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The Stackel theorem in the Lagrangian formalism and the use of local times
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We show that the conditions for the separability of the Hamilton—Jacobi equation given byatkelSheorem imply that, using the elemen-
tary Lagrangian formalism, one can findfunctionally independent constants of motion, wherie the number of degrees of freedom. We
also show that this result can be linked to the fact that the Lagrangian for a system of this class is related to the sneadifnensional
Lagrangians, if one makes use of multiple local times.
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Mostramos que las condiciones para la separabilidad de la éoudeiHamilton—Jacobi dadas por el teorema del&t implican que,

usando el formalismo Lagrangiano elemental, se pueden hattanstantes de movimiento funcionalmente independientes, doedee|

nimero de grados de libertad. Mostramos tamhiue este resultado puede ligarse al hecho de que la lagrangiana para un sistema de esta
clase est relacionada con la suma ddagrangianas unidimensionales, si se utilizantiples tiempos locales.
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1. Introduction 2. The Stckel theorem

The standard method for solving the Hamilton—Jacobi equal he Stckel theorem is applicable to a system described by a

tion is that of separation of variables, and, therefore, it is inl-2grangian of the form

teresting to know the conditions for the existence of com- no .o

plete separable solutions for this equation. A partial an- L — Z (qi _ Ciwi> 7 (1)

swer to this question is provided by theagkel theorem (see, — \2¢

e.g, Refs. [1-4]), which gives necessary and sufficient con-

ditions for the existence of complete separable solutions ofhere the functions; may depend on the generalized coor-

the Hamilton—Jacobi equation for certain orthogonal system§inatesy:, gz, . . ., gn only, andw; is a function of the single

(here orthogonal means that the kinetic energy has the forr¥@riableg; (throughout this paper, the summation convention

(1/2) 5™, 6:2 /c;, where the:; are functions of the general- is nqt employed; all the sums are explicitly indicatgd). Ac-

ized coordinates only). cording to this theorem, the Hamilton—Jacobi equation corre-
A more restricted class of systems than those include(‘fpondir]g to) admits separ_able SOIUtiO.nS in this coord_inate

in the Stckel theorem are the Liouville systems (sesy, systemif and on_ly |fthere. exists a non—smg.ularx " m"’?”'x.

Refs. [1, 2,4]). In a recent paper [5], it is shown that the(uij), whereu;; is a function ofg; only (that is, the entries in

form of the Lagrangian of the Liouville systems can be ob-the firstrow of(u;;) are functions of;, only, and so on) such

tained starting from a sum of one-dimensional Lagrangianéhat

expressed in terms of a fictitious (or local) time, which re- n

places the real time. The aim of this paper is to show that, Zczuzh = O1k- 2

in a similar way, the conditions of the &tkel theorem are i=1

related to several fictitious times. ) ) __ This last condition implies that ifu;;) is the inverse of the
In Sec. 2, the 3ickel theorem is enunciated, following matrix (u;;), then

Refs. [1, 2], and we find a general expressionfaonstants !

of motion possessed by any Lagrangian satisfying the condi-

tions of the Sackel theorem. These constants of motion are

essentially the separation constants appearing in the solution For example, for a charged particle in the field of a point

of the Hamilton—Jacobi equation. In Sec. 3, we show that th@|po|e, in terms of the Spherica| Coordina(esg’ ¢), the nat-
motion of a system satisfying the conditions of théckel  yral Lagrangian is

theorem can be viewed as the compositiom @idependent
qn(.a—.dlmensmnal systems by mtroduc!ng a possibly different =" (7._2 202 & 2sin2 0 ¢2) B
fictitious (or local) time for each coordinadg. 2 r

ﬁli = C;. (3)

kcos @
5 (4
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wherek is a constant. This Lagrangian has the fofhwith (whenk = 0, M reduces to the square of the angular mo-
1 1 1 mentum).

= = With the aid of Egs.9) and (L1) now we can eliminate

“a=n 2= B 2 sin2 g’ .
. andé from Eq. ©); the result is
if we take(q1, g2, g3) = (r,0, ¢), and we can choose (though

this is not the only possibility) d M
0=—(mr) - — (12)
wi(r) =0, wa(0) = mkcos 0, ws (@) = 0. dt mr
Then, a matriXu,;) that satisfies conditior2} is (not only ¢ andd were eliminatedg andé also disappeared)
hence, multiplying by,
m 0 —1/r? PYing by
2
8 1/511119 é . (5) 0_.2( ')7M_£ m M
B T T e T\ o)

(Note that the first row of this matrix is a function ofonly,
the second row is a function éfonly, and the third row is a This means that the expression inside the parentheses is also
function of ¢ only. Contrariwise to the claim in Ref. [6], it a constant of motion, which turns out to be the total energy
is a straightforward matter to verify if the conditions of the [see Eqs.4), (9) and (L1)]:
Stackel theorem are satisfied; see also the example at the end
of this section). m ., M

Thus, the Sickel theorem guarantees that the Hamilton— o7 T omr2 E, (13)
Jacobi equation for this problem, in these coordinates, admits
complete separable solutions (seey, Ref. [7]). However, whereE is a third constant of motion (whose existence fol-
instead of exhibiting this separability, we shall consider thelows directly from the fact that the Lagrangian does not de-
more elementary problem of solving the Lagrange equationgpend explicitly of the time).

