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This paper deals with the application of a novel variable-order and constant-order fractional derivative without singular kernel of Atangana-
Koca type to describe the fractional viscoelastic models, nhamely, fractional Maxwell model, fractional Kelvin-Voigt model, fractional Zener
model and fractional Poynting-Thomson model. For each fractional viscoelastic model, the stress relaxation modulus and creep compliance
are derived analytically under the variable-order and constant-order fractional derivative without singular kernel. Our results show that the
relaxation modulus and creep compliance exhibit viscoelastic behaviors producing temporal fractality at different scales. For each viscoelastic
model, the stress relaxation modulus and creep compliance are derived analytically under novel variable-order and constant-order fractiona
derivative with no singular kernel.
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1. Introduction cous dampers (dashpots). For a distributed material the stress
due to the elastic element is proportional to the strain and the

Materials are more or less dissipative and show phenomerfiress due to the viscous element is proportional to the time
such as creep, relaxation and damping. Viscoelastic constfate of change of strain. The commonly used viscoelastic ma-
tutive models are often useful to model such behavior. Visterial models are Maxwell model and Kelvin-Voigt model.
coelasticity theory describes processes in which the state of Bhese provide a useful description of relaxation, creep and
mechanical system depends on a complete record of actiogé'ess rate dependence for some viscoelastic materials [13].
that were performed on it. Many polymers initially undergo  The Fractional calculus is a powerful tool to character-
fast relaxation followed by very slow relaxation. This behav-ize the viscoelastic behaviors due to long-time memory and
ior can be described effectively by using fractional order op-global correlation information. Fractional order derivatives
erators in the constitutive laws of viscoelasticity. Fractionalare used in fractional calculus models, which represent a rel-
viscoelastic model used to described the laws of deformatioatively simple way to describe dynamics in complex systems.
for modeling the viscoelastic behavior of real materials [7].In fractional viscoelastic models, a fractional dashpot is pro-
Fractional differential models in linear viscoelasticity allow posed to describe the dependence of viscous response on de-
the creep and relaxation processes to be described adequattdymation history, while an elastic spring is used to repre-
by means of simple relationships between stresses and straissnt the time-independent elastic response. Through different
with a relatively small number of adjustable parameters [15]combinations of elastic springs and fractional dashpots, vari-
Fractional viscoelastic models lead to the non-Debay relaxeus fractional viscoelastic models have been constructed such
ation behavior typical of numerous experimental observaas fractional Maxwell model, fractional Kelvin-Voigt model
tions [6]. Fractional differential models in linear viscoelas- and fractional Zener model.

ticity take into account stochastic (micro-Brownian) motion  The rheological representative of fractional Maxwell
of molecules at the microlevel in the phenomenologlcal demode| which is consisted of a Spring in series with a frac-
scription of viscoelastic media [15, 16]. Viscoelastic materi-tional dashpot as shown in Fig. 1a). The relationship be-

als exhibit both elastic and viscous characteristics when unyeen stress and straire of fractional Maxwell model can
dergoing deformation [22]. For elastic response, the stresgye expressed as

strain relationship is rate independent. For viscous behav-

iors, the stress depends on deformation rate representing as a d’o o d¥e

stiffer response at a larger loading rate. The viscoelastic re- T TP @)
sponse shows a dependence on the deformation history [12].

The mechanics of these viscoelastic materials can be modvhereE is the elastic modulus of the string ands the re-
eled as arrangements of lossless elastic springs and lossy vlaxation time of the fractional dashpot.
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E equivalent forms, namely the creep and the relaxation rep-
—'\/\/\l— resentations. To each of these representations, two material
functionsG(t) andJ(t) respectively called relaxation mod-

AA A ME e e ulus and creep compliance can be associate. It is also im-
portant to stress that each of these two functions contains all

E & E: the physical information about the viscoelastic model. In the

a) b) T Laplace domain, a given (linear) constitutive equation takes
the following two equivalent forms [18, 25]

sJ(s)a(s). (5)
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i These fractional viscoelastic models have been success-
s " £ fully applied to describe the viscoelastic behaviors of various
c) d) material systems [10, 11, 20, 24, 25].
FIGURE 1. Fractional viscoelastic models: a) fractional Maxwell

model, b) fractional Kelvin-Voigt model, c) fractional Zener model .
and d) fractional Poynting-Thomson model. 1.1. Fractional Calculus

