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This paper deals with the application of a novel variable-order and constant-order fractional derivative without singular kernel of Atangana-
Koca type to describe the fractional viscoelastic models, namely, fractional Maxwell model, fractional Kelvin-Voigt model, fractional Zener
model and fractional Poynting-Thomson model. For each fractional viscoelastic model, the stress relaxation modulus and creep compliance
are derived analytically under the variable-order and constant-order fractional derivative without singular kernel. Our results show that the
relaxation modulus and creep compliance exhibit viscoelastic behaviors producing temporal fractality at different scales. For each viscoelastic
model, the stress relaxation modulus and creep compliance are derived analytically under novel variable-order and constant-order fractional
derivative with no singular kernel.
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1. Introduction

Materials are more or less dissipative and show phenomena
such as creep, relaxation and damping. Viscoelastic consti-
tutive models are often useful to model such behavior. Vis-
coelasticity theory describes processes in which the state of a
mechanical system depends on a complete record of actions
that were performed on it. Many polymers initially undergo
fast relaxation followed by very slow relaxation. This behav-
ior can be described effectively by using fractional order op-
erators in the constitutive laws of viscoelasticity. Fractional
viscoelastic model used to described the laws of deformation
for modeling the viscoelastic behavior of real materials [7].
Fractional differential models in linear viscoelasticity allow
the creep and relaxation processes to be described adequately
by means of simple relationships between stresses and strains
with a relatively small number of adjustable parameters [15].
Fractional viscoelastic models lead to the non-Debay relax-
ation behavior typical of numerous experimental observa-
tions [6]. Fractional differential models in linear viscoelas-
ticity take into account stochastic (micro-Brownian) motion
of molecules at the microlevel in the phenomenological de-
scription of viscoelastic media [15, 16]. Viscoelastic materi-
als exhibit both elastic and viscous characteristics when un-
dergoing deformation [22]. For elastic response, the stress-
strain relationship is rate independent. For viscous behav-
iors, the stress depends on deformation rate representing as a
stiffer response at a larger loading rate. The viscoelastic re-
sponse shows a dependence on the deformation history [12].
The mechanics of these viscoelastic materials can be mod-
eled as arrangements of lossless elastic springs and lossy vis-

cous dampers (dashpots). For a distributed material the stress
due to the elastic element is proportional to the strain and the
stress due to the viscous element is proportional to the time
rate of change of strain. The commonly used viscoelastic ma-
terial models are Maxwell model and Kelvin-Voigt model.
These provide a useful description of relaxation, creep and
stress rate dependence for some viscoelastic materials [13].

The Fractional calculus is a powerful tool to character-
ize the viscoelastic behaviors due to long-time memory and
global correlation information. Fractional order derivatives
are used in fractional calculus models, which represent a rel-
atively simple way to describe dynamics in complex systems.
In fractional viscoelastic models, a fractional dashpot is pro-
posed to describe the dependence of viscous response on de-
formation history, while an elastic spring is used to repre-
sent the time-independent elastic response. Through different
combinations of elastic springs and fractional dashpots, vari-
ous fractional viscoelastic models have been constructed such
as fractional Maxwell model, fractional Kelvin-Voigt model
and fractional Zener model.

The rheological representative of fractional Maxwell
model which is consisted of a spring in series with a frac-
tional dashpot as shown in Fig. 1a). The relationship be-
tween stressσ and strainε of fractional Maxwell model can
be expressed as

dνσ

dtν
+

σ

τν
= E

dνε

dtν
, (1)

whereE is the elastic modulus of the string andτ is the re-
laxation time of the fractional dashpot.
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FIGURE 1. Fractional viscoelastic models: a) fractional Maxwell
model, b) fractional Kelvin-Voigt model, c) fractional Zener model
and d) fractional Poynting-Thomson model.

