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The Stäckel theorem in the Lagrangian formalism and the use of local times
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We show that the conditions for the separability of the Hamilton–Jacobi equation given by the Stäckel theorem imply that, using the elemen-
tary Lagrangian formalism, one can findn functionally independent constants of motion, wheren is the number of degrees of freedom. We
also show that this result can be linked to the fact that the Lagrangian for a system of this class is related to the sum ofn one-dimensional
Lagrangians, if one makes use of multiple local times.
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Mostramos que las condiciones para la separabilidad de la ecuación de Hamilton–Jacobi dadas por el teorema de Stäckel implican que,
usando el formalismo Lagrangiano elemental, se pueden hallarn constantes de movimiento funcionalmente independientes, donden es el
número de grados de libertad. Mostramos también que este resultado puede ligarse al hecho de que la lagrangiana para un sistema de esta
clase est́a relacionada con la suma den lagrangianas unidimensionales, si se utilizan múltiples tiempos locales.
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1. Introduction

The standard method for solving the Hamilton–Jacobi equa-
tion is that of separation of variables, and, therefore, it is in-
teresting to know the conditions for the existence of com-
plete separable solutions for this equation. A partial an-
swer to this question is provided by the Stäckel theorem (see,
e.g., Refs. [1–4]), which gives necessary and sufficient con-
ditions for the existence of complete separable solutions of
the Hamilton–Jacobi equation for certain orthogonal systems
(here orthogonal means that the kinetic energy has the form
(1/2)

∑n
i=1 q̇i

2/ci, where theci are functions of the general-
ized coordinates only).

A more restricted class of systems than those included
in the Sẗackel theorem are the Liouville systems (see,e.g.,
Refs. [1, 2, 4]). In a recent paper [5], it is shown that the
form of the Lagrangian of the Liouville systems can be ob-
tained starting from a sum of one-dimensional Lagrangians
expressed in terms of a fictitious (or local) time, which re-
places the real time. The aim of this paper is to show that,
in a similar way, the conditions of the Stäckel theorem are
related to several fictitious times.

In Sec. 2, the Stäckel theorem is enunciated, following
Refs. [1, 2], and we find a general expression forn constants
of motion possessed by any Lagrangian satisfying the condi-
tions of the Sẗackel theorem. These constants of motion are
essentially the separation constants appearing in the solution
of the Hamilton–Jacobi equation. In Sec. 3, we show that the
motion of a system satisfying the conditions of the Stäckel
theorem can be viewed as the composition ofn independent
one-dimensional systems by introducing a possibly different
fictitious (or local) time for each coordinateqi.

2. The Sẗackel theorem

The Sẗackel theorem is applicable to a system described by a
Lagrangian of the form

L =
n∑

i=1

(
q̇i

2

2ci
− ciwi

)
, (1)

where the functionsci may depend on then generalized coor-
dinatesq1, q2, . . . , qn only, andwi is a function of the single
variableqi (throughout this paper, the summation convention
is not employed; all the sums are explicitly indicated). Ac-
cording to this theorem, the Hamilton–Jacobi equation corre-
sponding to (1) admits separable solutions in this coordinate
systemif and only if there exists a non-singularn×n matrix
(uij), whereuij is a function ofqi only (that is, the entries in
the first row of(uij) are functions ofq1 only, and so on) such
that

n∑

i=1

ciuik = δ1k. (2)

This last condition implies that if(ũij) is the inverse of the
matrix (uij), then

ũ1i = ci. (3)

For example, for a charged particle in the field of a point
dipole, in terms of the spherical coordinates(r, θ, φ), the nat-
ural Lagrangian is

L =
m

2
(
ṙ2 + r2θ̇2 + r2 sin2 θ φ̇2

)− k cos θ

r2
, (4)
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wherek is a constant. This Lagrangian has the form (1) with

c1 =
1
m

, c2 =
1

mr2
, c3 =

1
mr2 sin2 θ

,

if we take(q1, q2, q3) = (r, θ, φ), and we can choose (though
this is not the only possibility)

w1(r) = 0, w2(θ) = mk cos θ, w3(φ) = 0.

