtained witgystem is also one where both length and energy are dimen-
guantum diffusion Monte Carlo (QDMC) or Implicit finite sjonless.

differencing (IFD) on imaginary time axis. The system is a
2D or 3D potential well with boundary described by Eds). (  2.1. Transcendental equation and shooting method for
and 6). The parameters, b andc all have valuel , so the g=2andq =
well is not oblong in any particular direction. The system
contains one or two confined electrons. A suitable nonlinea?-1.1.  Solution with non-algebraic equations fo+= 2 and
fitting function is sought for the data points of ground state q=
energyE, as a function ofy andV;. This is done to make it
easier to estimate thg, for other values of;, V; by interpo-
lation. With spectroscopic data and these results, it may b
possible to estimate whether an electron-trapping cavity in
real material is more close to sphere or cube in shape.

Both the QDMC and IFD methods for finding the ground

The calculation of the energy eigenvalues for a finite square,
ubic or spherical potential well is described in most basic
M textbooks such as [17]. The method is based on the

graphical solution of a non-algebraic (transcendental) equa-

tion. For a 1D square well with potential energy

state are based on the time evolution of an initial state Vi) = —Vo, when|z| <§ (11)
|W(0)) = colto) + c1lth1) + calio) ... written as a linear )= 0, whenlz|>% ~
combination of the eigenstates &f, |¢),,): Lo
the equation is
i L
R (2) = coe™ ) atan (%) =5 (12)
+ere” ) +epe T 2 Moy . (9)  for the even states such as the ground state, and

Here itis assumed thaf has no explicit time dependence o cot (O‘L) =—p (13)

in Schibdinger picture. Defining an imaginary time coordi- 2

nate with equatiom = —ir, the time evolution interms af  for the odd states like the 1st excited state. The quantities

IS andg are defined as
— —FEot/h 2 1/2
W (7)) = coe™ BT/ ysg) o= (h”;% +E)) and
+ere PPy ) + coe TP M) o (10) o
2m
Provided that theE, form an increasing sequence B = (—th> : (14)

of positive numbers, the state vectpl(7)) of (10) ap-
proaches something proportional t@,) when r —
oo. This allows the numerical calculation of the groun

These equations can be solved graphically after a straight-
d forward conversion to units whefe= m = 1 and to the con-
state wave functiongo(x) = (x|o). The eigen- vention of V' being0 inside the well and/, putside it. The
value E, can be obtained by following the expecta- _gr(_)und state energy of a square 2D or cub_lc 3D_potenpal well
tion value (\If(r)|ﬁ]|\1/(r)>/(\1/(7-) | (r)), or the value of is just2 or 3 times theFE) calculated for this 1-dimensional

I:[\IJ(X, 7)/¥(x, 7) at some constant positiaq during the system. Also, the first excited state enefgyof a 2D square-
simulation. shaped potential well with side lengthis the sum ofF;, and

The difference between the QDMC and IFD methods is1 Of the 1D potential well of lengtth..
that in QDMC the diffusive imaginary-time dynamics is mod- 1€ €guation for solving energy eigenvalues of a 3D
elled as a system of random walkers with a source term aSPherical potential well,

lowing creation and destruction of them. The IFD method Vi) = —V,, whenr <a 15
calculates actual wave functions that do not have to be real (r) = 0, whenr>a’ (15)
and positive valued. .
is of form

. Kcot Ka = —), (16)
2. Numerical methods with
The diffusion Monte Carlo calculation was done with a C++ 2m 12 d omE\/?
source code described in [16] and appropriately modified to & = | 7z (£ + Vo) and A= (——5 - (A7)
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However, Eq./16) is only for rotation invariant eigen- the effect of volume change on the ground state energy. In
states with zero angular momentum, of which the groundhe )V = 2.0 calculation, the time step wast = 5 x 1075,
state is one example. For numerical work, these quantitiethe maximum number of walkers was 90000, length of simu-
have to be made dimensionless and shifted to make the intéation was9.0 time units and the energy update parameter
rior of the potential well hav® = 0 as defined in this article. had valuel00.0.