The fractional Kelvin-Voigt model is composed by a
spring in parallel with a fractional dashpot as shown in
Fig. 1b). The constitutive relationship has the following form

dνε

dtν
+

ε

τν
=

σ

Eτν
. (2)

The fractional three-element models include the frac-
tional Zener model and the fractional Poynting-Thomson
model. The fractional Zener model is composed of an elastic
spring and a fractional Maxwell model in parallel as shown
in Fig. 1c). The stress is related with the strains as

dνσ

dtν
+

ν

τν
= (E1 + E2)

dνε

dtν
+

E1ε

τν
, (3)

whereE1 is the elastic modulus of the spring in the first
branch, E2 is the elastic modulus of the spring in the
branch of the fractional maxwell element andτ is the re-
laxation time of the fractional dashpot. While the fractional
Poynting-Thomson model is consisted of a spring and frac-
tional Kelvin-Voigt element, which are arranged in series as
shown in Fig. 1d). The corresponding constitutive relation-
ship is represented

dνσ

dtν
+

ε

τ̂ν
=

1
Ê1

dνσ

dtν
+

(
1

Ê1

+
1

Ê2

)
σ

τν
, (4)

where Ê1 and Ê2 are the corresponding elastic moduli of
the two springs, ˆtau is the relaxation time of the frac-
tional dashpot. Though the fractional Zener model and frac-
tional Poynting-Thomson model are constructed from dif-
ferent combinations of elastic spring and fractional dash-
pot, it is found that the two models are actually equiva-
lent. If the materials constantsE1, E2 and τ̂ν of fractional
Zener model in Eq. (3) are replaced by(Ê1Ê2/[Ê1 + Ê2]),
(Ê1

2
/[Ê1 + Ê2]) and (Ê2

2
τ̂ν/[Ê1 + Ê2]) respectively, the

obtained constitutive relationship is identical to (4).
According to the general theory of linear viscoelastic-

ity [25], given linear model can be expressed in terms of two

equivalent forms, namely the creep and the relaxation rep-
resentations. To each of these representations, two material
functionsG(t) andJ(t) respectively called relaxation mod-
ulus and creep compliance can be associate. It is also im-
portant to stress that each of these two functions contains all
the physical information about the viscoelastic model. In the
Laplace domain, a given (linear) constitutive equation takes
the following two equivalent forms [18,25]

σ̄(s) = sḠ(s)ε̄(s), ε̄(s) = sJ̄(s)σ̄(s). (5)

These fractional viscoelastic models have been success-
fully applied to describe the viscoelastic behaviors of various
material systems [10,11,20,24,25].

1.1. Fractional Calculus

In last decades, the concept of fractional calculus has been
attracting the attention around the world due to its applica-
tions in complex systems. The model involving the fractional
order derivatives gives a better prediction in comparison to
model using integer order derivatives. Recently, the concepts
of fractional differentiation and integration have both wit-
nessed an historical development where the power law kernel
was reviewed and replaced by exponential and Mittag-Leffler
kernels [3,8,9,19]. These developments come from some ar-
guments that were raised about the singularity of the power
law around the origin zero. Generally speaking, a finite-time
singularity will be observed when one input parameter or
variable is time and the result of the output variable blow
up toward infinity at a finite time. The notion of fractional
differentiation with non singular kernel was then suggested
to handle such natural occurrence and also to handle those
physical problem where the singularities do not occur at the
initial conditions. They have been applied in many fields
of science with great success [2, 5, 21, 23]. While the con-
cept of fractional derivative with constant order have been
in fashion in the last decades, they have been found to be
inefficient when dealing with anomalous diffusion therefore,
the concept of variable orders was suggested. The variable-
order fractional derivatives are very useful when investigat-
ing the memory properties which change with time and spa-
tial location. Therefore, variable-order fractional derivative
can be used to characterize variable memory effect of the
system. Constant-order fractional operators are capable of
describing some very relevant physical phenomena, it can-
not capture important classes of physical phenomena where
the order itself is a function of either dependent or indepen-
dent variables. For example, the reaction kinetics of pro-
teins has been found to exhibit relaxation mechanisms that
are properly described by a temperature-dependent fractional
order [17]. Thus, the underlying physics of the reaction ki-
netics (captured by the order of the relaxation mechanism)
changes with temperature. Hence, it is reasonable to think
that a differential equation with operators that update their
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order as a function of temperature will better describe the pro-
tein kinetics. This study suggests that there exist classes of
physical problems that would be better described by variable-
order fractional operators. The differential operators are ex-
cellent suggestion for anomalous diffusion, one will realizes
that they cannot be used for analytical purpose [1,4].
Definition 1.1. The generalized Mittag-Leffler function
Eλ

