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Factorization method for some inhomogeneous Liénard equations
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We obtain closed-form solutions of several inhomogeneous Liénard equations by the factorization method. The two factorization conditions
involved in the method are turned into a system of first-order differential equations containing the forcing term. In this way, one can find
the forcing terms that lead to integrable cases. Because of the reduction of order feature of factorization, the solutions are simultaneously
solutions of first-order differential equations with polynomial nonlinearities. The illustrative examples of Liénard solutions obtained in this
way generically have rational parts, and consequently display singularities.
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1. Introduction

The exact solutions of nonlinear ordinary differential equa-
tions (ODEs) describe the behavior of a great variety of
physical, chemical, biological, and engineering systems.
Widespread systems in these vast areas of research can be de-
scribed by homogeneous Liénard equations, which have been
intensively studied over the years, see,e.g., [1] and the recent
review [2]. On the other hand, the same type of inhomoge-
neous equations received relatively less attention despite the
remarkable leap forward brought by the discovery of an ir-
regular noise, later termed deterministic chaos, in the case of
sinusoidally driven triode circuits by van der Pol and van der
Mark in 1927 [3]. Our focus in this short paper is on inho-
mogeneous Líenard type equations of the form

ü + G(u)u̇ + F (u) = I(t) , (1)

where the dot denotes the time derivative,d/dt, G(u) and
F (u) are arbitrary, but usually polynomial, functions ofu,
and the forcing termI(t) is an arbitrary continuous function
of time.

The main goal of the present paper is to show how the

factorization method developed in [4–6] and the factoriza-
tion conditions thereof can be used to obtain some integrable
inhomogeneous Liénard equations for specific forcing terms.
The key point is that the factorization method helps to reduce
the inhomogeneous Liénard equations to first-order nonlin-
ear equations, such as Abel and Riccati equations, which are
presumably easier to solve in some cases. We recall that
the reduction to Riccati equations of the linear Schrödinger
equations has been extensively used in supersymmetric quan-
tum mechanics and older factorization methods as reviewed
in [7,8].

2. The nonlinear factorization

As in [4–6], we consider the factorization of (1)

[
d

dt
− f2(u)

][
d

dt
− f1(u)

]
u = I(t) (2)
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under the conditions

f2 +
d(f1u)

du
= −G(u) (3)

f1f2u = F (u) , (4)

adding the scheme proposed in [9], where one assumes
[d/dt − f1(u)]u = Ω(t). This yields the following coupled
ODEs for (2),

Ω̇− f2(u)Ω = I(t) (5)

u̇− f1(u)u = Ω(t) , (6)

which we further simplify by taking the second factorizing
function as a constant,f2 = a2 ≡ const.,

Ω̇− a2Ω = I(t) (7)

u̇− f1(u)u = Ω(t) . (8)

Besides, using the constant functionf2, conditions (3) and
(4) imply a relationship between functionsF andG given by

F (u) = −a2


c2 + a2u +

u∫
G(u) du


 , (9)

wherec2 stands for an integration constant, or equivalently

G(u) = −
(

1
a2

dF

du
+ a2

)
. (10)

DenotingI(t) =
∫ t

0
e−a2tI(t)dt, the solution to (7) is

Ω(t) = ea2t
[
c1 + I(t)

]
, (11)

wherec1 is an integration constant given byc1 = Ω(0). This
allows to rewrite (8) in the form

u̇ =
1
a2

F (u) + ea2t
[
c1 + I(t)

]
, (12)

whose general solution is also the solution of the Liénard
Eq. (1), while further particular solutions can be obtained by
settingc1 = 0.

Viceversa, one can say that (12) is a first-order nonlinear
reduction of forced Líenard equations of the form

ü−
(

1
a2

dF

du
+ a2

)
u̇ + F (u) = I(t) . (13)

Thus, integrable cases of (12) can provide Líenard solutions
in closed form. Since among the most encountered forced
Li énard equations are these havingF (u) in the form of cubic
and quadratic polynomials, in the rest of the paper, we ad-
dress the applications of this solution method to some cases
of these types.