The fractional Kelvin-Voigt model is composed by a In last decades, the concept of fractional calculus has been
spring in parallel with a fractional dashpot as shown inattracting the attention around the world due to its applica-
Fig. 1b). The constitutive relationship has the following form tions in complex systems. The model involving the fractional

order derivatives gives a better prediction in comparison to
de € o model using integer order derivatives. Recently, the concepts
T T (2)  of fractional differentiation and integration have both wit-

i ) nessed an historical development where the power law kernel
~ The fractional three-element models include the fracy, 5 reviewed and replaced by exponential and Mittag-Leffler
tional Zener model and the fractional Poynting-Thomsonye ne|s [3,8,9,19]. These developments come from some ar-
model. The fractional Zener model is composed of an elastigments that were raised about the singularity of the power
spring and a fractional Maxwell model in parallel as shown|gy, around the origin zero. Generally speaking, a finite-time
in Fig. 1c). The stress is related with the strains as singularity will be observed when one input parameter or

d’o v d’e  Fye variable is time and the result of the output variable blow
v T = (Bt Er) o+ (3 up toward infinity at a finite time. The notion of fractional
where E; is the elastic modulus of the spring in the first differentiation with non singular kernel was then suggested
branch, E, is the elastic modulus of the spring in the to hqndle such natural occurrence a}nd also to handle those
physical problem where the singularities do not occur at the

branch of the fractional maxwell element ands the re- .2 " o .
laxation time of the fractional dashpot. While the fractionalInltlal conditions. They have been applied in many fields
y of science with great success [2, 5, 21, 23]. While the con-

Poynting-Thomson model is consisted of a spring and frac- . - .
tional Kelvin-Voigt element, which are arranged in series ascept Of. frac_;tlonal derivative with constant order have been
- . . ._"In fashion in the last decades, they have been found to be
shown in Fig. 1d). The corresponding constitutive relation-, = -~ . : e

ship is represented inefficient when de_almg with anomalous diffusion therefpre,
the concept of variable orders was suggested. The variable-

d’o € 1 d¥o n 1 1\ o 4 order fractional derivatives are very useful when investigat-
<E1 T E2> ) ing the memory properties which change with time and spa-

. ) tial location. Therefore, variable-order fractional derivative
where E, and E; are the corresponding elastic moduli of can be used to characterize variable memory effect of the
the two springs,tau is the relaxation time of the frac- system. Constant-order fractional operators are capable of
tional dashpot. Though the fractional Zener model and fraCdescribing some very relevant physical phenomena, it can-
tional Poynting-Thomson model are constructed from dif-not capture important classes of physical phenomena where
ferent combinations of elastic spring and fractional dashthe order itself is a function of either dependent or indepen-
pot, it is found that the two models are actually equiva-dent variables. For example, the reaction kinetics of pro-
lent. If the materials constants;, E>; and7" of fractional  teins has been found to exhibit relaxation mechanisms that
Zener model in EqL3) are replaced byE1E2/[Er + E]),  are properly described by a temperature-dependent fractional

(E1 /[E1 + E9)) and (B2 7¥/[Ey + E»]) respectively, the order [17]. Thus, the underlying physics of the reaction ki-
obtained constitutive relationship is identical #).( netics (captured by the order of the relaxation mechanism)
According to the general theory of linear viscoelastic-changes with temperature. Hence, it is reasonable to think

ity [25], given linear model can be expressed in terms of twathat a differential equation with operators that update their

a7 T, aw

_
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order as a function of temperature will better describe the proThe m-th derivative of the functioﬂgff)(at‘;) with 6 > 0
tein kinetics. This study suggests that there exist classes @ihdy > 0 is given by

physical problems that would be better described by variable-

order fractional operators. The differential operators are ex- o) (449 = (K + m) aktok

cellent suggestion for anomalous diffusion, one will realizes Es (at’) Z L(6k +om +v)

that they cannot be used for analytical purpose [1, 4].
Definition 1.1. The generalized Mittag-Leffler function
E3,(2) is defined as follows [27]

k=0

The Laplace transform of the functimﬁ”“—lEg’”j) (at®) is

given as
E5 m!s o—v

(55 _ a)'rn—i—l ’

v Z I( (5n —|— v) L {tﬁmeilE(gz)(atd)} (s) =
(6,v, A € C,R(0) > 0,R(v) > 0,R(A\) > 0),

where(\),, is the Pochhammer symbol defined by
I'(A+n)

0>0, veR, 9‘{()>|a|% (10)

Delgadoet al [26] applied a new fractional derivative

N = INCY I (Mo =1, with variable and constant order applied to a mass-spring-
" damper system. @nez-Aguilar [14] obtained analytical so-
A)y = H(/\ +k—1),n>1. lutions to electrical circuits of non-integer order via fractional
el derivatives with and without singular kernels.