Substituting the Lagrangia@)into the Lagrange equations  Thus, despite the mixture of the coordinates in Efs- (

we obtain (8), miraculously, one obtains three first-order differential
) . 9,y 2kcos® equations or, equivalently, three first integrals [E®3. (11),
0= @(mr) —mro” —mrsin® 0 ¢” — 3 (6)  and 3)]. As we shall show now, this is a consequence of
d _ _ ksin 0 the fulfillment of the conditions of the &tkel theorem, and
0= —(mr*6) — mr®sinf cos 0 ¢* — ——, (7)  asimilar reduction can be obtained for any Lagrangian of the
dt " form (1), if the conditions of the Stckel theorem are satis-
0= %(mr2 sin? 6 ¢). (8) fied.

Proposition. For a Lagrangian of the formi}, satisfying the
The last of these equations means that the quantity inside thnditions of the Stckel theorem, the quantities
parentheses is a constant of motion:

n . 2
2 . 29 ] — . 9 L ~ 1 4j .
mr<sin© 6 ¢ = I3, 9 o = ;u” (2 a + w; (14)

wherels is a constant (that represents theomponent of
the angular momentum and the momentum conjugatg.to
Making use of this relation in order to eliminate from
Eq. (7), we obtain

are constants of motion. In particular; is the Jacobi inte-
gral Y- (4:2/2¢ + ciw).
Proof. Making use of the definitiorld), one finds that the

d,—o. l3*cos®  ksind time derivative ofy; is
= — 0) — — — . 10 ’
0 dt (mr6) mr2?sin® 6 r2 (19)
Multiplying this equation by2mr20, we find that da; _ Xn: a B L4, %q,
. dt * Cj de Cj d ' J
B 2132 cos 0 6

0= 2mr2éi(mr29) — 2mksin 06

dt sin3 0 1 2 Y2 n d
5 5L 4 wi| Y ﬁikﬂdkﬂu , (15)
=2 ([mr29]2 + s + 2mk cos 9) 24 s A
dt sin? 0 ’
i tions of the single variablg; and that, for any non-singular
. l ; —1 _ _ g-1 -1 _
(mr2)? 4 — 32 L 9mkcosh — M (11) matrix A, dA™" = —A .(dA)A . On the other hand, ;ub
sin” 0 stitution of the Lagrangiaril] into the Lagrange equations
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gives, forj =1,2,...,n, z = (1/2)(u?—2v?), andk, v are constants. (This Lagrangian
p " g corresponds to a charged particle of massn the field of a

d gy 1 L dci 1o ci dw; oint charge placed at the origin, and a uniform field in the
o= (B) 33 amair + froGy Pon ;

— ci? 0g; — 0q; dg; z-direction.) Clearly, in this example,
o 1 d ljj dwj o= 1 =c Ca = 1
=Cj g& g +E l—m(u2+v2) — €2, 3_mu2v27
" 9c; (1 a:1? and the one-variable functions; can be taken as
Z 3} 1 2 LZ} i) (16) m m
i=1 90 ! wy(u) = —mk — T’Yu‘l, wo(v) = —mk + 771)4,
Taking the partial derivative with respect ¢g on both
sides of Eq.2), one obtains wa(¢) = 0.
_ n _ EquationP) is satisfied by the matrix
d 2 :
0=c; o2k 137 0i v 17)
dg; im1 9q; mu? 1/u? 1
. . . (uw) = ’ITLU2 1/1}2 -1 s
which implies that 0 -1 0
Z uzk d““ 'kﬂlj = _ ﬁvkiaﬁqk (18)  and, therefore, the conditions of thea8kel theorem are met.
Py — ok Ogk The matrix(i;;) is
Substituting Eqs.[16) and (L8) into (15) one finds that, in 1 1 1 1/u? +1/v?
eﬁeCt,dai/dt =0. (27_’_2) 0 0 —m(u2 + ’1)2) s
Finally, with the aid of Eqs/X4) and B) we see that mus Y mv?  —mu?  m(v?/u? —u?/v?)
n 1 (g 2 and, from Eq./14), we have immediately the two constants
Z G5 {} il of motion (apart from the total energy;),
2
which is the Jacobi integral corresponding to the Lagrangian as = —p%,
(D).
Thus, we have the_expres_sion fofunctionally in_depen- a3 = m72 [(u +02) (022 — u26?) + w0 (v? — u2)<i>2]
dent constants of motion, which reduce the equations of mo- 2
tion to quadratures. In fact, Eq44) can be inverted to give my e N ol w2 — 2
1 i 2 u? + v 27
J
) (]) Twj = Z“J’fo"f (19) wherep, is the momentum conjugate tb (which is con-