3. The inhomogeneous Duffing-van der Pol os-
cillator

We choose the particular cubic caseF (u) = Au + Cu3 be-
cause it corresponds to the forced Duffing-van der Pol oscil-
lator [10]

ü− [(a2+A/a2)+3(C/a2)u2]u̇+Au+Cu3 = I(t) . (14)

This equation admits the factorization
[

d

dt
− a2

][
d

dt
− (α + γu2)

]
u = I(t) , (15)

whereα = A/a2 andγ = C/a2.
The corresponding first-order equation is the Abel equa-

tion
u̇ = γu3 + αu + Ω(t) . (16)

The change of variables

u = yeαt , x =
γ

2α
e2αt , (17)

turns (16) into the normal form

dy

dx
= y3 +N (x) , (18)

with invariant

N (x) =
1
γ

e(a2−3α)t(x)
[
c1 + I(t(x))

]
. (19)

Unfortunately, this formula shows that inhomogeneous Abel
equations in this category are not integrable by the separa-
tion of variables becauseN (x) cannot be made constant as
required by this type of integrability. Only in the force-free
particular caseI(t) = 0, the invariant can be reduced to the
constant

N0 =
c1

γ
. (20)

By separation of variables, the solution is given by the im-
plicit relation

ln

[
( 3
√N 0 + y)2

N 2/3
0 − 3

√N 0y + y2

]
− 2

√
3 tan−1

[
1− 2

3√N 0
y

√
3

]

= 6N 2/3
0 (x + c2) . (21)

This solution has been obtained previously in [10].

4. Quadratic inhomogeneous Líenard equa-
tions

If we setF (u) = Au + Bu2, then the first order equivalent
equation is the Riccati equation

u̇ = βu2 + αu + Ω(t) , β = B/a2 . (22)

Equation (22) can be transformed into the normal form [11]

ż = z2 +N (t) , (23)
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where

z(t) = βu(t) +
α

2
, N (t) = βΩ(t)− α2

4
. (24)

For integrable cases of separable type, one should haveN (t)
as an arbitrary real constant that we choosep2/4, implying
Ω(t) =

(
p2 + α2

)
/4β also a constant, as well as a constant

driving force

I(t) = −a2

β

(
p2 + α2

4

)
. (25)

In this simple case, we obtain a Liénard solution of (13) of
the form

u(t) = − α

2β

[
1− p

α
tan

(p

2
(t + c2)

) ]
. (26)

4.1. Linear polynomial source term

After the constant driving case, it is orderly to consider the
source term as the linear polynomialI(t) = t + δ, whereδ
is an arbitrary constant. We seta2 = 1 andc1 = 0, and we
obtain the Riccati equation

u̇ = βu2 + αu− (t + δ̃) , δ̃ = δ + 1 (27)

with solution given by

u(t) = − α

2β

[
1 +

β
1
3

α

k2Ai′(t̃) + Bi′(t̃)
k2Ai(t̃) + Bi(t̃)

]
, (28)

where t̃ = β1/3[α2/4β + (t + δ̃], the prime denotes thẽt
derivative, andk2 is an integration constant. However, the
presence of the rational term in Airy functions turns singular
such as Líenard solutions.

4.2. Quadratic polynomial source term

Let the source term be the quadratic polynomial of type
I(t) = a2βt2 + (a2α − 2β)t − (a2 + α). According to
Eqs. (11) and (22), and by settingc1 = 0, we have the Ric-
cati equation

u̇ = βu2 + αu− βt2 − αt + 1 . (29)

This equation has the particular solutionu(t) = t, while the
general solution is given by

u(t) = t− et(α+βt)

k1β + et(α+βt)
√

βF
(

α+2βt
2
√

β

) , (30)

where F(x) = e−x2 ∫ x

0
ey2

dy is the Dawson inte-
gral, and k1 is an integration constant. Again, be-
cause of the rational term, this solution is singular at
−et(α+βt)β−1/2F (

α + 2βt/2
√

β
)

= k1.

