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Fractional solutions for the inextensible Heisenberg antiferromagnetic
flow and solitonic magnetic flux surfaces in the binormal direction
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Maxwellian electromagnetism describes the wave features of the light and related subjects. Its original formulation was established 150 years
ago. One of the four Maxwell’s equations is Gauss’s law, which states significant facts regarding magnetic flux through surfaces. It was also
observed that optical media provided surface electromagnetism around 60 years ago. This observation leads to improve new techniques on
nano-photonics, metamaterials, and plasmonics. The goal of this manuscript is to suggest novel accurate and local conditions for defining
magnetic flux surfaces for the inextensible Heisenberg antiferromagnetic flow in the binormal direction. The theoretical accuracy of the
methodology is verified through the evolution of magnetic vector fields and the anti-symmetric Lorentz force field operator. On the other
hand, the numerical accuracy and efficiency are developed in detail by considering the conformable fractional derivative method when these
fields are transformed under the traveling wave hypothesis.
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1. Introduction frames in three-dimensional Minkowski spdde]. Guveng
andOzdir determined necessary and sufficient conditions for
Differential geometric tools such as surfaces and curves haveeing slant normal magnetic curves(in. + 1)-dimensional
been appeared in many disciplines of theoretical and practiS-manifolds[11] . Cabrerizo studied the magnetic flow lines
cal areas of science ranging from thermodynarfiit® high ~ and associated Killing magnetic fields in three-dimensional
energy stringg2], and from general relativit{3] to solitons  space/12]. Sun established the connection between geomet-
[4], or even in plasma physi¢§] and liquid crystalg§6]. The  ric invariants of the magnetic curves and magnetic normal bi-
motion of curves and the concept of the Frenet-Serret framaormal surfacel3] . Korpinar et al. investigated a new kind
are the main common ingredient in all these applications. of evolution equation for electric and magnetic fields satis-
These tools have also been considered in the researdfing the Maxwell equations along with the uniform opti-
of magnetic structures significantly. Recently, many authorgal fiber in three-dimensional ordinary space and Minkowski
have focused on the subject of magnetic curves and invespace14, 15] .
tigate many important results. In these studies, one com- These structures are implemented by many authors to de-
mon approach has been used extensively. According to thiine magnetic flux-tubes in the case of inflexional configu-
approach, it is generally assumed that magnetic curves aration and inflectional disequilibrium. In the presence of
trajectories of the time-independent moving charged partia magnetic field, the magnetic flux-tube is defined by the
cle on geometric manifolds or physical spacetime structuresylindrical-thin tube of circular cross-section having a pos-
This motion of the particle is specifically determined by theitive radius. The cases of twisted magnetic flux-tube and
Lorentz force equation. Once the Lorentz force equation istraight flux-tube are investigated separately in various stud-
managed to solve successfully, then many interesting chaies. The geometric formulation of these tubes is derived by
acterizations have been developed from the geometric anthe Lorentz force equation and used to determine generic
physical points of view. Krpinar and Demirkol investi- characterizations associated with the several useful appli-
gated electromagnetic curves, their geometric phases, armétions to astrophysical flows, solar corona loops, etcetera.
their transportation laws, along with the linearly polarizedNested toroidal flux surface is described due to the motion
light coupling into the optical fiber in a three-dimensional curves in magnetohydrostatic. It can be considered as a gen-
semi-Riemannian manifoly] . Kérpinar and Demirkol also  eralization of the magnetic flux-tube. All these results have
obtained frictional and magnetic curves by using the anti-been obtained through the Riemannian and non-Riemannian
symmetric Lorentz force operator and Frenet-Serret equageometric data and facts. Ricca studied generic behavior and
tions to characterize their physical and geometric propertiesquilibrium conditions of the magnetic flux-tube by consid-
[8,9] . Kazan and Karadpcomputed magnetic vector fields ering the Lorentz force equatiofis] . Ricca also presented
of magnetic non-lightlike curves in terms of parallel transporthnew consequences concerning inflexional and evolution in-
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stability of magnetic flux tubes when the curvature of the tubdion of light rays, then it implies that the polarization has
axis vanishe$l7] . De Andrade obtained a non-Riemannian been parallel transported. Subsequent studies have shown
geometrical characterization of the magnetic flux-tube andhat particular equations such as Maxwell’s equations, spin
the fluid rotation by using the Da Rios equati@f] . De An-  equations, Lorentz equations, etcetera. contain the rotational
drade showed that the twist of the magnetic flux tube couldeffect of the polarization of light. Epirnar et al. stud-
be computed in terms of the torsion of the tube axis under &d soliton propagation of electromagnetic field vectors of
special evolution equatiofi9] . De Andrade considered the the polarized light ray traveling along with the coiled opti-
Heisenberg spin equation and Gauss-Mainard-Codazzi equeal fiber in different geometric structures [31-33]. Balakr-