Then, a matrix(uij) that satisfies condition (2) is



m 0 −1/r2

0 1/ sin2 θ 1
0 −1 0


 . (5)

(Note that the first row of this matrix is a function ofr only,
the second row is a function ofθ only, and the third row is a
function ofφ only. Contrariwise to the claim in Ref. [6], it
is a straightforward matter to verify if the conditions of the
Sẗackel theorem are satisfied; see also the example at the end
of this section).

Thus, the Sẗackel theorem guarantees that the Hamilton–
Jacobi equation for this problem, in these coordinates, admits
complete separable solutions (see,e.g., Ref. [7]). However,
instead of exhibiting this separability, we shall consider the
more elementary problem of solving the Lagrange equations:
Substituting the Lagrangian (4) into the Lagrange equations
we obtain

0 =
d
dt

(mṙ)−mrθ̇2 −mr sin2 θ φ̇2 − 2k cos θ

r3
, (6)

0 =
d
dt

(mr2θ̇)−mr2 sin θ cos θ φ̇2 − k sin θ

r2
, (7)

0 =
d
dt

(mr2 sin2 θ φ̇). (8)

The last of these equations means that the quantity inside the
parentheses is a constant of motion:

mr2 sin2 θ φ̇ = l3, (9)

where l3 is a constant (that represents thez-component of
the angular momentum and the momentum conjugate toφ).
Making use of this relation in order to eliminatėφ from
Eq. (7), we obtain

0 =
d
dt

(mr2θ̇)− l3
2 cos θ

mr2 sin3 θ
− k sin θ

r2
. (10)

Multiplying this equation by2mr2θ̇, we find that

0 = 2mr2θ̇
d
dt

(mr2θ̇)− 2l3
2 cos θ θ̇

sin3 θ
− 2mk sin θ θ̇

=
d
dt

(
[mr2θ̇]2 +

l3
2

sin2 θ
+ 2mk cos θ

)
,

which yields a second constant of motion:

(mr2θ̇)2 +
l3

2

sin2 θ
+ 2mk cos θ = M (11)

(whenk = 0, M reduces to the square of the angular mo-
mentum).

With the aid of Eqs. (9) and (11) now we can eliminatėφ
andθ̇ from Eq. (6); the result is

0 =
d
dt

(mṙ)− M

mr3
(12)

(not onlyφ̇ andθ̇ were eliminated,φ andθ also disappeared)
hence, multiplying bẏr,

0 = ṙ
d
dt

(mṙ)− Mṙ

mr3
=

d
dt

(
m

2
ṙ2 +

M

2mr2

)
.

This means that the expression inside the parentheses is also
a constant of motion, which turns out to be the total energy
[see Eqs. (4), (9) and (11)]:

m

2
ṙ2 +

M

2mr2
= E, (13)

whereE is a third constant of motion (whose existence fol-
lows directly from the fact that the Lagrangian does not de-
pend explicitly of the time).

Thus, despite the mixture of the coordinates in Eqs. (6)–
(8), miraculously, one obtains three first-order differential
equations or, equivalently, three first integrals [Eqs. (9), (11),
and (13)]. As we shall show now, this is a consequence of
the fulfillment of the conditions of the Stäckel theorem, and
a similar reduction can be obtained for any Lagrangian of the
form (1), if the conditions of the Stäckel theorem are satis-
fied.

Proposition. For a Lagrangian of the form (1), satisfying the
conditions of the Sẗackel theorem, then quantities

αi ≡
n∑

j=1

ũij

(
1
2

[
q̇j

cj

]2

+ wj

)
(14)

are constants of motion. In particular,α1 is the Jacobi inte-
gral

∑n
i=1

(
q̇i

2/2ci + ciwi

)
.

Proof. Making use of the definition (14), one finds that the
time derivative ofαi is

dαi

dt
=

n∑

j=1

(
ũij

[
q̇j

cj

d
dt

{
q̇j

cj

}
+

dwj

dqj
q̇j

]

−
[

1
2

{
q̇j

cj

}2

+ wj

]
n∑

k,l=1

ũik
dukl

dqk
q̇kũlj

)
, (15)

where we have made use of the fact thatwj andujk are func-
tions of the single variableqj and that, for any non-singular
matrixA, dA−1 = −A−1(dA)A−1. On the other hand, sub-
stitution of the Lagrangian (1) into the Lagrange equations
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gives, forj = 1, 2, . . . , n,