Definition 1.2. Let f € H'(a,b) and0 < § < 1,
then Atangana-Koca derivative of fractional order in Caputo
sense is given as [4]:

1
AKC,DL(f(1) = 90

2. Maxwell model with Atangana-Koca frac-
tional derivative

) In this section, we will investigate the analytic solutions of
the relaxation modulus and creep compliance for fractional
F1 (1) ES s(—g(8)(t — 7)°) dr, (6) Maxwell model yvith frac.tional derivative of variable and
’ constant order with non singular kernel.

X

o— . ©

where the functiog(¢) is well-defined such that

~

Maxwell model with AKC fractional derivative with con-

o t/ S s stant order
lim = / () EL 5(—g(8)(t — 7)°) dr

Let us considerd) involving the AKC fractional derivative
with constant ordei@) as follows:

G R
= / dt = f(t) f(O) AKCODtV(J(t)) + % _ EAKCODtV(G(t)). (11)

The Laplace transform for the Atangana-Koca fractional

derivative ) is given by We apply Laplace transform td.1) and obtain the following

. relationship,
AKC é — = (ef —
L{D(FEN} () = o755 (s () = £(0) N R SN
R - g(v)(1—g(v))” ™ g(v)(1—g(v))”
X — .
(1—-g(5))° which gives
Definition 1.3. Letg(z) € C'[a,b] and f(x) a differential
functionin an openinterval. The Atangana-Koca fractional (s) = Es &(s). (13)

S (=g ()T

r The Laplace transform of relaxation modulus can then be de-
AV DI(f(0) = [ £(r)expl(-gl@)lt =) dr. ) fved ag

variable order derivative in Caputo sense is giver{by

The Laplace transform for the Atangana-Koca fractional G(s) = a(s) — Er”
variable order derivative is given by se(s)  g(v)(1—g(v))”
f(s) — -1
{4V oD () () = T TO ) 9 G, D
s +90) S S —gw”
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FIGURE 2. Mechanical properties of fractional Maxwell model involving the Atangana-Koca fractional derivative. In a) relaxation modulus
and b) creep compliance for severabalues, arbitrarily chosen.

By applying the inverse Laplace transform 4f and us-  which gives
ing (10), the relaxation modulus of fractional Maxwell model

with Atangana-Koca fractional order derivativé) (is ob- Ese(s)r9®)

. o(s) = . 20
tained as o(s) s(190) +1) + g(v) (20)
ETthV
G (t) = WEW,WH By applying the inverse Laplace transform @0) and us-
9 g ing (10), the relaxation modulus of fractional Maxwell model
<_ TV (15) with Atangana-Koca fractional variable order derivat8gi¢
g()(1 —g))” obtained as
The Laplace transform of the creep compliance can be esti- Er90) o,
mated from GAEV(t) = We‘ IO (21)
T
Ty - L 901 =)
s2G(s) ETv The Laplace transform of the creep compliance can be esti-
(s)
mated from
x ( 1 41 r ) (16)
S Sy —g) ) PP (i Vo TC) NN
The creep compliance then be obtained through inverse s2G(s) s2ET90)

Laplace transform ofl(6) as followin
P © g The creep compliance then be obtained through inverse
JAKC () 1 (1 N gw)(1—g) t™ )) _7) lLaplace transform o) as following

E TV 'l —nv
Figures 2a)-2b) shows the mechanical response of frac- JﬁKv(t) - & (1 tg(y)) ] (23)
tional Maxwell model involving the Atangana-Koca frac- ET9) 79 +1

tional derivative for several values, arbitrarily chosen. ) )
Figures 3a)-3d) shows the mechanical response of frac-

Maxwell model with AKC fractional derivative with vari- tional Maxwell model involving the Atangana-Koca frac-

able order tional derivative with variable order for severglv) values,
arbitrarily chosen.