tions to observe the influence of torsion and curvature of théshnan formulated path dependence of the rotation and the
magnetic flux-tube axis in magnetic filament acting as dy-geometric phase of the moving orthonormal vectors by con-
namos evolution20] . sidering continuous, classical, antiferromagnetic Heisenberg
The wider geometric importance of the moving curvesflow [34]. Bliokh reviewed the spin-orbit propagation along
is appeared in vortex filament motion, magnetic dynamicsyith the light with the emphasis of the Berry phase and spin
kinematics of interfaces. The relationship between the moHall effect carried by the wave [35]. Bliokbkt al. also
tion of curves and the integrable evolution equation is theneasured the precession of the Stokes vector and the spin-
main subject focused on by many researchers. As a resuliependent deflection along the coiled ray trajectory in an ex-
of this effort, the equation of the motion of curve or vortex cellent accuracy with theoretical estimatigss| . Wassmann
filament is linked by many geometric and physical evolutionand Ankiewicz improved an alternative method allowing one
equations such as the Landau-Lifshitz equation, non-lineaio derive Berry’s topological phase in terms of both planar
Schibdinger equation, localized induction equation, Heisenand solid angle$37] . Balakrishnan characterized a special
berg antiferromagnetic and ferromagnetic equation, binormédlype of geometric phase depending on a family of soliton-
equation, Da-Rios equation. Guo and Ding classified exbased equationg8]. Samuel and Nityananda explained a
plicit or approximate boundary value solutions or initial value new transportation rule for polarization vectors and their inte-
problems together with their physical or geometric flow mod-grability conditions while these vectors are assumed to define
els[21]. Vieria and Horley used binormal, normal, and tan-along with non-geodesic null curvé39] . Balakrishnan and
gent vectors of the Frenet-Serret system in such a successfahndoloff generalized the classical evolution equation for a
way that they extracted significant data regarding the dynanspae curve to demonstrate traditional analogs of the Heisen-
ics of the magnetization vectd®2] . Hasimoto described an berg and Scfidinger pictures seen in the quantum theory
intrinsic equation governing the torsion and curvature of g40].
vortex to define the propagation of a hump or loop of he- This paper investigates another aspect of the moving
lical flow [23]. Anco and Myrzakulov generalized Heisen- curve evolution. We define magnetic field lines governed by
berg spin models and Sdidinger maps from geometric sur- the inextensible Heisenberg antiferromagnetic flow in rela-
face flows and Hamiltonian flow through Frenet-Serret equation to the total geometric phase and apply these to charac-
tions of surfaces and curvést] . Erdagdu andOzdemir dis-  terize the Lorentz magnetic flux surfaces in the binormal di-
cussed Hasimoto surfaces and their geometric properties suchction. Thus, we aim to derive the geometric relationship
as mean and Gaussian curvature of these surfaces for ealsbtween magnetic flux surfaces and magnetic field lines in
case in Minkowski spacg5]. Ricca realized a correlation the binormal direction. The theoretical and numerical ac-
among localized induction approximation, Betchov-Da Rioscuracy of the methodology is proved through the inexten-
equation, and nonlinear Sdinger equation for extracting sible Heisenberg antiferromagnetic flow of magnetic vector
pseudo-helicity, energy, and associated Lagrangian for thields, the evolution anti-symmetric Lorentz force field oper-
motion of a thin vortex filamen6] . Balakrishnaret al. de-  ator, and the conformable fractional derivative method when
rived the geometric phase, gauge potential, and the anholothese fields are transformed under the traveling wave hypoth-
omy density of general space curves by employing Lamb’sis. Thus, we aim to develop a novel approach for gaining a
formulation for time evolution system@7]. Barroset al. better insight into the nature of potential geometric and phys-
computed soliton solutions of the Betchov-Da Rios equatiorical properties in interacting magnetic field lines and their
explicitly in the anti-De Sitter and Lorentzian space formsflow models in the binormal direction.
[28,29] . Arroyo studied binormal flow with torsion and cur- The organization of the paper is as follows. In Sec. 2,
vature to investigate the evolution of filameis] . we present differential geometric structures of orthonormal
These flow models and nonlinear evolution equations cafrrenet-Serret vectors and their directional derivatives. In
be related to soliton propagation. In many cases, they ar8ec. 3, we compute magnetic and elecirlmes in terms of
used to explain the notion of parallel transportation and geoerthonormal vector fields and associated geometric quantities
metric phase along with that propagation. For example, thén the binormal direction. In Sec. 4, we describe a new type
effect of this phase is observed along with the rotational di-of inextensible Heisenberg antiferromagnetic flow model for
rection of polarized light rays propagating through the opti-the magnetic lines and associated magnetic vector fields in
cal fiber. If the solid angle observed by the turning of thethe binormal direction. In Sec. 5, the results and potential
tangent vector of optical fiber is equal to the angular rotatesearch topics are specialized. We conclude the paper by
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the appendix, which includes approximate solutions of somélence, the vector analysis formulas can be expressed by
equations computed through the manuscript.