0 =
d
dt

(
q̇j

cj

)
+

1
2

n∑

i=1

1
ci

2

∂ci

∂qj
(q̇i)2 +

n∑

i=1

∂ci

∂qj
wi + cj

dwj

dqj

= cj

(
1
cj

d
dt

[
q̇j

cj

]
+

dwj

dqj

)

+
n∑

i=1

∂ci

∂qj

(
1
2

[
q̇i

ci

]2

+ wi

)
. (16)

Taking the partial derivative with respect toqj on both
sides of Eq. (2), one obtains

0 = cj
dujk

dqj
+

n∑

i=1

∂ci

∂qj
uik (17)

which implies that

n∑

k,l=1

ũik
dukl

dqk
q̇kũlj = −

n∑

k=1

ũik
1
ck

∂cj

∂qk
q̇k. (18)

Substituting Eqs. (16) and (18) into (15) one finds that, in
effect,dαi/dt = 0.

Finally, with the aid of Eqs. (14) and (3) we see that

α1 =
n∑

j=1

cj

(
1
2

[
q̇j

cj

]2

+ wj

)
,

which is the Jacobi integral corresponding to the Lagrangian
(1).

Thus, we have the expression forn functionally indepen-
dent constants of motion, which reduce the equations of mo-
tion to quadratures. In fact, Eqs. (14) can be inverted to give

1
2

(
q̇j

cj

)2

+ wj =
n∑

k=1

ujkαk. (19)

(Remember thatwj andujk are functions of the single vari-
ableqj .)

Going back to the case of the Lagrangian (4), one readily
finds that the inverse of the matrix (5) is given by

(ũij) =




1/m 1/mr2 1/mr2 sin2 θ
0 0 −1
0 1 1/ sin2 θ




[cf. Eq. (3)] and that the constants of motion (14) are related
to the constants of motion previously obtained, (9), (11), and
(13), by α1 = E, α2 = −(1/2)l32, andα3 = (1/2)M .

Another illustrative example is given by the Lagrangian

L =
m

2
[
(u2 + v2)(u̇2 + v̇2) + u2v2φ̇2

]

+
2k

u2 + v2
+

γ

2
(u2 − v2), (20)

where(u, v, φ) are parabolic coordinates, which are related
to the Cartesian ones byx = uv cos φ, y = uv sin φ,

z = (1/2)(u2−v2), andk, γ are constants. (This Lagrangian
corresponds to a charged particle of massm, in the field of a
point charge placed at the origin, and a uniform field in the
z-direction.) Clearly, in this example,

c1 =
1

m(u2 + v2)
= c2, c3 =

1
mu2v2

,

and the one-variable functionswj can be taken as

w1(u) = −mk − mγ

2
u4, w2(v) = −mk +

mγ

2
v4,

w3(φ) = 0.

Equation (2) is satisfied by the matrix

(uij) =




mu2 1/u2 1
mv2 1/v2 −1

0 −1 0


 ,

and, therefore, the conditions of the Stäckel theorem are met.
The matrix(ũij) is

1
m(u2 + v2)




1 1 1/u2 + 1/v2

0 0 −m(u2 + v2)
mv2 −mu2 m(v2/u2 − u2/v2)


 ,

and, from Eq. (14), we have immediately the two constants
of motion (apart from the total energyα1),

α2 = −pφ
2

2
,

α3 =
m2

2
[
(u2 + v2)(v2u̇2 − u2v̇2) + u2v2(v2 − u2)φ̇2

]

− mγ

2
u2v2 + mk

u2 − v2

u2 + v2
,

wherepφ is the momentum conjugate toφ (which is con-
served as a consequence of the fact thatφ is an ignorable co-
ordinate). The constant of motionα3 is not related to obvious
symmetries and, whenγ is set equal to zero, reduces to mi-
nus thez-component of the Laplace–Runge–Lenz vector. (Of
course, as is well known, any constant of motion corresponds
to a one-parameter group of symmetries of the Hamiltonian
in the phase space; however,α3 is not related to a variational
symmetry of the Lagrangian; in fact, the Laplace–Runge–
Lenz vector is the standard example of a constant of motion
associated with a hidden or accidental symmetry.)