δ,ν(z) is defined as follows [27]

Eλ
δ,ν(z) =

∞∑
n=0

(λ)nzn

Γ(δn + ν)n!
,

(δ, ν, λ ∈ C,R(δ) > 0, R(ν) > 0, R(λ) > 0),

where(λ)n is the Pochhammer symbol defined by

(λ)n =
Γ(λ + n)

Γ(λ)
, (λ)0 = 1,

(λ)n =
n∏

k=1

(λ + k − 1), n ≥ 1.

Definition 1.2. Let f ∈ H1(a, b) and 0 < δ ≤ 1,
then Atangana-Koca derivative of fractional order in Caputo
sense is given as [4]:

AKC
0Dt

δ(f(t)) =
1

g(δ)

×
t∫

0

f ′(τ)Eδ
δ,δ(−g(δ)(t− τ)δ) dτ, (6)

where the functiong(δ) is well-defined such that

lim
δ→0

1
g(δ)

t∫

0

f ′(τ)Eδ
δ,δ(−g(δ)(t− τ)δ) dτ

=

t∫

0

df(τ)
dt

= f(t)− f(0).

The Laplace transform for the Atangana-Koca fractional
derivative (6) is given by

L{
AKC

0Dt
δ(f(t))

}
(s) =

1
g(δ)

(sf̄(s)− f(0))

× s−nδ−1

(1− g(δ))δ
. (7)

Definition 1.3. Let g(x) ∈ C1[a, b] and f(x) a differential
function in an open intervalI. The Atangana-Koca fractional
variable order derivative in Caputo sense is given by[1]

AKV
0Dt

g(x)(f(t)) =

t∫

0

f ′(τ) exp(−g(x)(t− τ)) dτ. (8)

The Laplace transform for the Atangana-Koca fractional
variable order derivative is given by

L
{

AKV
0Dt

g(δ)(f(t))
}

(s) =
sf̄(s)− f(0)

s + g(δ)
. (9)

The m-th derivative of the functionE(m)
δ,ν (atδ) with δ > 0

andν > 0 is given by

E
(m)
δ,ν (atδ) =

∞∑

k=0

(k + m)!
k!

aktδk

Γ(δk + δm + ν)
.

The Laplace transform of the functiontδm+ν−1E
(m)
δ,ν (atδ) is

given as

L
{

tδm+ν−1E
(m)
δ,ν (atδ)

}
(s) =

m!sδ−ν

(sδ − a)m+1
,

δ > 0, ν ∈ R, R(s) > |a| 1δ . (10)

Delgadoet al [26] applied a new fractional derivative
with variable and constant order applied to a mass-spring-
damper system. Ǵomez-Aguilar [14] obtained analytical so-
lutions to electrical circuits of non-integer order via fractional
derivatives with and without singular kernels.

2. Maxwell model with Atangana-Koca frac-
tional derivative

In this section, we will investigate the analytic solutions of
the relaxation modulus and creep compliance for fractional
Maxwell model with fractional derivative of variable and
constant order with non singular kernel.

Maxwell model with AKC fractional derivative with con-
stant order

Let us consider (1) involving the AKC fractional derivative
with constant order (6) as follows:

AKC
0Dt

ν(σ(t)) +
σ

τν
= EAKC

0Dt
ν(ε(t)). (11)

We apply Laplace transform to (11) and obtain the following
relationship,

s−nν

g(ν)(1−g(ν))ν
σ̄(s)+

σ̄(s)
τν

=
s−nν

g(ν)(1−g(ν))ν
ε̄(s), (12)

which gives

σ̄(s) =
Es−nν

s−nν + g(ν)(1− g(ν))ντ−ν
ε̄(s). (13)

The Laplace transform of relaxation modulus can then be de-
rived as

Ḡ(s) =
σ̄(s)
sε̄(s)

=
Eτν

g(ν)(1− g(ν))ν

×
(

s−1

snν + τν

g(ν)(1−g(ν))ν

)
. (14)
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FIGURE 2. Mechanical properties of fractional Maxwell model involving the Atangana-Koca fractional derivative. In a) relaxation modulus
and b) creep compliance for severalν values, arbitrarily chosen.