In preliminary calculations, it was seen that an exponen-

2.1.2. Shooting method tial function of type

For the 2D circular potential well, the corresponding equation

contains special functions, and the result can more easily be E — A — (An — A eA2(a=2) 20
obtained with theshooting methodbr the L = 0 eigenstates. 0(@) 0~ (4o Ve (20)
The Schédinger equation can be cast into polar coordinates

R (02 10 1 62
B <8r2+r8r+r2692>¢(r’0)

fits well in the data points oF, as a function ofy, and a
rational square root function

2m
Ay
— = E =A)— — 21
+ VOG)(T P)d’(ﬁ 9) E¢(Ta 0)7 (18) O(VO) \/‘70 ( )
which simplifies for the rotation invariant ground state

to the data points oF, as a function ofl. Making Eq.
_ﬁi (52 + 15) W(r) (20) more complex by converting it to a sum of two exponen-
2m \or?  ror tials did not add any more accuracy in the fit. Both kind of

+VoO(r — p)oo(r) = Eb(r). (19) graphs (as a function af or V) can be used for estimating

the ground state energy for intermediate valuegaridV;, by

The equation above can be solved numerically by changinterpolation. There is no obvious theoretical reason for the
ing to dimensionless variables and choosing a trial value of2o(Vo) and E(g) to be close to these functions; the reason
F and a small number < 1. Then it is integrated by finite for calculating the nonlinear fit is just to predict the behavior
difference starting from = ¢ (notr = 0, to avoid problems  of the functions between calculated data points.
with the singular multiplierd /r in the polar Laplacian) with The results were plotted and the iterative nonlinear fits
initial conditionsi(e) = 1 andy’(e) = 0. The value of calculated with the Linux application Grace-5.1.25. The
E is adjusted until the radial wave function doesn’t blow upobtained values of fitting parameters, A; and A, were
to negative or positive infinity near the potential steg- p. recorded for all cases. Another way to do the curve fit is to
The smallest value o with this property can be taken as fix Ay and A; to values predicted by a transcendental equa-
an approximation fo&,. The same procedure can also betion or with the shooting method, and leave odly free.
applied for finding the energids,, of other rotation invariant
eigenfunctions of the Hamiltonian, but the first excited state

with energyFE; is not one of those. 2.3.  Quantum DMC for two particles in 2D

2.2. Quantum DMC for one particle in 2D and 3D 2.3.1. Basic parameters

The diffusion Monte Carlo results for both 2D and 3D were

calculated with values df < ¢ < 20 and50 < V; < 20000. The problem of two electrons in the same potential well was

The result for each combination gfandV;, was calculated Nnumerically investigated only in 2D to limit the computation

4 times and averaged to one data point. The time step lengiime. Instead of having only andVj, as parameters, the area

in both 2D and 3D simulations wast = 10—5’ the energy of the potential well was also varied to see its effectEU]

update parameter was = 40 and the maximum allowed The maximum number of random walkers in these simula-

number of random walkers wa$® (2D) or 9 x 105 (3D). tions was 30000 and the time step vas 10~%. The energy

Simulated time length was 20 units, and 1/4 from the beginupdate parameter needed to have higher value, upitn,

ning of the energy output file was discarded before averagingian in the 1-particle version to give better accuracy.

the remaining energy values to an estimateHAgr The value ofg in these results was eith2y 8 or co. The
The results were plotted as graphs where eitfigor ¢ well depth was/; = 200 or 20000. The size of the potential

was kept constant and the other varied. Particle mass was s&tll was parametrized with a variabdewith the area of the

to 1 in all calculations. The area of a 2D potential well was potential well beingr whens = 1 andxs? for other values

kept constant atl = 4 when changing the value of the expo- of s. In other wordsg is a multiplier of all linear dimensions

nentq, and the volume of the 3D potential well was kept at of the system. The parametewas varied froms = 1to 4

V = 8. This was done by defining= r(¢) as in 8). in steps of).5. In addition to the ground state energy, the
Calculations for well depths of 600, 2000 and 20000 weranean electron-electron distaneg was extracted from the

also done similarly for a 3D well of volumg = 2.0 to see  output wave function.
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2.3.2. Electron-electron interaction energy tial energy term as irdj, the equation is

. k+1 k+1 - k+1
The position representation Hamiltonian of two interacting gi+1 _ @ o, ( Yor1 —2%;" + WALV + W55 ok
electrons confined in a supercircular potential well is J 4 [Az]? J

H=—

(V% + v%) + Veont + Tres’ (22) [Az]?

h? €2 i (Y2
2me TEQT 12 4

) —iAtV;.  (25)

where theV2 and V2 are two-dimensional Laplacians act- ~ With V; the array of position-dependent potential energy
ing on the coordinates of the 1st and 2nd electron. The opvalues. This is a tridiagonal system of linear equations for
eratorVzon represents the confining potential that jumps bySolving the array*! whenw* is known. The Eq/25) can
amountV;, when an electron crosses the boundary of the sub€ colloquially described as a statement that “the result of
percircle. The term proportional t@,) ! is the electron-  Propagating the staté} forward in time by half a timestep
electron interaction energy, and becomes jifgh)~! in IS the same as that of propagatii§ ™' backwards by half a
the dimensionless calculations with atomic units.z{fy,  timestep”.