In this case, Eqs. (19) amount to

1
2

(
m(u2 + v2) u̇

)2 −mk − mγ

2
u4 = α1mu2 +

α2

u2
+ α3,

1
2

(
m(u2 + v2) v̇

)2 −mk +
mγ

2
v4 = α1mv2 +

α2

v2
− α3,

1
2
(
mu2v2 φ̇

)2 = −α2

[cf. Eqs. (9), (11) and (13)]. These equations are equivalent
to those obtained using the Hamilton–Jacobi equation.
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3. Local times

Even though Eqs. (9), (11) and (12) contain the time deriva-
tive of a single coordinate, Eqs. (9) and (11) still contain mix-
tures of the coordinates. This fact can be conveniently hidden
by introducing local (or fictitious) times,τi, defined by

dτi ≡ cidt (21)

(see,e.g., Refs. [8,5], and the references cited therein).
Considering again the example provided by the La-

grangian (4), we have the three local times

dτ1 =
1
m

dt, dτ2 =
1

mr2
dt, dτ3 =

1
mr2 sin2 θ

dt.

We see that onlydτ1 is an exact differential, andτ1 is, up to
a constant factor, the real time. For instance, in terms ofτ2,
Eqs. (10) and (11) take the form

d2θ

dτ2
2
− l3

2 cos θ

sin3 θ
−mk sin θ = 0 (22)

and
(

d θ

dτ2

)2

+
l3

2

sin2 θ
+ 2mk cos θ = M, (23)

respectively, which determineθ as a function ofτ2 alone.
Furthermore, one can readily verify that Eq. (22) is the La-
grange equation for the one-dimensional Lagrangian

L2(θ, dθ/dτ2, τ2) ≡ 1
2

(
d θ

dτ2

)2

− l3
2

2 sin2 θ

−mk cos θ + const., (24)

treatingl3 as a constant, and that the left-hand side of Eq. (23)
is, essentially, the Jacobi integral corresponding toL2, mul-
tiplied by 2.

Again, this is not an exceptional behavior; making use of
Eqs. (21), (14) and (17) we see that the Lagrange equations
(16) areequivalentto

0 =
d2qj

dτj
2

+
dwj

dqj
−

n∑

k=1

dujk

dqj
αk (25)

(j = 1, 2, . . . , n), which, for each value ofj, is the Lagrange
equation for the one-dimensional Lagrangian

Lj(qj , dqj/dτj , τj)≡1
2

(
dqj

dτj

)2

−wj+
n∑

k=1

ujkαk, (26)

provided that theαk are treated as constants. (Recall that
wj and ujk are functions of the single variableqj .) Mak-
ing use of Eqs. (26), (21), (2), and (1), one finds that the
one-dimensional Lagrangians (26) are related to the original
Lagrangian (1) by

n∑

j=1

Ljdτj = (L + E) dt (27)

[cf. Ref. [5], Eq. (21)]. The combination(L + E) dt ap-
pears in the principle of least action (instead ofL dt, con-
sidered in Hamilton’s principle), which is applicable when
E is conserved on the actual and the varied paths (see,e.g.,
Refs. [9,10]).

Since the LagrangianLj does not depend onτj , the cor-
responding Jacobi integral is a constant of motion. Making
use of the definitions (26), (21), and (14), one finds that these
constants of motion are identically equal to zero. (By con-
trast, in the case of a Liouville system, where a single local
time is enough, the Jacobi integrals associated with the one-
dimensional Lagrangians lead ton−1 nontrivial constants of
motion [5]).

4. Concluding remarks

With the only exception ofα1, which is related to the time-
independence of the Lagrangian (1), the othern−1 constants
of motion,α2, . . . , αn, need not be associated with ignorable
coordinates.

As we have shown, the Stäckel theorem, which is related
to the separability of the Hamilton–Jacobi equation, turns out
to be directly relevant in the Lagrangian formalism. This fact
must not be surprising since, in both formalisms, one is deal-
ing with the same problem. In order to have an analog of the
Sẗackel theorem in the Lagrangian formalism, without refer-
ence to the Hamilton–Jacobi equation, it would be necessary
to have an analog of the concept of separability.
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and Lie Algebras, Vol. I (Birkhäuser, Basel, 1990), Sect. 2.3.
doi.org/10.1007/978-3-0348-9257-5

Rev. Mex. F́ıs. 67 (3) 447–451

doi.org/10.2307/3612016�
doi.org/10.1007/978-3-0348-9257-5�
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