Let us considerd) involving the AKC fractional derivative

with variable order®) as follows:

3. Kelvin-Voigt model with Atangana-Koca

AKV 1 g(v) 9  _ pAKV 1p.g(v) . L
0D (1)) + o B (e(t). (18) fractional derivative
We apply Laplace transform td8) and obtain the following

In this section, we will investigate the analytic solutions of
the relaxation modulus and creep compliance for fractional
so(s) | o(s) _ Ese(s) (19)  Kelvin-Voigt model with fractional derivative of variable and
s+gv) 190 s+g(v) constant order with non singular kernel.

relationship,
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FIGURE 3. Mechanical properties of fractional Maxwell model involving the Atangana-Koca fractional derivative with variable order. In
a)-b) relaxation modulus and c)-d) creep compliance for seyérglvalues, arbitrarily chosen.
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FIGURE 4. Mechanical properties of fractional Kelvin-Voigt model involving the Atangana-Koca fractional derivative. In a) relaxation
modulus and b) creep compliance for severahlues, arbitrarily chosen.

Kelvin-Voigt model with AKC fractional derivative with We apply Laplace transform t24) and obtain the following
constant order relationship,
s—™ _ é(s)  €(s)
Let us considerd) involving the AKC fractional derivative g(v)(1— g(y))l’e(s) T T B (25)
with constant ordeig) as follows: . .
which gives
_ T4 g —g()" N e
AKC v e__c Js—<s T Ee(s).  (26)
oD (e(t)) + = o (24) (s) g(v)(1 —g(v))¥ (5)

Rev. Mex. Fis68 020703
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The Laplace transform of relaxation modulus can then be deKelvin-Voigt model with AKC fractional derivative with

rived as variable order
- a(s) 1 TV 1
Gls)=—5=F-+ _ s art ) @7 Letus consider3) involving the AKC fractional derivative
s€(s) s gw)(1—gw))”s :
_ _ with constant ordei8) as follows:
By applying the inverse Laplace transform @7) and us-
ing (10), the relaxation modulus of fractional Kelvin-Voigt AKV 1 o) (¢(¢ e 0 (31)
model with Atangana-Koca fractional order derivatié} i6 oD (e(t)) + 79) T Bre)’
obtained as

We apply Laplace transform t81) and obtain the following

v t?’ll/
GARC(t) = E (1 + u ) . (28) relationship,
W=E sy w1 ) @9 P
The Laplace transform of the creep compliance can be esti- s 1 B a(s)
mated from ———+ oy | és) = ; (32)
s+gv) TIW Er9)
- 1 1 51
J(s) = —=—=— — - (29)  which gives
$°G(s)  E <5""+ oo g<u>>v> ’
The creep compliance then be obtained through inverse P s(79W) 4 1) 4 g(v) Be 33
Laplace transform ofl6) as following o(s) = s+ g(v) &(s)- (33)
1 l/t’rLV
Jtet) = =B (————— | - (30)  The Laplace transform of relaxation modulus can then be de-
E @)1 = g(x))” rived as
Figures 4a)-4b) shows the mechanical response of frac-
tional Kelvin-Voigt model involving the Atangana-Koca frac- G(s) = a(s) (! N T9) (34)
tional derivative for several values, arbitrarily chosen. 5)= sé(s) s s+gv))’
G(t)/E G(VE
TL
50

= g(v)=tanh(t+1) 4(v)=0.97-0.03-Cos(t/10)

== g(v)=tanh(t+1)/1.1+exp(-1) 4 — 9(v)=1-Cos 2(t)2
9(v)=|Cos(t/100)| — g(v)=0,97-0.03:Sin(t/10)

— g()=0.97+0,03:Cos(t/10) g(¥)=0.97+0.03-Sin(t/10)

= g(v)=1/1+exp(-t) — (v)=0.8-0,1+Sin{rr+t)

2 4 6 8 10 2 4 6 8 10
a) b)
G(tVE G(t)/E
07 X

= g(v)=tanh(t+1)/1.1+exp(-t)

06

m— g(v)=1/1+exp(-t)

05

= g(v)=tanh(t+1)

4(v)=0.97-0.03:Cos(1/10)