are the coordinates of first electron angl y, are those of

second electron, the value used for distanggis r, =  2-4.2. 2D systems

— x9)? —y2)? +¢€. Thee here is some small . . .
V(w1 —w2)? + (g1 — o)’ + e Thee : In the 2D case, the discrete object replacing the wave func-
positive constant that prevents division by zero in the calcu;

s, n s work, 5 vlue was- 10 2 anconesim % X7 8 S eetes srav, b L poston
tion was done withk = 1075 to verify that this doesn't affect ' ' q

the values off significantly. responding to25) is

. A system ofionly two glectrons does not require any spe- Pl i At \Ifijllk — 2\112;1 + \Ilétllk
cial care to antisymmetrize the ground state wave function, *jr = 4 [A]?
because the two electrons can have opposite spins.

+1 l l
Wik — 2050 U _ gl
o . . S 2 T AtV p = gy,

2.4. Implicit finite-differencing for one particle in 2D [Az]

. l l l
2.4.1. Description 4 Pag Vipie =250 + W5 1

4 [Az]?
In the simplest possible case of a 1D quantum system, the . . .
time-dependent Scbdinger equation is made discrete by re- Vi1 — 2% + Py

— AtV k. 26
placing the wave functionl'(z,¢) with an array¥*. The [Ax]? ) Yk (26)

j is a position index and: a time index. If the coordi-

nate system is defined so that the interesting part of the sys- He€reitis assumed that the spatial step size is the same
tem is on the spatial interval € [0, zme.] and the tem- to bothx andy directions. However, this equation cannot be

poral intervalt € [0,%m.], then the equivalence is like written as a tridiagonal system anymore, and this makes the
\Ifj o W(jAz/M,kAt/N). Here theM is the maximum computational cost of the problem increase very rapidly with

value of the position indexV the maximum value of time increasing size of the discrete x-y grid. More specifically, the
index, Az = Zmaq /M andAt = tya/N. number of arithmetic operations needed for solving a tridiag-

onal system oh equations ane, unknowns scales a8(n)

As described in [19], th€rank-Nicolson methoid a way while that for a general linear system scale€a?).

to turn the discrete version of the Sédinger equation into
an implicit scheme that preserves unitarity. This is done b
approximating the evolution operatbin; with the Cayley’s

form One way to circumvent this problem for large discrete sys-

% 43. Operator splitting

(s — o—ifIAt 1-— %iﬁAt (23) tems is to approximately divide every time step to three parts.
At =€ 1 + LiAAY In the first part, the x-direction kinetic energy is accounted for
2 by solving
where the units have been chosen so that 1. Noting that
Uhtt — U5, U*, this approximation leads to the result , 1+1/3 1+1/3 I+1/3
p Una¢ P75, this approximati u G, Wiy =20+
1. 1. 3k 4 [Ax]?
(1+ 5¢HAt)\I{’;+1 =(1— iiHAt)\I/f. (24)

- vl —2wl 4 Ul
:W§7k+;At< e PN .1))

~ 2
If the operatorH is simply a sum of a kinetic and poten- |Az]
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The second equation is the same for y-kinetic energy: was to make sure that the initial conditidn(to)) isn’t or-
thogonal to eithefyy) or |¢1).

; I3 _oplt2/3 | gt/ The eigenvaluesy, and E; were calculated foly =

SAp | Zokt J.k Jk—1 2000 and V, = 20000, and for all values of; from the

4 ( [Az]? ) set{2,4,6,8,10,15}. After all data pointsEy(Vj,q) and

E1(Vh, q) were obtained, the functioi2l) was fitted to all

result sets.

In addition to that mentioned above, the 2nd excited state
energy E», was calculated for thg = 2 case with both
and the third equation is just a multiplication with a complexy;, = 2000 andV,, = 20000. This was done by doing another
phase factor simulation where the wave function was orthogonalized with
I+2/3 both |4y} and|¢1) on each time step. The reason for calcu-
gk (29) lating this was that the first excited stdtg ) and its energy
eigenvaluely; can't be obtained by the shooting method, be-
cause it is not rotation invariant. Comparison of #iefrom
IFD integration to the value solved with EA.9) is one way
to verify the correctness of the IFD method applied here.