dwe_f = Kns T Kbs, (10)
2. Differential Geometry of Frenet-Serret Vec- S — 0
dives = —k1 + e3—e3, (11)
tors b
. 9]

In the introduction, we state that the motion of curves and dive; = _53)876_2)’ 12)
the concept of the Frenet-Serret frame are the main common
ingredient in many applications. The orthonormal Frenetwhere
Serret frame governing the intrinsic characterization of the P P
vector tripleA = (e7, e, e3) is given in the compact shape Kns = €3 —©1, Kps = €3 —61 (13)
by on 0b

9 The curl operator is written by

—AT=x A", 1)

s — 0 — — 0

a V:elxa—+egxa—+egx%. (14)

G AT=VAT, @ ’ !

g Hence, the other vector analysis formulas can be expressed

T_ o 4T b
- -z Yy
abA A

where X', )V, Z can be written in the following skew-
symmetric matrix form

0 K1 0
X = —K1 0 K2 5 (3)
0 —K2 0
0 Kns Kp + K2
y = —Kns 0 —div e_?: 9 (4)
— (kp + ko)  div e 0
0 — (Hn + 52) Rps
Z=| (kn + K2) 0 k1 +dives |, (5)
—Kbs — (/{1 + div e_g) 0

respectively. Herel" denotes the transpose of the matrix

A = (e], e3, e3). Furthermorep/ds, 8/0n, d/0b rep-

resent directional derivatives in the tangent direction, norm
direction, and binormal direction, respectively. By assump-,.| (s,7,b)
tion, in the tangent direction, we know that the tangent vecto Nl

of s-lines is denoted by i.e.

(6)

whereg is assumed to represestines. In the normal direc-
tion, the tangent vector of-lines is denoted bye i.e.

0

—
W = ey,

o ()

wherew is assumed to representlines. In the binormal
direction, the tangent vector éflines is denoted bye; i.e.

0

N
—0 = €3,

2% (8)

whered is assumed to represdntines. The gradient opera-
tor is written by

o

- 0
V_elas -

+e a2
2o

+ 83%. (9)

curle] = kg€ + Ki€3, (15)
curle; = —(dive3)e] + kn€s + Kns€s, (16)
curle; = (k1 + divey) e] — Kbs€3 + Kp€s, a7
where
0 0
— — — 0 =
e — e 1
Ks = €3 8nel €2 abel, (18)
ko = 81280 — (19)
n 155,62 2,

- 0 -

KRy = —Kg —€1—-€3 (20)

In the end, we remind that each vector or geometric quantity
depends on the three variables(efn, b) . For the brevity
urpose, we rather choose usiag = e; (s,n,b), k1 =
, etc. type of notation. We will continue to apply
5 similar notation for any function associated with the above
vectors or geometric quantities. We also think that repeated
statements of smoothness conditions and excessive repetition
that certain parameters are supposed to be non-vanishing may
seem obscure. Accordingly, we suppose that all functions
are sufficiently smooth as required by the calculation unless
stated otherwise.

3. Magnetic and electricb-lines in the binor-
mal direction

An important relation between electromagnetism and differ-
ential geometry can be established when the moving posi-
tively charged particle under the action of the Lorentz force
and its trajectory is observed. This trajectory is repre-
sented by electromagnetic lines such that they are assumed to
the composition of magnetic lines and electric lines. Lorentz
force has a crucial role to describe the behavior of these lines.
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In the differential geometric viewpoint, the magnetitines, 4. Inextensible Heisenberg antiferromagnetic
magnetice-lines, magnetié-lines satisfy the following types flow model in the binormal direction
of Lorentz force equations in the tangent direction, normal

direction, and binormal direction, respectively The inextensibility of the mechanism is an important tool to

s (€7) = Qe—{ = M, xe;, (21)  seek the relation between the geometric motion of space or

ds plane curves and integrable equations. Apart from the tradi-
0 — tional inextensible flows in the tangent direction, we identify
d)n (e_Q)) = €2 = M?LX627 (22) ; ; : Cofi
on time-dependent evolution equations satisfied by the geomet-
(_)) o _, - ric quantities of magnetié-lines under inextensible flows in
by (€3) = €3 = Mpxes, (23)  the binormal direction.
0b

where M, M,,, M, are divergenceless magnetic vector  In the binormal direction, the most generalized form of
fields associated with each magnetic line given directionghe inextensible flow can be represented by

[41]. By using the language of differential geometry, we aim

to simplify the calculation and formalization of the magnetic o) - R R
field lines and provide various other physical understanding we T Arer + Azes + Azes, (29)
more simply. In this section, we obtain magnetic lines under

the action of the Lorentz force equation by using the Frenetyhere),, )., and); are sufficiently smooth coefficients of
Serret formalism in the binormal direction. Later on, thesehe tangent, normal, and binormal vectors along magnetic
lines will be used derived magnetic flux surfaces when theifines in the binormal directior)/du is used to represent the
motions are governed by the inextensible Heisenberg antifefime derivative. Here, one should also recall that the binormal

romagnetic flow. . vector is assumed to satisfy the following identity
First, we consider Egs. (5,23) to obtain Lorentz force
fields of Frenet-Serret vectors. Then we should also take into 9
account the following well-known facts of the inner product i es, (30)
ou(e1) - €3 = —gu(€3) - €1 gu(e1) - €3

