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Factorization method for some inhomogeneous lénard equations
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We obtain closed-form solutions of several inhomogeneoéraiid equations by the factorization method. The two factorization conditions
involved in the method are turned into a system of first-order differential equations containing the forcing term. In this way, one can find
the forcing terms that lead to integrable cases. Because of the reduction of order feature of factorization, the solutions are simultaneously
solutions of first-order differential equations with polynomial nonlinearities. The illustrative examplegradrdi solutions obtained in this

way generically have rational parts, and consequently display singularities.
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1. Introduction factorization method developed in [4-6] and the factoriza-
tion conditions thereof can be used to obtain some integrable
The exact solutions of nonlinear ordinary differential equa-inhomogeneous Enard equations for specific forcing terms.
tions (ODEs) describe the behavior of a great variety ofrhe key point is that the factorization method helps to reduce
physical, chemical, biological, and engineering systemsine inhomogeneous &nard equations to first-order nonlin-
Widespread systems in these vast areas of research can be dgr equations, such as Abel and Riccati equations, which are
scribed by homogeneousériard equations, which have been presumably easier to solve in some cases. We recall that
intensively studied over the years, seg, [1] and the recent  ne reduction to Riccati equations of the linear $ctinger
review [2]. On the other hand, the same type of inhomogegquations has been extensively used in supersymmetric quan-

remarkable leap forward brought by the discovery of an ir-, [7 g].

regular noise, later termed deterministic chaos, in the case of
sinusoidally driven triode circuits by van der Pol and van der
Mark in 1927 [3]. Our focus in this short paper is on inho-
mogeneous l&nard type equations of the form

i+ Q)i+ F(u) = I(t), (1) 2. The nonlinear factorization

where the dot denotes the time derivativgdt, G(u) and
F(u) are arbitrary, but usually polynomial, functions of
and the forcing ternd (¢) is an arbitrary continuous function
of time. d d

The main goal of the present paper is to show how the [dt - fQ(U)} [dt —h (“)]“ =1(t) ©

As in [4-6], we consider the factorization d)(
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under the conditions

fot M ) €
fifou=F(u), (4)

adding the scheme proposed in [9], where one assumes,

[d/dt — f1(u)]u = Q(t). This yields the following coupled
ODEs for @),

O — fo(u)Q = I(t)
i — fi(u)u = Q(t) ,

(%)
(6)

which we further simplify by taking the second factorizing

function as a constanf, = as = const.,

O — apQ = I(t)
u— fi(uw)u = Q(t) .

()
(8)

Besides, using the constant functigs conditions [8) and
(4) imply a relationship between functiodsandG given by

—as (02 + asu + /G(u) du) , 9)

wherec, stands for an integration constant, or equivalently

Fu) =

1 dF
DenotingZ(t) = [Ot e~ %2t [(t)dt, the solution to[T) is
Qt) = e [er + Z(1)] (11)

wherec; is an integration constant given by = ©(0). This
allows to rewrite8) in the form

= 1P+ o+ 10)

12)

whose general solution is also the solution of thénard

Eq. (1), while further particular solutions can be obtained by

settinge; = 0.
Viceversa, one can say thdt?] is a first-order nonlinear
reduction of forced L&nard equations of the form

(13)
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3. Theinhomogeneous Duffing-van der Pol os-
cillator

We choose the particular cubic caBéu) = Au + Cu® be-
cause it corresponds to the forced Duffing-van der Pol oscil-
lator [10]

ti—[(ag+A/as) +3(C/az)u*Ji+ Au+Cu® = I1(t) . (14)
This equation admits the factorization
d d
il
wherea = A/ay andy = C/as.

The corresponding first-order equation is the Abel equa-
tion

(o + mﬂ)] w=1(t), (15)

i = yu® + au+ Q(t) . (16)
The change of variables
u=ye*, x = L e2at , a7)
2c0
turns (L6) into the normal form
d .
T =y N, (18)
with invariant
1
N(z) = 2 elaz—=3a)t(x) [01 4 I(t(:c))] ) (19)

v

Unfortunately, this formula shows that inhomogeneous Abel
equations in this category are not integrable by the separa-
tion of variables becaus¥’(z) cannot be made constant as
required by this type of integrability. Only in the force-free
particular casd (t) = 0, the invariant can be reduced to the
constant

No=2.

Y

By separation of variables, the solution is given by the im-
plicit relation

(20)

YN+ ) -2y
In 2/(3\/N0 +9) —2v/3tan™! VN
— 6N, Pz + ca) - (21)

This solution has been obtained previously in [10].