1+2/3
\I]j,k -

. it/ _oghtl/3 | gltl/3
_ ol 4 gk+1 gk Gk—1
=W, + EAt < e , (28)

WAL = exp (—iAtV ) U

The justification of doing this is that fakt < 1, the evo-
lution operatoil/a,; can be approximately divided to parts

UAt _ efiHAt = exp (—iAt(Kz + f(y + V))
o o iR At —iR AL —iV At 30) 3. Results

despiteK,, K, andV’ not necessarily commuting. This re- 3-1.  Ground state energy oy = 2 and ¢ = oo potential
sults from the Trotter product formula [18]. wells

Both (27) and 28) can be written as tridiagonal matrix-
vector equations, and the multiplicatidg] is a trivial calcu-
lation. The time stef\¢ has to be smaller than when solving
the dynamics from26), but thisoperator splittingmethod

st produges a sig.nific‘ant incr_ease in comp_ut_ational Spee?ential wells, with area or volume8 are shown on the right
for large grids of point¢y, ). This operator splitting method . side of Table I. The former has been obtained with the shoot-

and its modifications have been u§ed, for llnstance, in [20] 'ri‘ng method and the latter with EL6).
the context of wavepacket dynamics and in [18] to factorize

operators in quantum statistical mechanics. 3.2. QDMC results for one particle in 2D or 3D

The results for theF, of square/cubic systems with side
length 2, obtained from the graphical solution of EQ.2],
are on the left side of Table I.

The equivalent results for 2D circular or 3D spherical po-

2.4.4. Simulation parameters For both 2D and 3D, and for every value & from 50 to

. . o 20000, 12 ground state energy data points frgm= 2 to
In the actual simulations, the domain in xy-plane was & _ 9 \yere obtained in the QDMC calculation. To each
square with opposing corners @ 0) and(3.4,3.4). This

o ; , point set of different/,, the exponential function o20) was
domain is large enough to contain any potential well of areg;iaq to the Eo(q) data. This was done both with all pa-

. < ) . .
mores s o o ke el ox v o T, s S0 e, o wih o sy e
; ) “the limiting values off; (¢ = 2) andEy (¢ — oo) for that}

practically reach zero before the boundaries of the domain
(given that the depth of the well &, > 2000). The cen-
ter of the potential well is atz,y) = (1.7,1.7), and the  TapLe I. The ground state energfi of a particle of mass in a
spatial discretization contairg50 x 850 points. The func-  2p or 3D potential well withy = oo (left table) org = 2 (right
tion “Solve.tridiag” from the limSolve package was used for table), area 4.0 and height of potential barfigr
solving the linear systems in R.

The time step wadt = 10~* in all cases, and the simu-

Vo Ey (square) Ej (cube) Ejy (circle) Eo (sphere)

lation length on imaginary time axis had tohg,, > 1.5 for 50 2.0380 3.0570 1.9140 2.7146
good convergence. Once the ground state quantifieand 100 2.1518 3.2277 2.0102 2.8679
(x | o) were calculated by this scheme, the 1st excited state 200 2.2378 3.3567 2.0821 2.9617
was obtained in the same way with the ground state com- go 23308 3.4962 21591 3.0616
|p\IclJ>nent|\rIJe>m0\</zd |f(1?;?[, (;n each time step with projection: 1200 23696 3.5544 21911 31028

— — 0 0)-

The initial state¥? ; was built from Gaussian functions 2000 23912 3.5868 2.2087 3.1256
in a way that ensures that it wasn't either even or odd to any 10000 2.4328 3.6492 2.2428 3.1696
Cartesian direction w.r.t. the center of the potential well. This 20000 2.4430 3.6645 2.2511 3.1801
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g oF o Fﬂﬁ o QD3*C-‘j(w“-“ § Q  QDMC.V,=2000
& . LI & X QDMC, V,=20000
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parameter exp. it
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FIGURE 2. QDMC ground state energies and 1- or 3-parameter exponential curv&djito one electron in a 2D potential well of shape
(5) and areat.0, and with different values of exponeqt The units have been chosen so that m. = 1 and energy is dimensionless.

B2 2
z 5
2 2
2 8 3 o QDMC, V,=600
2 2 o QDMC, V,=2000
S ] A ODMC, V,=20000
a S —— 3-parameter exp. fit, V=600 H
28 .‘I ‘”‘\\.’ - Fparameter exp fir \'I—*llﬂﬂ
= — = 3-puramerer exp, M, ¥, =100 R o r W= H
s X fit, V=200 — — 3-parameter exp. fit, V,=20000
21 . exp. fit, V=50 ——  I-parameter exp. fit,
— .« l-parameter exp. fit, V=100 — — . l-parameter cxp. fit, V, =2
5 [ N N N N N N A 1-parameter exp. fit, V=200 ; ' I ‘ ; I-parameter exp. fit, V,=20000
.6 x 2 1
2 3 4 5 6 7 8B 9 10 11 12 13 14 15 16 17 18 19 20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Exponent q Exponent q

FIGURE 3. QDMC ground state energies and 1- or 3-parameter exponential curvadjitof one electron in a 3D potential well of shape
(6) and volumes.0, and with different values of exponedqt The dimensionless units are agaia= m. = 1.