(&) B (BB = — b (S) 5. (24 wherew denotes the family of magnetielines in the bi-
du(e3) - el,pp(ez)-e3 . P(e3)-€2. (24) normal direction. Now, if basic compatibility conditions and
So, from Egs. (5,23,24), Lorentz force fields of Frenet-Serreproperties of the inner product are applied to Eqgs. (5,31,32)
vectors are obtained in the following way then we may write that

dp(€1) = pestrpses, dp(ez)

0 0
= —pel+(r1+dives)es, gp(e3) %6—1> =oe; — <8b>\1 + Ao(Kp + K2) — )\3"%5)(?3}7 (31)
= —kpse1 — (k1 +dives)es, (25) o, .
where p is a well-defined arbitrarily chosen sufficiently T e
smooth function along with magnetie-lines. It is al- P 0\
ready known that divergenceless magnetic vector fielg - (a[)Az—M(/in+/€2)—)\3(/€1+dz’ve2)>es, (32)
is spanned by thée;, e;, e3). Therefore, it should also be
0 0
true that a*e_?: = (ab)\l + Xo(kn + K2) — Agﬁbs)e_f
My = myie] + maes + mses, (26) b
whereg,(M;) = 0. Here,mq, mo, andmg are also suffi- +(8/\2 _ Al(%+,€2)_>\3(,ﬁ+dwe—5))gg’ (33)
ciently smooth functions along with magnetidines. As a db

result of Egs. (23,25, 26,27), the magnetic vector field of
magnetic-lines in the binormal direction is computed by ~ whereo is a sufficiently smooth function defined along with
My = (k1 +dive3)E] s+ 3. 27) the m_agnetwb-llnes in the bl_normal direction. Egs. _(32-34)
are given the most generalized form of the evolution equa-
The electromagnetic force equation in the binormal directionjon for time derivative in the normal direction. Now, we de-
can be expressed by fine the particular case of the inextensible evolution of mag-
Fo=q(Ep+e3 x My) = moy(e3), (28) neticb-lines in thg binormal di.rection. This.particqlar case is
known as the Heisenberg antiferromagnetic flow in the binor-

where&,, denotes electrie-lines defined along with the mo- mal direction. It is defined by

tion of the positively charged particle. Thus, by using Egs.
(28,29), itis obtained that 5 5 52

&y = —kps(1+m/q)e; — (k1+dives)(1 +m/q)es. = = X Tk (34)
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or equivalently

0 — —
%w = e3 X ¢p(e3). (35)

From Egs.(5, 35, 36) , it can easily be computed that

aguw = (k1 +dives)e; — (kps)€s. (36)

By comparing Egs. (32-34) and Eq. (37), we can conclude that the inextensible flow and Heisenberg antiferromagnetic flow of
b-magnetic lines coincide in the binormal direction when the following equalities satisfy

A= m—&-dive?, Ao = —FKps, A3 = 0. (37)

Thus, the inextensible Heisenberg antiferromagnetic flow of Frenet-Serret vectors can be induced to

0

%e_f:O'e_g (81) (k1+dives) — /@bs(nn—l—mg))e_g:, (38)
95 e+ 0 +(k1+-dives) (kn+re) | €3 (39)
ou 2= —0€; abﬁbe R1Tawez ){knTR2 3

2(3_) 0 — (k1 +divey) — Kps(kin + K2) | €1 — 0 — Kps + (F1+dives) (ki + K2) | €3 (40)
811, 3 — 81) 1 2 bs\fvn 2 1 8b bs 1 2 n 2 25

whereo is a sufficiently smooth function defined along with the magnitioes in the binormal direction. Time-dependent
evolution equations of Frenet-Serret vectors may also be written by only using the vector calculus identities in the following
way

e R i B e Pl A (41)
aulfﬂz 9 381)2 38b1 181)2 3

a—>_ — 0 —>a—> _>8_> —>a—> —

%eg = —coe; + ((3'1) |:636be1:| + 63%62 [81 abeg])eg, (42)
I5-(2lals|-alslalal)a-(Llela]+alalalsa|)s (43)
ou > \ov| 2o 2 3o [ an®| ) T \an [P e 32 %o | )

The inextensible soliton surface associated with the Heisenberg antiferromagnetic flow of magjneican be constructed
once the coefficients of the fundamental forms are derived. Coefficients of the first fundamental form can be computed by

ou ob ou
+ (k1 +divey)erdu — rysezdu) = db* + ((k1+dives)* + (kps)?)du?. (44)

) 0 ) )
I=(dw - dw)= ( T+ 5 wdu wdb+wdu> = (e3db + (k1 +dives(eydu — kpsesdu - e3db