By applying the inverse Laplace transform to (14) and us-
ing (10), the relaxation modulus of fractional Maxwell model
with Atangana-Koca fractional order derivative (6) is ob-
tained as

GAKC
M (t) =

Eτνtnν

g(ν)(1− g(ν))ν
Enν,nν+1

×
(
− τνtnν

g(ν)(1− g(ν))ν

)
. (15)

The Laplace transform of the creep compliance can be esti-
mated from

J̄(s) =
1

s2Ḡ(s)
=

g(ν)(1− g(ν))ν

Eτν

×
(

1
s1−nν

+
1
s

τν

g(ν)(1− g(ν))ν

)
. (16)

The creep compliance then be obtained through inverse
Laplace transform of (16) as following

JAKC
M (t) =

1
E

(
1 +

g(ν)(1− g(ν))ν

τν

t−nν

Γ(1− nν)

)
. (17)

Figures 2a)-2b) shows the mechanical response of frac-
tional Maxwell model involving the Atangana-Koca frac-
tional derivative for severalν values, arbitrarily chosen.

Maxwell model with AKC fractional derivative with vari-
able order

Let us consider (1) involving the AKC fractional derivative
with variable order (8) as follows:

AKV
0Dt

g(ν)(σ(t)) +
σ

τg(ν)
= EAKV

0Dt
g(ν)(ε(t)). (18)

We apply Laplace transform to (18) and obtain the following
relationship,

sσ̄(s)
s + g(ν)

+
σ̄(s)
τg(ν)

=
Esε̄(s)
s + g(ν)

. (19)

which gives

σ̄(s) =
Esε(s)τg(ν)

s(τg(ν) + 1) + g(ν)
. (20)

By applying the inverse Laplace transform to (20) and us-
ing (10), the relaxation modulus of fractional Maxwell model
with Atangana-Koca fractional variable order derivative (8) is
obtained as

GAKV
M (t) =

Eτg(ν)

τg(ν) + 1
e
− g(ν)

τg(ν)+1
t
. (21)

The Laplace transform of the creep compliance can be esti-
mated from

J̄(s) =
1

s2Ḡ(s)
=

s(τg(ν) + 1) + g(ν)
s2Eτg(ν)

. (22)

The creep compliance then be obtained through inverse
Laplace transform of (16) as following

JAKV
M (t) =

τg(ν) + 1
Eτg(ν)

(
1 +

tg(ν)
τg(ν) + 1

)
. (23)

Figures 3a)-3d) shows the mechanical response of frac-
tional Maxwell model involving the Atangana-Koca frac-
tional derivative with variable order for severalg(ν) values,
arbitrarily chosen.

3. Kelvin-Voigt model with Atangana-Koca
fractional derivative

In this section, we will investigate the analytic solutions of
the relaxation modulus and creep compliance for fractional
Kelvin-Voigt model with fractional derivative of variable and
constant order with non singular kernel.

Rev. Mex. Fis.68020703
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FIGURE 3. Mechanical properties of fractional Maxwell model involving the Atangana-Koca fractional derivative with variable order. In
a)-b) relaxation modulus and c)-d) creep compliance for severalg(ν) values, arbitrarily chosen.

FIGURE 4. Mechanical properties of fractional Kelvin-Voigt model involving the Atangana-Koca fractional derivative. In a) relaxation
modulus and b) creep compliance for severalν values, arbitrarily chosen.