(Table I) and onlyA, left free. Figures 2 and 3 show both the L A B B B B B B
Ey data points and the 1- or 3-parameter curve fits to the data I i
with a potential well of areal = 4.0 or volumeV = 8.0. o3 ]
The similarity of the 1-parameter (gray lines) and 3- | R R
parameter (black lines) exponential fits in Figs. 2 and 3 re- & I e . ]
flects how accurately th&, values calculated with QDMC £ | P e
agree with those calculated by different means forghe 2 Z8r s
andq = oo limiting cases (Table I). g vy YR |
Main important features in the data of Fig. 2 and 3 in- ° ggxﬁ X:zggo |
clude that thelsy, grows monotonically with increasingin - 3 parameter exp. ft, V,=600
all cases, and the difference ify betweeny = 2 andg = oo | =t O pammeter exp L VoS2000 |||
is in the range of 5-15%. Most of the change in ground state .| , , , , , Lz emeeee i
energy in all data sets has already taken place whbas BRI T RN B TR RER

increased to valu8 from the original2. The nonlinear fit )
arameterd, was between-0.30 and—0.20 for almost all FIGURE 4. QDMC E, values and 3-parameter exponential curve
P 2 ’ ’ fits (20) for one electron in a 3D potential well of shayg) and

data sets. volume2.0, and with exponenj as the independent variable.
Figure 4 shows the additional resuli(¢) for the three

cases of a 3D potential well of smaller volume 2.0. The Itis also possible to present the data as graphs gathd

graphs look similar to those for larger potential wells, except) kept constant antfy varied. The square root type function

for the £, values being higher. The curve fit parameters of(21) was fitted iteratively ta%,(V,) data sets corresponding

Figs. 2 to 6 are also included as tables of numerical data ito different values of. The parameterd, andA, in Eq. 21)

the Appendix. were free, and not pre-fixed, in each case. Figures 5 and 6
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and several values of exponentThe square root type curve fits of E21f are also shown in the figure.

show the data points and curve fits, with on the horizontal

axis andEy, on the vertical.

3.3. QDMC results for two particles in 2D

The QDMC ground state energieBy, for two interacting

or non-interacting electrons in a 2D potential well of depth (r12)(s)

curately fitted to they = 8 data points for noninteracting
electrons, even for the lower well deptly = 200, but not
accurately at all to the point sets with Coulomb potential in-
cluded.

The expectation value&,) are shown as function of
s for potential wells of both depths in Fig. 7. Parabolas
c28% + c15 + ¢y have also been fitted in each

Vo = 200 or V = 20000 are shown in Fig. 7 with the value set of data points, and the result is that each point set is close
of parametes varying from1.0 to 4.0. The area of the poten- to being on the same line with; | > 50|cs|.
tial well is A = m whens = 1 regardless of what the value

of ¢ is andA = 7s? for other values of, to mal
easier to compare. Fgr= 2 it holds thats =
the relation iss ~ 1.1162r and forq = oo, s

ke the results
r,forg =8
1.1284r

~
~

with » as in Eq.5. More generally, for a given value qf
and2-dimensional space the connection betweemndr is

s = +/Vol(r, 2, q)/m with Vol (r, n, ¢) as in Eq.

0.

In the graphs, there is also a curve fit of fofiy(r) o<
r~2 made for eacly = 8 data point set. The energy eigen- 8 shows that not much improvement can be made by setting
values of a set of non-interacting particles, in a potential wella smaller value.
deep enough for approximatidy = oo to be valid, are pro-
portional to reciprocal square of the well diameter. From Fig.E, (Fig. 7) and(r12) (Fig. 8) as a function of and for
7 it is easy to see that this type of function can be quite acdifferent well depths.

The effect of making the parameter(meant to pre-
vent division by zero when calculating the electron-electron
Coulomb potential) smaller by a factor db0 was also
tested in theg = 2, V;, = 200 case with two interact-
ing electrons. Figure 8 shows how much difference this
causes in the&(s) data points. The value = 0.001 may
look large, especially when it's inside the square root in
r12 = /(71 — 22)2 + (y1 — y2)% + ¢, but the graph in Fig.