04
— g(v)=tanh(t+1)/1.1+exp{-t) g(v)=1-Cos"2(t)/2

= - g(v)=|Cos(t/100)| 03 — g(¥}=0.97-0.03.5in(/10)
02 —— g(v)=0,97+0,03.Cos(t/10) 0z 4(v)=0.97+0,03+Sin(t/10)
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FIGURE 5. Mechanical properties of fractional Kelvin-Voigt model involving the Atangana-Koca fractional derivative with variable order.
In a)-b) relaxation modulus and c)-d) creep compliance for seyérglvalues, arbitrarily chosen.
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By applying the inverse Laplace transform/82 and using/10), the relaxation modulus of fractional Kelvin-Voigt model
with Atangana-Koca fractional variable order derivati@pié obtained as

GEEV(t) = B(1 + 7909t (35)
The Laplace transform of the creep compliance can be estimated from
_ 1 /(1 g(v)
T =% (f%)- (36)
S+ Lo
The creep compliance then be obtained through inverse Laplace transfi@6) a$ following
1 7900) et
AKV _ o D)

Figures 5a)-5d) shows the mechanical response of fractional Maxwell model involving the Atangana-Koca fractional
derivative with variable order for sever@lv) values, arbitrarily chosen.
4. Three-element model with Atangana-Koca fractional derivative

In this section, we will investigate the analytic solutions of the relaxation modulus and creep compliance for fractional Zener
model and fractional Poynting-Thomson model with fractional derivative of variable and constant order with non singular
kernel.

Zener model with AKC fractional derivative with constant order

Let us consider3) involving the AKC fractional derivative with constant ord®) @s follows:

E
AKCODM(0(1) + o = (B + B2 Ko Dy (e(t) + —- (38)
We apply Laplace transform t88) and obtain the following relationship,
s _ a(s) s _ €(s)
a(s) + = (1 +E)———€(s)+ F , 39
g1 gy T T B R e B )
which gives
_ (Br + Ep)s ™" + Erg(v)(1 — g(v))” _
o(s) = €(s). 40
) R [ ) C 0
The Laplace transform of relaxation modulus can then be derived as
—~ v nv—1
G(s) = a(s)  (E1+ E)T 1 LB s (41)

sé(s) )1 —g())” s(s™ + OO,

By applying the inverse Laplace transform ®il) and using10), the relaxation modulus of fractional Zener model with
Atangana-Koca fractional order derivativ@) (s obtained as
L ) L @)

s™ + goa—en”

(Ey + Eo)T7t™ < TV ) (
—Enlf,nu 1 T TN /1 oW + ElEnV,m/ 1 T T ON/1 oW
gw) (1 —g))” g1 - gw)) g1 - gw))
The Laplace transform of the creep compliance can be estimated from

. 1 T 1 1 5"l

J(s) = $2G(s)  Eig(v)(1 — g(v))” . (s”” N (E1£E2> g(u)(ﬂjg(y))u) + B (snu T <E1§1E2) g(y)(ffg(y))y) (43)

The creep compliance then be obtained through inverse Laplace transfo48) a$ following

AKC TV | Eit B T
R e e O o P cer )

1 B+ Ey TV
e (<[5 )
E Er Jgw)(1—gv))¥
Figures 6a)-6b) shows the mechanical response of fractional Zener model involving the Atangana-Koca fractional derivative
for severaly values, arbitrarily chosen.

GARC ) =

Rev. Mex. Fis68 020703
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FIGURE 6.Mechanical properties of fractional Zener model involving the Atangana-Koca fractional derivative. In a) relaxation modulus and
b) creep compliance for sevenalalues, arbitrarily chosen.

Zener model with AKC fractional derivative with variable order

Let us consider3) involving the AKC fractional derivative with constant ord8) &s follows:

E1€

_ (El + E2)AKVODtg(V)(6(t)) + o)

ARV DM (o (1)) + (44)

7‘9(1’)
We apply Laplace transform td4) and obtain the following relationship,

(s+ 1 >U(S):<(E1+E2)s+ E; )6(8)7 (45)

stgw) 70 stol) | )

which gives
Ey 4+ E))1m9") + F E -
5(s) = (1 + E2)79") + Ey)s + 19(”)6(5). (46)
ST 1) + g(v)
The Laplace transform of relaxation modulus can then be derived as
_ 5 E Eor9W) 1
Gls) = 506((?) - ?1 + g(2vT) +1 g(v) - (47)
T S+ S

By applying the inverse Laplace transform &7) and using10), the relaxation modulus of fractional Zener model with
Atangana-Koca fractional variable order derivati8pi§ obtained as
a(s) Eyr9®) e

AKV _ — 79(¥)
G2 W=y =Bt L T (48)