Thus, we find that
51217 Fr=0, gI:(Hl+diUe_>2)2 + (mbS)Z. (45)

The binormal vector of the inextensible soliton surface associated with the Heisenberg antiferromagnetic flow of magnetic
b-lines is calculated as

8

— X — L=\
w w Rps€1 =+ (m—l—dweg)eg

Hw " wH V(565)2 + (K1+dives )2

(46)
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Then, coefficients of the second fundamental form can be computed by
IT=(dw dJ\/)(awderawdu aNderaNdu) = ! <e_>db+ [k1+dives | e du
b ou b ou V(#0s)2 + (k1+dives )2 3 ! he

— Kps€adu - L‘fb’%s + {m—&—dz’v@}{/ﬁn + /@'2}] erdb+ [aab{m—kdiv@} - mbs{mn + Klg}:| esdb+ I:{/{/bs}2

+ {H1+div€2)}2} esdb + {anbs — {/<;1+dive_2)}a} erdu + {gu{qudive_g)} + nbsa} esdu + {{/{bs}Q

ou
. —12 0 e e 0 —
+ {m +d2ve2} {K;n + 52} — ﬁbs%{m—i—dweg} + {m—l—dweg}%nbs esdu. 47
A direct computation of the above equation yields that
1 0
1T = Kps 12 4 {1 +dives Y2 1db? + 2| {(kps)? + (k1+dives)? Y ky + ko b — kps — { 1 +dives
\/(ﬁbs)2 ¥ (Hl_’_dive—g)z <[{ b } { 1 2} ] {( b) ( 1 2) }{ 2} b 8b{ 1 2}

+ {m +dives } %lﬁ}bs dbdu+

—a{(,‘<cbs)2 + (/<;1+dive_£)2}—/{bs%{m—l—dive_g}—}-{m—i—diue_ﬁ} ;uﬂbs] du2> . (48)

Thus, we find that

1
&1 = s]? + [k1+dives]?), 49
T N TS v ([Kbs)? + [k1+dives]?) (49)
Frz= = {{“b8}2+{f€1+dive—ﬁ}2] [Hn-kfiz}—nbsé [k1+dives]| + [k1+dives] gnbs . (50)
V (Fps) 2+ (k1 +dives )2 b b
011z = 1 —o[{r 32+ {Hl—&—diva}?] — m),g [K1+dive_2>] + [/ﬁ—&—dive_ﬁ] gﬁb’ ]
V (Kps)? + (k1 +dives)? ’ " Ou ou

As a result, the Gauss curvature and mean curvature of the inextensible soliton surface associated with the Heisenberg antife
romagnetic flow of magnetit-lines are given by using Egs. (45-52) in the following way

_ 1 . 2 . =27 g . . ﬁ
Gc = o T (it dive) 2 ( o[{rps}? + {r1+dives}*] — ks 7 [k1tdives]| + [k1+dives] 5y s
4 P o\
T T (i dine <[{/§bs}2 + {k1+dives}?| [kn + k2] — Kbs 57 [k1+dives] + [r1+dives] a0 |
(51)
1 . .
T = ) + (mardived )72 <[ =0+ {rns}? + {ma+dived}?] [{mes} + {rr-+dives}]
sy O o) N
+ [r1+dives] 5y s ~ Fos 5o [k1tdives] |. (52)

Now, we can present some further geometric properties of magniaties lying on the inextensible soliton surface associated
with the Heisenberg antiferromagnetic flow in the binormal direction.

A curve lying on any surface is called a geodesic if and only if the normal vector of the surface coincides with the principal
normal of the curve. Based on this fact, we get the following two results.

¢ b-parameter magnetiglines of the inextensible soliton surface associated with the Heisenberg antiferromagnetic flow
in the binormal direction are geodesics.

4 u-parameter magnetiglines of the inextensible soliton surface associated with the Heisenberg antiferromagnetic flow
in the binormal direction are geodesics if and only if

(k1+dives) = 0. (53)

gl

0 .
Kps == Kps + (k1 +dives)

0b
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A curve lying on any surface is called an asymptotic if and only if along the curve the surface normal vector field is
orthogonal to the principal normal vector field of the curve. Based on this fact, we get the following two results.

4 b-parameter magnetiglines of the inextensible soliton surface associated with the Heisenberg antiferromagnetic flow
in the binormal direction are asymptotics if and only if

Jp—
K1 = —dives.