Kelvin-Voigt model with AKC fractional derivative with
constant order

Let us consider (2) involving the AKC fractional derivative
with constant order (6) as follows:

AKC
0Dt

ν(ε(t)) +
ε

τν
=

σ

Eτα
. (24)

We apply Laplace transform to (24) and obtain the following
relationship,

s−nν

g(ν)(1− g(ν))ν
ε̄(s) +

ε̄(s)
τν

=
ε̄(s)
Eτν

, (25)

which gives

σ̄(s) =
(

s−nντν + g(ν)(1− g(ν))ν

g(ν)(1− g(ν))ν

)
Eε̄(s). (26)
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The Laplace transform of relaxation modulus can then be de-
rived as

Ḡ(s) =
σ̄(s)
sε̄(s)

= E

(
1
s

+
τν

g(ν)(1− g(ν))ν

1
snν+1

)
. (27)

By applying the inverse Laplace transform to (27) and us-
ing (10), the relaxation modulus of fractional Kelvin-Voigt
model with Atangana-Koca fractional order derivative (6) is
obtained as

GAKC
KV (t) = E

(
1 +

τν

g(ν)(1− g(ν))ν

tnν

Γ(nν + 1)

)
. (28)

The Laplace transform of the creep compliance can be esti-
mated from

J̄(s) =
1

s2Ḡ(s)
=

1
E

(
snν−1

snν + τν

g(ν)(1−g(ν))ν

)
. (29)

The creep compliance then be obtained through inverse
Laplace transform of (16) as following

JAKC
KV (t) =

1
E

Enν,1

(
− τνtnν

g(ν)(1− g(ν))ν

)
. (30)

Figures 4a)-4b) shows the mechanical response of frac-
tional Kelvin-Voigt model involving the Atangana-Koca frac-
tional derivative for severalν values, arbitrarily chosen.

Kelvin-Voigt model with AKC fractional derivative with
variable order

Let us consider (2) involving the AKC fractional derivative
with constant order (8) as follows:

AKV
0Dt

g(ν)(ε(t)) +
ε

τg(ν)
=

σ

Eτg(ν)
. (31)

We apply Laplace transform to (31) and obtain the following
relationship,

(
s

s + g(ν)
+

1
τg(ν)

)
ε̄(s) =

σ̄(s)
Eτg(ν)

, (32)

which gives

σ̄(s) =
(

s(τg(ν) + 1) + g(ν)
s + g(ν)

)
Eε̄(s). (33)

The Laplace transform of relaxation modulus can then be de-
rived as

Ḡ(s) =
σ̄(s)
sε̄(s)

= E

(
1
s

+
τg(ν)

s + g(ν)

)
. (34)

FIGURE 5. Mechanical properties of fractional Kelvin-Voigt model involving the Atangana-Koca fractional derivative with variable order.
In a)-b) relaxation modulus and c)-d) creep compliance for severalg(ν) values, arbitrarily chosen.
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By applying the inverse Laplace transform to (34) and using (10), the relaxation modulus of fractional Kelvin-Voigt model
with Atangana-Koca fractional variable order derivative (8) is obtained as

GAKV
KV (t) = E(1 + τg(ν)e−g(ν)t). (35)

The Laplace transform of the creep compliance can be estimated from

J̄(s) =
1
E

(
1
s
− τg(ν)

s + g(ν)
τg(ν)+1

)
. (36)

The creep compliance then be obtained through inverse Laplace transform of (36) as following

JAKV
KV (t) =

1
E

(
1− τg(ν)

1 + τg(ν)
e
− g(ν)t

τg(ν)+1

)
. (37)

Figures 5a)-5d) shows the mechanical response of fractional Maxwell model involving the Atangana-Koca fractional
derivative with variable order for severalg(ν) values, arbitrarily chosen.

4. Three-element model with Atangana-Koca fractional derivative

In this section, we will investigate the analytic solutions of the relaxation modulus and creep compliance for fractional Zener
model and fractional Poynting-Thomson model with fractional derivative of variable and constant order with non singular
kernel.