The Appendix contains the tables of numerical data for
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Implicit time stepping results for one particle in 2D

| When exponential functions of typ2@) were fitted in theF,

- and E; values obtained with the IFD method and imaginary
] time propagation, the parametetg, A; and A, of Eq. (20)

] were found to be as in Table Il. The data poirfitg(¢) and

. E(q) are shown with the nonlinear fits in Fig. 10.

2.5

3

il TABLE Il. The parametersly, A; and A, of (21), with the non-

1 linear fit done toEy(q) and E1(¢) values obtained with finite dif-

EE! ference imaginary time propagation for a single electron in a 2D
| potential well of area.0, depthV;, and shape given bibj.

Scaling parameter s

FIGURE 9. The values ofEy(s), obtained with QDMC, for two
interacting electrons in a potential well with= 2 andV, = 200
and with two different values of cutoff parameter

eigenvalue Ao Ap As
Eo (Vo = 2000) 2.3896 2.2072 -0.25035
E; (Vo = 2000) 5.9779 5.6029 -0.22288
Eo (Vo = 20000) 2.4366 2.2448 -0.25274
E1 (Vo = 20000) 6.0957 5.6985 -0.22526
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FIGURE 10. Energy eigenvalueg (left) and £, (right) for one electron in a 2D potential well of sha&}, @read.0 and depthi/y = 2000
or Vo = 20000. The results were calculated by imaginary time propagation done with implicit finite differencing and operator splitting. In
the left image, the equivalent QDMC results are also plotted for comparison.

The Ay values (limit of E at ¢ — oo) for the ground can be accurately fitted in th&, (¢, V) data points, but there
states ofi; = 2000 andV;, = 20000 are2.3896 and2.4366. is no obvious way to show mathematically that the function
When these are compared to values in Tabi23912 and  Ey(q) could be written as a sum of an exponential plus small
2.4430, the error in the first case is less tHam% and that in  correction terms. Based on the more accurate data points in
the second, less thdan3%. The corresponding ground state Fig. 10, it does not even seem completely impossible that the
A; values are2.2072 and 2.2448, representing the limit of exponential dependence &f on g with ; andV kept con-

Ey for ¢ — 2. The equivalent values in Table I, calculated stant could be the exact solution of the problem.

with the shooting method, ar22087 and2.2511. The dif- The most surprising fact in this was that the multiplier
ference between the IFD and shooting method values is lesg, in the optimal exponential function fit seemed to have a
than0.3% in both. similar value of—0.30 < A, < —0.20 for all well depths,

The A, values for the first excited state, calculated with yolumes and both in 2D and 3D. Furthermore, most of the
IFD method, were5.9779 and6.0957. The 1st excited state variation in the value of that parameter appeared to be ran-
energy E; can also be calculated for the — oo system  dom numerical error, because the value didn't consistently
with Egs. @2) and @3), and the results foVy = 2000 and  change to either direction when the well depth or volume was
Vo = 20000 are5.9779 and6.1073. The differences between altered. The variation in those values was greater for the 2D
the IFD results and those froih2) and (L3) are here lessthan potential wells for which the calculations were done with a
0.2%. smaller number of random walkers. A simple back-of-the-

The value for the second excited state enekgyfrom envelope way to approximate thg, for someVj,, V andq
the IFD simulations done fay = 2 case were1.6338 for  could be to set thely and A; of (20) to the E5 (¢ = o) and
Vo = 2000 and11.8318 for V5 = 20000. When a shooting FEy(q = 2) values obtained from the Eqs13) to (16) and
method calculation was done for these two systems with a roguess thatl, ~ —0.24.
tation invariant 2nd excited state, the results wier&35 for In the case of 2D potential wells, calculations were also

Vo = 2000 and11.861 for Vo = 20000. Here the percentual 4qe for the first excited state enetfy of one electron, and
error is again less than3%. The consistency betwegn= 2 1o ground state energl, and expected electron-electron
andq = oo results obtained with different methods makes 'tdistance(r12> of two electrons confined in a 2D Lantircle.

seem likely that the results of Fig. 10 are close to correct alsgnq value of(r1») was found to increase almost linearly as a
for values ofg between the two extremes. function of a scaling parameter