¢ u-parameter magnetiglines of the inextensible soliton surface associated with the Heisenberg antiferromagnetic flow
in the binormal direction are asymptotics if and only if

Kys = o(k1 + divey).
As a result, we conclude that magnéetitines are lines of curvature if and only if the following equality holds

0 0 — JRN
—(m—i—dive—}g)%f@'bs + ﬁbs%(m—i—diveg) = (kn + K2)( [Kjbs]Q + [nl—l—dweg]Q). (54)

An exclusive case is that for which the inextensible soliton surface associated with the Heisenberg antiferromagnetic flow
of magneticb-lines is developable. For that, we first assume that maghdines are lines of curvature. Then, the soliton
surface is developable if and only if

. — 0 0 U 2 .12
(Kl-f—dl’l)ez)%libs — mbs%(m—i—dweg) = J([/ﬁ:bs] + [dweg] ) (55)

Equations (56,57) may be used to derive such a relation in a way that emphasizes the physical aspect of the soliton surface
through the geometric quantities of the Heisenberg antiferromagnetic flow of magdiets. This relation is written by
Laplacian-like differential equations in the following way

82 2
—(/@1+dive_2>)@mbs + /@bs@(m—&—dive_ﬁ) = ([/-@bs]2 + [H1+di1}€2>]2)
X E(K + k2) + (K + K )2([%5 ]2 + [k1+dives)?] (56)
b n 2 n 2 b bs 1 2 )
. ? = 2 oy O 9 2 2
(/Ql"’dZUeQ)Wfibs - fibs@(m—&—dweg) = ([kps)? + [r1+dives] )%a + 0%([%5] + [k1tdives]?). (57)

In the appendix section, we will investigate approximate solutions and their numerical demonstrations of some special cases of
the Laplacian-like formalism given by Egs. (58,59).

5. Magnetic Flux Surfaces of the Inextensible Heisenberg Antiferromagnetic Flow

In this section, new developments of the research recently proposed by many authors on the generalization of time evolution
equations on geometric quantities are investigated. Particularly, we consider applications to three-dimensional inextensible
Heisenberg antiferromagnetic flow dynamics, including the case of a magnetic flux surface and the flow rotation in the binor-
mal direction. Integrals on the total geometric phase are proved to be related to the integrals, which represent the geometric
characterization of the magnetic flux surface in continuous Heisenberg antiferromagnetic spin of nddgresim the binor-

mal direction.

Let us first consider the Lorentz force fields of magnétimes given by Eq. (26) .

dp(€1) = pes+rpses, gp(€3) = —per+(k1+dives)es,  ¢p(e3) = —rpser —(k1+dives)es. (58)
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Now, we are ready to compute the evolution equations of Lorentz force fields fomkait« parameters. The evolution
equations of the Lorentz force fields for the arc-length parameter in the binormal direction are written by using Egs. (5,60) in
the following way

—op(ef) = ( — [kps) + plin + Iﬁ?g])el + | =rp — Kps[r1+dives] |es + | = ks + plr1+dives] |es, (59)
b b 0b
0 — 0 R . 512\ — 0 —
%@,(eg) =\ = gpp s [k1-+dives] |e1 + (plkn + k2] — [k1+dives]?)es + E — [k1+dives) — prys | €3,  (60)
0, — 0
%qﬁb(eg) = ( T — [k1+dives] [k + /12]> e
0 —
+ ( - %[/{1+dwe2] + Kps[hin + ng]> e — ([K/bs]2 + [51+dive—2’]2)e3, (61)

The evolution equations of the Lorentz force fields for the time parameter obtained through the inextensible Heisenberg anti-
ferromagnetic flow are given by using Egs. (39-41,60) in the following way

8u¢b(e1) ( — PO+ Fps [ab{nﬁdwe_ﬁ} — Kps{kn + Kz}} ) el + (aup — Kbs [%nbs + {k1+dives H{r, + fiz}} ) &
T A A + {r1tdives H{rn + r2}| | €3 (62)
auK/bs P abnbs K1 ey kn K2 €s,
iqﬁ (€)= | — 9 + [k1+dives)] g{n +dives} — kps{kn + K2} | |€1—| po+ gn +Hr1+dives Hrn+ro}| |2
ou bl€2) = 6up 1 2 b 1 2 bs1Fn 2 1 po b bs 1 2 n 2 2
7] . 0 . N —

+ %[Iil +dives] + p %{/@1 +dives} — kps{k1+dives}| |es, (63)
iqﬁ(e")— _ 2 + o[k +dives] |e] — +2[ +dives] |es + Q{ +dives} — Kps{kn + Ko}
ou b(€3) — 8ul€bs OlR1 e 1 OKbs ou K1 ez 2 Rbs b R1 e Rbps1BEn T R2

— [k1+dives] [(%nbs + {k1+dives Hrn + /12}} ) es. (64)

Considering Eqs. (61-66) with the general reference frame given by Eq. (5), we can identify the geometric phase of magnetic
b-lines in which their evolution equations are dependent on baifidw parameters. In this way, we can observe the effect of

the rotational flow of magnetie-lines in the binormal direction while they evolve in time through the inextensible Heisenberg
antiferromagnetic evolution and Frenet-Serret equations. Accordingly, this phase becomes

o - [[ o ( nle3] x ;Lqﬁb[e?})dbdu -/ (— oo H R R m)}
X {/{bs (gb {m—l—dive_ﬁ]— — Kps -[nn + Ko ]-b (ﬂl-i-dl’l)eg)( Kps + -[m—i—dweQ ]- -[/{n + Ko } })}