served as a consequence of the fact thistan ignorable co-
(Remember that; andu;;, are functions of the single vari- ordinate). The constant of motien is not related to obvious

ableg;.) symmetries and, whem is set equal to zero, reduces to mi-
Going back to the case of the Lagrangid) bne readily  nus thez-component of the Laplace—Runge—Lenz vector. (Of
finds that the inverse of the matri%)(is given by course, as is well known, any constant of motion corresponds

to a one-parameter group of symmetries of the Hamiltonian
_ in the phase space; howevey, is not related to a variational
(ti5) = 0 0 _12 symmetry of the Lagrangian; in fact, the Laplace—Runge—
0 1 1/sin" 0 Lenz vector is the standard example of a constant of motion
[cf. Eq. 3)] and that the constants of moticib4) are related ~2SSociated with a hidden or accidental symmetry.)
to the constants of motion previously obtainég), (11), and In this case, Eqs1€) amount to

I/m 1/mr? 1/mr?sin®@

(13), byOq =F ay= —(1/2)[32, andag = (1/2)M 1 9 2y 2 my 4 5 s
Another illustrative example is given by the Lagrangian 5 (m(u® +v*) )" —mk — T U T amu + w2 + a3,
m . . ; 1
L= 5[(u2+v2)(u2+v2)+u2v2¢2} 3 (m(u® +v?) 7 ) —mk+ = 5 BTt = aymo? +f — ag,
2k Y2 2 1 2 2 1\2
u2+v2+§(u —v7), (20) i(muv ¢)" =—

where (u, v, ¢) are parabolic coordinates, which are related[cf. Egs. 9), (11) and (L3)]. These equations are equivalent
to the Cartesian ones hy = wwvcos¢, y = wuvsing,  tothose obtained using the Hamilton—Jacobi equation.
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3. Localtimes provided that theny, are treated as constantsRecall that
) . ) w; andwu;y, are functions of the single variablg.) Mak-

tive of a single coordinate, Eq&)(and (L1) still contain mix-  one-dimensional Lagrangiarig6) are related to the original
tures of the coordinates. This fact can be conveniently hiddepagrangianit) by

by introducing local (or fictitious) times;, defined by

dr = ¢dt (21) ZLdej =(L+E)dt (27)
(seee.g, Refs. [8,5], and the references cited therein). J=1
Considering again the example provided by the La-

grangian4), we have the three local times [cf. Ref. [5], Eq. (21)]. The combinatiofL + E)dt ap-
pears in the principle of least action (insteadlofi¢t, con-
dr = idt, dry = %dt drs = %dt. sidered in Hamilton’s principle), which is applicable when
m mr mr? sin® ¢ E is conserved on the actual and the varied paths (sge,
We see that onlylr; is an exact differential, and, is, upto  Refs. [9, 10]).
a constant factor, the real time. For instance, in terms, of Since the Lagrangiafi; does not depend ory, the cor-
Egs. L0 and (1) take the form responding Jacobi integral is a constant of motion. Making
A20 132 cosd . use of the definitions6), (21), and (@4), one finds that these
I’ e mksing =0 (22)  constants of motion are identically equal to zero. (By con-

trast, in the case of a Liouville system, where a single local

and time is enough, the Jacobi integrals associated with the one-

de\? 152 ok conf — M 3 dimensional Lagrangians leadsoe- 1 nontrivial constants of

ary gz TEmcost =M, (23) " motion [5)).
respectively, which determing as a function ofr, alone.
Furthermore, one can readily verify that EQ2) is the La- .
grange equation for the one-dimensional Lagrangian 4. Concluding remarks

2
Lo(0,d0/drs, 72) = 1 <d€) S With the only exception ofy;, which is related to the time-
’ ’ 2 \dn 2sin? 0 independence of the Lagrangidl),(the othem — 1 constants
— ik cos 6 + const., (24) of moyon,ag, ..., ap, need not be associated with ignorable
coordinates.

treatingls as a constant, and that the left-hand side of ). ( As we have shown, the &tkel theorem, which is related
is, essentially, the Jacobi integral corresponding4pomul- {0 the separability of the Hamilton—Jacobi equation, turns out
tiplied by 2. to be directly relevant in the Lagrangian formalism. This fact

Again, this is not an exceptional behavior; making use ofmust not be surprising since, in both formalisms, one is deal-
Egs. £1), (14) and (L7) we see that the Lagrange equationsing with the same problem. In order to have an analog of the

(16) areequivalentto Stackel theorem in the Lagrangian formalism, without refer-
2 n ence to the Hamilton—Jacobi equation, it would be necessary
q; dwj d’Lij -
= s+ = - g (25) to have an analog of the concept of separability.
drj? © dg;  £= dg;
( =1,2,...,n), which, for each value of, is the Lagrange
equation for the one-dimensional Lagrangian Acknowledgement

1 /da: 2 n
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