4. Quadratic inhomogeneous Lénard equa-
tions

If we setF'(u) = Au + Bu?, then the first order equivalent

Thus, integrable cases @3) can provide Lénard solutions equation is the Riccati equation
in closed form. Since among the most encountered forced
Liénard equations are these having:) in the form of cubic p=Bay.
and quadratic polynomials, in the rest of the paper, we adgqyation 22) can be transformed into the normal form [11]
dress the applications of this solution method to some cases

of these types. t=22 4+ N(),

0= Bu® + au + Q(t) (22)

(23)
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where 4.3. Exponential source term
o o? For the source term of exponential forf(t) = xe*t, and
t) = t - t) = pBQt) — — . 24 . . S ’ '
2(t) = Bu(t) + 2’ N(B) = 62(t) 4 (24) for c; = 0, the Riccati equation is
For integrable cases of separable type, one should Ngve o= Bu+ au+ R ot (31)
as an arbitrary real constant that we chop3gt, implying A-a

Qt) = (p2 + a2) /43 also a constant, as well as a constantThe solution is given by
driving force

u(t) = a [ A
2 4 o2 T 28|a
ro=-% (252 (25) ’ o
p 4 24T (1 — )iy _a (20) — I3 F(f)
X A . (32)
In this simple case, we obtain adriard solution of [13) of kal(1—§)J-2(2t) + T(1 + §)Jg (2t)
the form where ks is an integrqtion constant, ¢ =
a p p 2(v/EB/ M —az)eM/?, and F (1) is the following com-
u(t) = 93 1=~ tan (§(t + 62)) : (26) " bination of hypergeometric functions
SR 72 . )
4.1. Linear polynomial source term F(t) =170k (’2 + % —t )
« o «
After the constant driving case, it is orderly to consider the + N ofF1 (; 1+ N —52> + oF1 (; 3 —t?) .
source term as the linear polynomi&l) = ¢ + §, whered ) )
is an arbitrary constant. We set = 1 andc¢; = 0, and we Forks = 0, we have the simpler solution
obtain the Riccati equation .«
| — 2 —_— 5 5 = ~ ~ ~
i=putou=(t+o), =041 (27) y {H/\ 0P (245 =) +oF (;i;—ﬂ)} 3)
with solution given by a oF1 (51495 —12) '

The case corresponding o= —1 simplifies further to

1 N (T
aly B3 ko Ai (é)—O—Bz ;) @9

ut) = =35 a kyAi() + Bi

u(t) = \j% tan [\/B(et + k4)} . (34)

wheret = '/3[a2/48 + (¢ + 4], the prime denotes the
B o /45 + ] P 4.4, Back to the constant source case

derivative, andks is an integration constant. However, the

presenceﬁof the ratio.nal term in Airy functions turns singularWe return to the constant source term case since we wish to
such as Lenard solutions. point out the interesting feature that it is more general than
the exponential case. Indeed, let us take the source term as
4.2.  Quadratic polynomial source term I(t) = ¢, an arbitrary constant, and = 1. This leads to the
Riccati equation
Let the source term be the quadratic polynomial of type
I(t) = apt? + (aza — 2B)t — (a2 + «). According to
Egs. @1) and 22), and by setting;; = 0, we have the Ric- which is similar to the Riccati equation for the exponential
cati equation case unless for. The general solution of36) is a rational
expression in terms of Bessel functions given by

0= pu? + au + cret — e, (35)

U= pul+ou—pt2 —at+1. (29)

U(t) _ a |:m kg(am)F(m)Jm(f)(a+m)F(m2Jm(t~):|
This equation has the particular solutioft) = ¢, while the Bl kel=m)Jom O+ (km) I ()

general solution is given by

+% |:f ng(l—m)Jl7n(f)+mF(m)J1+,,l§t)):| ’ (36)

a  k3T(1—m)J_m (£)+T(14+m) Jm ()

t(a+pt)
ut) =t — c . (30) . _
k13 + eta+B0) JBF (M) wherem = /a2 + 483¢, t = 2/Bciet/?, andks, an inte-
2B gration constant. It displays singularities at the zeros of its
I R ; . denominators.
where 7(z) . ©. fO ¢ .dy s the Dawson. inte Whenksz = 0, this solution takes the simpler form
gral, and k; is an integration constant. = Again, be-
cause of the rational term, this solution is singular at ) = ! ( m) t Tt (D) (37)
—et@HBY 312 F (o + 28t /2V/B) = k. Y a a Jn(D)
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Notice that in the particular case ef = 0, the exponen- inhomogeneous Enard equations. The conditions imposed
tial scaling of time is annihilated, and the Riccati equation isupon the nonlinear coefficients of the equations by the factor-
of constant coefficients having the well-known regular kinkization method and the insertion of the forcing term in the fac-

solution torization scheme act as designing tools of specific forms of
o m m the forcing terms to generate integrable cases by these means.
u(t) = ~95 {1 + tanh (g(t + k3)> ] ) (38)  The illustrative examples have been chosen from the class of

o ] _ _ . polynomial (up to cubic) and exponential forcing terms sim-
which is also a Lénard kink. If in the expression for the pa- jlar to a recent study of inhomogeneous Airy equations [12].
rameterm, we substitute: by (25) for a2 = 1, we obtain  However, the obtained Ehard solutions have rational parts,

m = ip, and B8) becomes the solutio26). which make them prone to the presence of singularities. The
only regular solutions we have obtained by employing this
5. Conclusion simple factorization method are the usual tanh kinks. Finally,

the scheme presented here is bounded to constant factoriza-
The nonlinear factorization method developed in [4-6, 9] hagion functionsfs, since only in this case equaticB) (can be
been used to obtain closed-form solutions of certain types aiurned into the linear Eq/j in the independent variabte
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