In the cases where it was possible to compare results cal-

4. Conclusion culated by different means for the same system, there was a

good agreement between QDMC, IFD imaginary time propa-
In this work, the ground state energies of potential wells ofgation, shooting method and graphical solution results. Espe-
Lame circle or Lang sphere shape were calculated for a largecially the consistency of the QDMC and more accurate IFD
number of combinations of well depifi and the exponent results in the left image of Fig. 10 is a good sign that the
in Eq. 6). In most calculations the parametenf (6) was 2D QDMC results are correct enough despite the significant
defined as a function af, r := r(¢), to keep the area or vol- fandom error in individual data points (Fig. 2).
ume of the potential well at gindependent constant value. The results are an extension of those in Ref. [10], where
It was also shown that simple functions of 2 or 3 parametergnly 2D potential wells of infinite depth were considered. As
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remarked in that publication, this kind of results can be used
for estimating the cube- or spherelikeness of a real physicafasLe IV. The numbersl,, A; andA; of Eq. {20) obtained in the
potential well system, such as an electron in a quantum dot ahree- (left) and one-parameter (right) fits to the data pafifats;)
a vacant site of a crystal lattice. Another possible applicatiorpf one particle in a 3D Lasphere potential well of volung0.
of the content of this artig:le could b_e as an example problem Vo Ao A, A Vo A

for students of computational chemistry and physics.

One problem related to the material in this article is the 50 3.0568  2.7303  -0.2341 50 -0.2248
behavior of twooppositelycharged particles in a 2D or 3D 100 3.2389 2.8494 -0.2320 100  -0.2344
potential well. This could be described as a hydrogen atom 200 3.3644 29857 -0.2205 200 -0.2478
[21, 22] or positronium [23] being compressed by an exter-  goo 3.5278 3.0599 -0.2060 600 -0.2386

D

D
nal force, and the interparticle distange,) would approach 1200 35523 3.0950 -02394 1200  -0.2324
some finite limiting value with increasing scaling parame- 2000 36118 31186 01978 2000  -0.2171
5
b

ters.
It has probably been known since the early years of quan- 10000 3.6214  3.1539  -0.2866 10000  -0.2393
20000 -0.2464

tum mechanics that a system of a particle interacting with a 20000  3.6582  3.1786  -0.254
3D spherical potential well doesn’t necessarily have even one

bound state, while one in a rectangular potential well alway
does. The eXIStence. of a boun(.j state in the spherical We{ e three-parameter exponential fit to the data pdift§)) of one
depends on Whethgr 't_g) and radius are Ie}rge enough._ Ong particle in a 3D Lar# sphere potential well of smaller volurge).
unanswered question is whether there exists some finite min-

imum value of the exponemtin Eq. (6) that guarantees the Vo Ao A, Ao
_eX|stenfce a %ound sta_tgI for a ptotﬁnna_l \:\_/eII"th tgatﬂ?our_ld- 600 8.5132 74299 0.2790
ing surface. One possible way to heuristically probe the situ- )
ation would be to add more data points of |dgto the data 2000 8.8176 7.7465 0.2459
in Figs. 5 and 6 and extrapolate ¥4 — 0, but an actual 20000 9.0608 7.8903 -0.2851
mathematical proof would be a completely different task.

ABLE V. The numbersdy, A; and A, of Eq. (20) obtained in

. TABLE VI. The parametersl, and A; of Eq. 21), with the non-
Appendlx A linear fit done to QDMCE, data points of one electron in a 2D

) ] ] . (left) or 3D (right) potential well of shap&) or (6), area 4.0 (2D)
This Appendix contains tables of numerical data related tqyr volume 8.0 (3D).

the results presented in the main text. Tables Ill and IV con
tain the values of parametess,, A; and A, obtained when 4 Ao Ar g Ao Ar
fitting the exponential function of Eq2() to the data points 2 2.2735 2.4469 2 3.2149 3.3093
of Fy as function ofy with V5 andA = 4.0 or V = 8.0 kept 4 2.3461 2.8354 4 3.3835 3.8694
constant. The parameters were found with the “Non-linear ¢ 2.3924 28191 6 3.5055 4.2434
curve fittin_g" functionality_ of the Linux application Gra_ce- 8 2 4025 27389 8 3.5850 4.3722
5.1.25, using at least 15 iterations. The 1-parameter fit was

done with Ay and A, fixed to the valuesy(¢ = oo) and 10 24350 3.0404 10 3.5948 4.0891
Eo(q = 2) calculated with the non-algebraic equations of 12~ 24516  3.1079 12 36685  4.5119
Subsec. 2.1, and the 3-parameter fit with all parameters being 17 2.4478 2.8764 17 3.6755 4.6182
variable. This data is for the systems with only one electron  2g 2.4487 2.9921 20 3.6769 4.4172