4.3. Exponential source term

For the source term of exponential form,I(t) = κeλt, and
for c1 = 0, the Riccati equation is

u̇ = βu2 + αu +
κ

λ− a2
eλt . (31)

The solution is given by

u(t) =
α

2β

[
λ

α

× 2k4Γ(1− α
λ )t̃J1−α

λ
(2t̃)− t̃

α
λ F̄ (t̃)

k4Γ(1− α
λ )J−α

λ
(2t̃) + Γ(1 + α

λ )Jα
λ
(2t̃)

]
, (32)

where k4 is an integration constant, t̃ =
2(
√

κβ/λ
√

λ− a2)eλt/2, and F̄ (t̃) is the following com-
bination of hypergeometric functions

F̄ (t̃) = t̃2 0F1

(
; 2 +

α

λ
;−t̃2

)

+
α

λ
0F1

(
; 1 +

α

λ
;−t̃2

)
+ 0F1

(
;
α

λ
;−t̃2

)
.

Fork4 = 0, we have the simpler solution

u(t) = − α

2β

×
[
1+

λ

α

t̃2 0F1

(
; 2+α

λ ;−t̃2
)
+0F1

(
; α

λ ;−t̃2
)

0F1

(
; 1+α

λ ;−t̃2
)

]
. (33)

The case corresponding toα = −1 simplifies further to

u(t) =
et

√
β

tan
[√

β(et + k4)
]
. (34)

4.4. Back to the constant source case

We return to the constant source term case since we wish to
point out the interesting feature that it is more general than
the exponential case. Indeed, let us take the source term as
I(t) = ε, an arbitrary constant, anda2 = 1. This leads to the
Riccati equation

u̇ = βu2 + αu + c1e
t − ε , (35)

which is similar to the Riccati equation for the exponential
case unless forε. The general solution of (35) is a rational
expression in terms of Bessel functions given by

u(t) = α
2β

[
m
α

k3(α−m)Γ(−m)J−m(t̃)−(α+m)Γ(m)Jm(t̃)

k3Γ(1−m)J−m(t̃)+Γ(1+m)Jm(t̃)

]

+ α
2β

[
t̃
α

k3Γ(1−m)J1−m(t̃)+mΓ(m)J1+m(t̃))

k3Γ(1−m)J−m(t̃)+Γ(1+m)Jm(t̃)

]
, (36)

wherem =
√

α2 + 4βε, t̃ = 2
√

βc1e
t/2, andk3, an inte-

gration constant. It displays singularities at the zeros of its
denominators.

Whenk3 = 0, this solution takes the simpler form

u(t) = − α

2β

[ (
1 +

m

α

)
− t̃

α

Jm+1(t̃)
Jm(t̃)

]
. (37)
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Notice that in the particular case ofc1 = 0, the exponen-
tial scaling of time is annihilated, and the Riccati equation is
of constant coefficients having the well-known regular kink
solution

u(t) = − α

2β

[
1 +

m

α
tanh

(m

2
(t + k3)

) ]
, (38)

which is also a Líenard kink. If in the expression for the pa-
rameterm, we substituteε by (25) for a2 = 1, we obtain
m = ip, and (38) becomes the solution (26).

5. Conclusion

The nonlinear factorization method developed in [4–6,9] has
been used to obtain closed-form solutions of certain types of

inhomogeneous Liénard equations. The conditions imposed
upon the nonlinear coefficients of the equations by the factor-
ization method and the insertion of the forcing term in the fac-
torization scheme act as designing tools of specific forms of
the forcing terms to generate integrable cases by these means.
The illustrative examples have been chosen from the class of
polynomial (up to cubic) and exponential forcing terms sim-
ilar to a recent study of inhomogeneous Airy equations [12].
However, the obtained Liénard solutions have rational parts,
which make them prone to the presence of singularities. The
only regular solutions we have obtained by employing this
simple factorization method are the usual tanh kinks. Finally,
the scheme presented here is bounded to constant factoriza-
tion functionsf2, since only in this case equation (5) can be
turned into the linear Eq. (7) in the independent variablet.
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