()t (m+dwe3)2}{mbs T i(nﬁdiv@)” e dives) [{ i (1 0@ + Hz)}

0b

X {fibé ( {k1+dives } — kpsdkn + K2 b b - (/i1+dwe2)( Kus + {r1t+dives F {rn + ko } })}

_ {(Hbs)Q + (k1 +d21}e—2>)2}{ — %fibs + o (k1 —‘rdZUGTQ})}:l ) dbdu. (65)
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This is the statement for the geometric phase of the inextensible Heisenberg antiferromagnetic flow of riwdigeetin
the binormal direction. We use an efficient technique that is based on the certain evolution system of the spin configuration,
which allows the system to return to its original shape and position after a time interval. This technique also provides to
determine necessary and sufficient conditions that have to be satisfied by the geometric quantities associated with the magnetic
b-lines to define the Lorentz magnetic flux surfaces. Finally, it can be considered to compute the magnetic flux density of
the Lorentz magnetic flux surfaces obtained through the evolution of magdnléties based on the inextensible Heisenberg
antiferromagnetic flow model.

The magnetic vector field of magnetidines in the binormal direction has already computed by (£8) in the following
way

My, = (k1 +dives)e; —ryses+pes. (66)

Using the Lorentz force equations and inextensible Heisenberg antiferromagnetic evolution equations of imligestidth
appropriate boundary conditions given by Eq$0 — 66), the necessary and sufficient conditions for the existence of the
Lorentz magnetic flux surfaces are stated by

N 0 N 0 N . —
0 = (k1+dives) ([ - %{Ii1+dl’t}eg} + Kps{kn + Iig}:| {nbs{ab(n1+dwe2) — Kps(kn + Iig)} — {k1+dives}

X {abnbs + (k1 +dives) (ky + Ko )H — [{Hbs}Q + {m—i-dzvez}?] |:0',‘$bs + %{nl—&—dzveg}})

—FKbs ( {abﬂbs + {k1+dives H{k, + Iﬁ]g}:l [/@bs{ab(m+dw€2’) — Kps(kn + ng)} — {k1+dives}

0 N N 0 JEN
X {anbs + (k1 +dives)(k, + /4}2)}:| — [{fibs}2 + {/{1+d21}e2}2] {_ 50" + J{I{1+dZU92}:|>

%, 0 0
+p ( [ab/@bs + {k1+dives ki, + HQ}:| |:0/£b3 + %{H1+dive—2>}] + {ab{/ﬁl—l—dive—ﬁ} — Kps{kn + Hg}:|

X { — %Fcbs + 0{n1+dive_2>}} > . (67)

As a result, the magnetic flux density of the Lorentz magnetic flux surfaces obtained through the evolution of magnetic
b-lines based on the inextensible Heisenberg antiferromagnetic flow model is computed by

0 0
FP = // ([Hﬁdive_z’] H - %(F»Hrdive_ﬁ) + Ks (Fn + Hz)} {bis ((% {ki+dives } — kps{rn + K2 }JD
[0 . — 2 .2 0 . —
— (k1+dives) %Hbs + {m—i—dweg ]- -[nn + l€2]‘ — {(Iibs) + (k1+dives) } OKps + %(/ﬁ—i—dweg)

0 0 0
—FKps H s + (1 +dives)(kn + f-tz)} {ms (ab {k1+dives } — kps{rin + K2 } b — (ik1+dives) (C% Kbs

N N 0 . 0
+ -[n1+dive2 } -[/@n + 112]-})} — {(/{bs)2 + (k1t+dives )2}{ _ %Hbs +o (/@1—|—dwe_2>) } + p{ (%Hbs

+ Jxrdiveg } i + @}})(mbs ; i{mdwa}% (;b [ritdive} } — oy {in + Rz }])

X ( 2 et a-[n1+dive_2’]-}DH ) dbdu. (68)
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6. Fractional solutions of Laplacian-like equa- Solutions of Eq. (72) can be written as a series expansion in
tions with conformable fractional derivative  the following way

In this section, the connection between the Laplacian-like r(¢) = ao + a1 G(9) + G~ 1(9), (73)
non-linear equa_tion th_e (_:elebrf'ited in_extensi_ble Heise_nberg v(d) = Bo + B1G(d) + BGL(0),
antiferromagnetic flow is investigated in the binormal direc-

tion. In Egs. (58,59), we have already induced solitonic equawhere o, a1, e, B, 81, B2 are functions to be determined
tions that are associated with curves of geometric quantitiedater, and=(¢) satisfies the following fractional Riccati equa-
If one considers the appropriate limiting and scaling procesgjon

then a basic geometric derivation admits the following recip-

_ 2
rocal transformation G'(¢) = 7+ G(9), (74)
o2 92 R whereo is an arbitrary constant.
(fﬁ1+dwe2)@Fébs—ﬁbs@(ﬁﬁdwez)—wﬁbs =0, e N is obtained with the aid of balance between the
oo 2er highest order derivatives and the nonlinear terms in Eq. (72).
(K1 +dives) —— ks — Fips —— (K1 +dives) A few special solutions of Eq. (74) are listed in the fol-
oue due lowing manner.
9 (ki) = @9 ~ HWhenr <0
G1(p) = —V/—oc tanh(v/—0¢),