Zener model with AKC fractional derivative with constant order

Let us consider (3) involving the AKC fractional derivative with constant order (6) as follows:

AKC
0Dt

ν(σ(t)) +
σ

τν
= (E1 + E2)AKC

0Dt
ν(ε(t)) +

E1ε

τα
. (38)

We apply Laplace transform to (38) and obtain the following relationship,

s−nν

g(ν)(1− g(ν))ν
σ̄(s) +

σ̄(s)
τν

= (E1 + E2)
s−nν

g(ν)(1− g(ν))ν
ε̄(s) + E1

ε̄(s)
τν

, (39)

which gives

σ̄(s) =
(E1 + E2)s−nντν + E1g(ν)(1− g(ν))ν

s−nντν + g(ν)(1− g(ν))ν
ε̄(s). (40)

The Laplace transform of relaxation modulus can then be derived as

Ḡ(s) =
σ̄(s)
sε̄(s)

=
(E1 + E2)τν

g(ν)(1− g(ν))ν

1
s(snν + τν

g(ν)(1−g(ν))ν )
+ E1

snν−1

snν + τν

g(ν)(1−g(ν))ν

. (41)

By applying the inverse Laplace transform to (41) and using (10), the relaxation modulus of fractional Zener model with
Atangana-Koca fractional order derivative (6) is obtained as

GAKC
Z (t) =

(E1 + E2)τνtnν

g(ν)(1− g(ν))ν
Enν,nν+1

(
− τνtnν

g(ν)(1− g(ν))ν

)
+ E1Enν,nν+1

(
− τνtnν

g(ν)(1− g(ν))ν

)
. (42)

The Laplace transform of the creep compliance can be estimated from

J̄(s) =
1

s2Ḡ(s)
=

τν

E1g(ν)(1− g(ν))ν

1

s
(
snν +

(
E1+E2

E1

)
τν

g(ν)(1−g(ν))ν

) +
1

E1

snν−1

s
(
snν +

(
E1+E2

E1

)
τν

g(ν)(1−g(ν))ν

) . (43)

The creep compliance then be obtained through inverse Laplace transform of (43) as following

JAKC
Z (t) =

τνtnν

E1g(ν)(1− g(ν))ν
Enν,nν+1

(
−

[
E1 + E2

E1

]
τνtnν

g(ν)(1− g(ν))ν

)

+
1
E

Enν,1

(
−

[
E1 + E2

E1

]
τνtnν

g(ν)(1− g(ν))ν

)
.

Figures 6a)-6b) shows the mechanical response of fractional Zener model involving the Atangana-Koca fractional derivative
for severalν values, arbitrarily chosen.
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FIGURE 6.Mechanical properties of fractional Zener model involving the Atangana-Koca fractional derivative. In a) relaxation modulus and
b) creep compliance for severalν values, arbitrarily chosen.

Zener model with AKC fractional derivative with variable order

Let us consider (3) involving the AKC fractional derivative with constant order (8) as follows:

AKV
0Dt

g(ν)(σ(t)) +
σ

τg(ν)
= (E1 + E2)AKV

0Dt
g(ν)(ε(t)) +

E1ε

τg(ν)
. (44)

We apply Laplace transform to (44) and obtain the following relationship,
(

s

s + g(ν)
+

1
τg(ν)

)
σ̄(s) =

(
(E1 + E2)s
s + g(ν)

+
E1

τg(ν)

)
ε̄(s), (45)

which gives

σ̄(s) =
((E1 + E2)τg(ν) + E1)s + E1g(ν)

s(τg(ν) + 1) + g(ν)
¯ε(s). (46)

The Laplace transform of relaxation modulus can then be derived as

Ḡ(s) =
σ̄(s)
sε̄(s)

=
E1

s
+

E2τ
g(ν)

τg(ν) + 1
1

s + g(ν)
τg(ν)+1

. (47)

By applying the inverse Laplace transform to (47) and using (10), the relaxation modulus of fractional Zener model with
Atangana-Koca fractional variable order derivative (8) is obtained as

GAKV
Z (t) =

σ̄(s)
sε̄(s)

= E1 +
E2τ

g(ν)

τg(ν) + 1
e
− g(ν)

τg(ν)+1
t
. (48)

The Laplace transform of the creep compliance can be estimated from

J̄(s) =
1

s2Ḡ(s)
=

s(τg(ν) + 1) + g(ν)
s(s((E1 + E2)τg(ν) + E1) + E1g(ν))