The Laplace transform of the creep compliance can be estimated from

- 1 s(r90) + 1) + g(v
J(s) = — _ ( (V)) 9(v) (49)
s2G(s)  s(s((BE1 + E2)79W) + Ey) + E1g(v))
The creep compliance then be obtained through inverse Laplace transf@6) aé following
TRV () = (Bt Bar’™) o (50)

T Bl E\((Bi+ BEy)m9W + Ey)

Remark 4.11f the materials constant®y, E» and7” of fractional Zener model in Eq3) are replaced b)E’lEz/(El + EQ),

~ 2 ~ ~ ~ 2 ~ ~ . . . . . . .. . .

E, /(Fy + E>) and Ey 7V/(Ey + E) respectively, the obtained constitutive relationship is identicg#jo The analytical
solutions of the relaxation modulus and creep compliance for fractional Poynting-Thomson model can be obtain from fractional

Zener model.
Figures 7a)-7d) shows the mechanical response of fractional Zener model involving the Atangana-Koca fractional derivative

with variable order for severgl(v) values, arbitrarily chosen.
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FIGURE 7. Mechanical properties of fractional Zener model involving the Atangana-Koca fractional derivative with variable order. In a)-b)
relaxation modulus and c)-d) creep compliance for sevga) values, arbitrarily chosen.

5. Results and discussions Figures 4a)-4b) and 5a)-5d) shows the mechanical re-
sponse of fractional Kelvin-Voigt model with Atangana-Koca

In this section, we compare the performance of fractional visfractional derivative with constant and variable order. The

coelastic models with fractional derivatives of constant ancF"€€P compliance of fractional Kelvin-Voigt model exponen-
variable order of Atangana-Koca type. The mechanical reI"'?‘I increase with time instead of linear increase compared
sponse of Maxwell model with new fractional derivatives With fractional Maxwell-model. ,

of constant and variable order are shown in Figs. 2a)-2b) Figures 6a)-6b) plot the relaxation modulus and creep
and 3a)-3d) respectively. It can be seen from Figs. 2a)-2b ompliance for d|ffer'ent/ of f.racFlonaI' Zener model with
that creep compliances with Atangana-Koca constant ord t_angana-Koca fractlona_l derivative with (_:on_stant, the relax-
derivative decrease sharply as— 1. The Atangana-Koca ation modulus exponential decreases with increasing value
fractional derivative of constant ordemesults in slowest re-  Of V-

laxation of viscoelastic materials as — 0, which can be

used to characterize ultraslow relaxation of viscoelastic mag.  Conclusions

terials. Numerical solutions of E028) have been depicted

in Figs. 3a)-3d), for different values of the fractional order The analytical solutions of the stress relaxation modulus and
g(v). ltis seen that the system exhibits behaviors such thatreep compliance for fractional Maxwell model, fractional
the solution continuously depends on the time variables. Th&elvin-Voigt model, fractional Zener model and fractional
creep compliance of fractional Maxwell model with variable Poynting-Thomson model are obtained. It is found that the
order derivative exponential increase with time instead of linfractional Zener model has similar performance as fractional
ear increase compared with fractional Maxwell-model withMaxwell model. These solutions represent a new family
constant order fractional derivative. The numerical resultof solutions for the viscoelastic models, which allows for
indicate that the fractional order has an important influencehe possibility of multiple solutions that are not observed
on the relaxation modulus and the creep compliance and the experiments (complex dynamic behaviors are observed).
general solution of the fractional equations depends on theor different time periods we have different memory abil-
parameters and when the order is a function rather than aities. The representation of generalized viscoelastic mod-
constant of arbitrary order(v), respectively. els by variable-order and constant-order fractional derivative
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also allows a deeper insight into the physics behind fractionahcknowledgments
stress-strain relations. The variable-order fractional deriva-
tive can be used to characterize variable memory effect of thgo$ Francisco @mez Aguilar acknowledges the support
systems. Itis shown that the constant-order model is not ablgrovided by CONACYT: @tedras CONACyT parayenes
to capture all the details of the variable-order solution, parinvestigadores 2014 and SNI-CONACyT.

ticularly in the areas of transition between dynamic regimes.
We concluded that this new fractional variable-order operator

is more suitable for modeling real-world complex problems
than all existing fractional variable-order operators. The ex-

perimental verification of these models will be reported in a

future paper.
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