whered® /du® is the conformable derivative operator. These
fractional equations reflect the propagation of solitonic sur- Go(¢) = =V =0 coth(v—09). (75)

face sweeping out as geometric quantities evolve for time in- 2) Wheno > 0
variance in the binormal direction. A lot of research has been ’

done using different fractional operators for fractional differ- G3(¢) = Vo tan(\/o¢),
ential equations [42-44].
The conformable derivative of ordere (0, 1] is defined Ga(9) = Vo cot(vod). (76)
by the following equation [45] 3) Wheno = 0, p = const.,
L fE 0t — f () !
nf(t) = Gs(¢) = ————. 77
f:(0,00) = R. (70)  Now, if one replaces Eqs.73) and(74) into Eq. (72), and

equated all coefficients @f(¢), then it is obtained some spe-
Some of the features of the conformable derivative are give@ia| functions as follows

as follows [45-47]

2 Qo 3
_ Bo=—-Q a0, p1 = — , B2 = —Q%as.
a) DY =at*7", VneR, 20

Furthermore, if one uses the fact that= —1,G(¢) =
n — n n ’

b) DUf9)=F D9+ gD, —+/—0 coth(y/—a ), then it is computed that

¢) +D"(fog) =t'""g'(t)f'(9(t)),

r(¢) = ag — a1/ —o coth(v/—0 )

f g:D"f — f+Dg _
d) D" <g == 2 t : — as (V=0 coth [v/—0¢]) '
4
We consider the given below traveling wave transformation v(¢) = —Q%ap + %‘ /=5 coth(v—0¢)
20
for Egs. (69)
+ QP (V=0 coth [V=a¢]) "
Rps = T(¢)>
> As a result, one gets the following solution family for
kitdives = v(¢), d=n—Q—, (71)  Egs. (69)
«

where Q describes the speed of the wave. If one places fibs = o — a1V —0 coth(v—0¢)

Eq. (71) into Eg. (69) and considers the imaginary section, — ay(v/=o coth [\/jgd)])—l (78)
then it is obtained that ’

. — 2 Q4a1
Q' () + v(@)r"(6) — ()" () = 0, Frtdive; = —Q%ap + = =V~ coth(v'=0¢)
Q*v(d)r" (¢) —v'(¢) — Q*r(d)v” (¢) = 0. (72) + Q%az (V=0 coth [V —0¢] )_1- (79)
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FIGURE 1. The 3D graphic for analytical solutions of the fractional
equations.

Figure 1 is the 3D graphic for analytical solutions of the
fractional Eq. (69) fora = 0.5,Q = 1.2,09 = 0,7 =
—2, a9 = 2. a) for ky, in solutions Eq. (78) b) fok, +dives
in solutions Eq. (79).

7. Conclusion

T. KORPINAR, R. CEM DEMIRKOL, Z. KORPINAR, AND V. ASIL

shape of isolated, intense elements encompassed by nearly
flux-free or flux-free structures. According to conceptual
appeal and its basic geometrical construction, we have de-
veloped a simpler approach to define magnetic phenomena.
Accordingly, this approach is reconciled with the more prin-
cipal definition of electromagnetic components in terms of
smooth non-vanishing fields by supposing that the inexten-
sible Heisenberg antiferromagnetic evolution of magnitic
lines creates a Lorentz magnetic flux surface. The funda-
mental constructing blocks for our argument are to define
magnetid-lines through the Lorentz force and the geometric
guantities of the Frenet-Serret frame. In this way, this study
may lead to modeling a more geometrical and simplified ver-
sion of the magnetic flux tube soon. Another objective may
be investigating the effect of other magnetic lines and their
geometries in a system where their evolutions form magnetic
flux surfaces or magnetic flux tubes. This analysis may also
be expanded by considering different kinds of flow models
apart from inextensible Heisenberg antiferromagnetic flow.

The results demonstrate that the considered method is
more effective and easy to employ to scrutinize the behaviors
of the fractional differential equations with magnetic flux sur-
faces or magnetic flux tubes arising in associated areas of sci-
ence and technology. Additionally, we obtain the 3D graphic
for analytical solutions of the Laplacian-like non-linear equa-
tion.

All in all, this study provides a unique insight for defin-
ing magnetic flux surfaces through the intense consideration
of differential geometric tools. However, the potential phys-
ical effects of this research may be seen in Hermitian and
non-Hermitian wave physics, topological quantum states, and
Maxwell electromagnetism immediately. Moreover, investi-

One of the most important properties of the electromagnetigating its implication in practical fields such as metamateri-
vector field at the Riemannian geometry is its degree of spaals or magnetic materials will be the final and decisive goal

tial intermittency. Magnetic flux surface mostly occurs in the

to complete the paper in all senses.
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