(49)

The creep compliance then be obtained through inverse Laplace transform of (36) as following

JAKV
Z (t) =

1
E1

− (E1 + E2τ
g(ν))

E1((E1 + E2)τg(ν) + E1)
e
− E1g(ν)

(E1+E2)τg(ν)+E1
t
. (50)

Remark 4.1 If the materials constantsE1, E2 and τ̂ν of fractional Zener model in Eq.(3) are replaced byÊ1Ê2/(Ê1 + Ê2),
Ê1

2
/(Ê1 + Ê2) and Ê2

2
τ̂ν/(Ê1 + Ê2) respectively, the obtained constitutive relationship is identical to(4). The analytical

solutions of the relaxation modulus and creep compliance for fractional Poynting-Thomson model can be obtain from fractional
Zener model.

Figures 7a)-7d) shows the mechanical response of fractional Zener model involving the Atangana-Koca fractional derivative
with variable order for severalg(ν) values, arbitrarily chosen.
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FIGURE 7. Mechanical properties of fractional Zener model involving the Atangana-Koca fractional derivative with variable order. In a)-b)
relaxation modulus and c)-d) creep compliance for severalg(ν) values, arbitrarily chosen.

5. Results and discussions

In this section, we compare the performance of fractional vis-
coelastic models with fractional derivatives of constant and
variable order of Atangana-Koca type. The mechanical re-
sponse of Maxwell model with new fractional derivatives
of constant and variable order are shown in Figs. 2a)-2b)
and 3a)-3d) respectively. It can be seen from Figs. 2a)-2b)
that creep compliances with Atangana-Koca constant order
derivative decrease sharply asν → 1. The Atangana-Koca
fractional derivative of constant orderν results in slowest re-
laxation of viscoelastic materials asν → 0, which can be
used to characterize ultraslow relaxation of viscoelastic ma-
terials. Numerical solutions of Eq. (23) have been depicted
in Figs. 3a)-3d), for different values of the fractional order
g(ν). It is seen that the system exhibits behaviors such that
the solution continuously depends on the time variables. The
creep compliance of fractional Maxwell model with variable
order derivative exponential increase with time instead of lin-
ear increase compared with fractional Maxwell-model with
constant order fractional derivative. The numerical results
indicate that the fractional order has an important influence
on the relaxation modulus and the creep compliance and the
general solution of the fractional equations depends on the
parameterν and when the order is a function rather than a
constant of arbitrary orderg(ν), respectively.

Figures 4a)-4b) and 5a)-5d) shows the mechanical re-
sponse of fractional Kelvin-Voigt model with Atangana-Koca
fractional derivative with constant and variable order. The
creep compliance of fractional Kelvin-Voigt model exponen-
tial increase with time instead of linear increase compared
with fractional Maxwell-model.

Figures 6a)-6b) plot the relaxation modulus and creep
compliance for differentν of fractional Zener model with
Atangana-Koca fractional derivative with constant, the relax-
ation modulus exponential decreases with increasing value
of ν.

6. Conclusions

The analytical solutions of the stress relaxation modulus and
creep compliance for fractional Maxwell model, fractional
Kelvin-Voigt model, fractional Zener model and fractional
Poynting-Thomson model are obtained. It is found that the
fractional Zener model has similar performance as fractional
Maxwell model. These solutions represent a new family
of solutions for the viscoelastic models, which allows for
the possibility of multiple solutions that are not observed
in experiments (complex dynamic behaviors are observed).
For different time periods we have different memory abil-
ities. The representation of generalized viscoelastic mod-
els by variable-order and constant-order fractional derivative
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also allows a deeper insight into the physics behind fractional
stress-strain relations. The variable-order fractional deriva-
tive can be used to characterize variable memory effect of the
systems. It is shown that the constant-order model is not able
to capture all the details of the variable-order solution, par-
ticularly in the areas of transition between dynamic regimes.
We concluded that this new fractional variable-order operator
is more suitable for modeling real-world complex problems
than all existing fractional variable-order operators. The ex-
perimental verification of these models will be reported in a
future paper.
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