TABLE I1l. The numberslo, A; andAs of Eq. 20) obtainedinthe N the 2D or 3D potential well, and cor.responds to the results
three- (left) and one-parameter (right) fits to the data paliats;) of Figs. 2 and 3. The Table V contains the parametéys
of one particle in a 2D La#circle potential well of ared.0. A; and A, for the Vj = 600, Vo = 2000 andVp = 20000
3D potential well of smaller volum® = 2.0, with all three
Vo Ao A Az : Vo Az parameters being free (Fig. 4).
50 20353 19259 -021v2 S50  -0.2322 The Table VI contains the parametets andA; from the
100 2.1553  2.0077 -0.2136 100 -0.2206 fitting of the square root type functio21) to the data with
200 22387 2.0894 -0.3030 200 -0.3252 Ey values as function ofy and withg and) kept constant.
600 23239 21613 -0.3209 600 0.2979 The %raphs_ ofhthe'::s_e quCtiOan apdhthe a_ssoci_alted data points
are shown in the Figs. 5 and 6 of the main article.
1200 2.3783 2.2010 -0.1680 1200 -0.1989 .
The Tables VIl and VIII contain thé’, values of a sys-
2000  2.3978  2.2070 -0.2398 2000  -0.2567 tem of two electrons in a potential well of degdth = 2000 or
10000 2.4259  2.2533  -0.2438 10000  -0.2385 Vo = 20000, with the parametes (and the surface area of the
20000 2.4428 2.2613 -0.1931 20000 -0.2059 2D well) being variable. Parameters defined as=+/V/,
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TaBLE VII. The ground state energy of two interacting or non- TABLE X. The electron-electron distance expectation vdlue)
interacting electrons in a 2D potential well of depth = 200 and of two interacting or non-interacting electrons in a 2D potential
shape given by Eq5f with ¢ = 2, 8 or co andr defined as function  well of depthV, = 20000 and shape given by Ed5)with ¢ = 2,

of s so that the area of the well iss>. 8 or co and scaling factos as in first column.
s Non-interactingEo InteractingEy s Non-interacting(ri2) Interacting(ri2)
gq=2 ¢=8 qg=00 qg=2 ¢=8 g=00 g=2 qg=8 g=o00 qg=2 g¢g=8 g=

10 5289 5.581 5.630 7.440 7.750 7.864 1.0 0.6310 0.6209 0.6067 0.6854 0.6815 0.6728
15 2444 2.639 2.597 3.837 3.954 4.079 15 09948 09776 0.9577 1.1115 11125 1.0952
20 1.358 1429 1.496 2.395 2553 2.525 20 13705 1.3608 1.3280 1.5655 1.5470 1.5145
25 0875 0.945 0.924 1.671 1.734 1.839 25 1.7580 1.7177 1.6865 2.0356 2.0113 1.9551
3.0 0.621 0.650 0.654 1279 1.301 1.350 3.0 20952 2.0799 21025 24730 24597 2.4444
3.5 0.449 0.515 0.494 0.990 1.016 1.040 3.5 24779 24407 2.3883 2.8936 2.9318 2.8509
40 0.366 0.357 0.368 0.812 0.845 0.845 40 2.8133 2.7750 2.8167 3.3847 3.3959 3.3985

TABLE VIII. The ground state energy of two interacting or non- 5 = V/V/m, With V the area of the well. The same lettér
interacting electrons in a 2D potential well of defith = 20000 as for the volume of a 3D potential well is used here because

and shape given by Eq5)with ¢ = 2, 8 or co andr defined as  surface area is just its 2-dimensional equivalent. The data of
function of s so that the area of the well iss®. Tables VII and VIl is the same as used for producing Fig. 7
of the article.
The expectation values of the electron-electron distance,
g=2 q=8 g=o00 q=2 ¢q=8 gqg=o0 in the ground state of two electrons in the 2D potential well,
1.0 5.780 6.093 6.300 7.963 8.450 8.576 are shown as a function efin Tables IX and X. Figure 8 of
15 2475 2717 2778 3.998 4238  4.289 f[he main article co_ntains the same rgsults. Th<=T quaftity
increases almost linearly as a functionspbut this property
20 1462 1529 1548 2472 2585 2.628 44 probably not hold for small radii < 0.5 when the
25 093 0983 1.006 1.727 1.831 1.846 confining force is not enough to keep both electrons inside
30 0623 0703 0702 128 1.342 1.363 the potential well.

35 0458 0480 0.497 1.013 1.066 1.072
40 0348 0.361 0.388 0.836 0.847 0.848

s Non-interactingFy InteractingEy
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