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Viscous micropump of immiscible fluids using
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Small-scale fluid transport methods have grown significantly in recent years, mainly in microfluidic system applications. Therefore, the
present study analyzes the movement of two layers of immiscible fluids within a parallel flat plate microchannel. The fluid layers are com-
posed of a Newtonian fluid and a power-law fluid. The pumping is produced by magnetohydrodynamic effects that act on the non-Newtonian
conducting fluid dragging the non-conducting Newtonian fluid by viscous forces. Under the consideration of a laminar, incompressible,
and unidirectional flow, a dimensionless mathematical model is established by the momentum equations for each fluid, together with the
corresponding boundary conditions at solid-liquid and liquid-liquid interfaces. The problem formulation is semi-analytically solved using
the Newton-Raphson method. The results are presented as a function of the velocity profiles and flow rate, showing interesting behaviors that
depend on the physical and electrical properties of each fluid and flow conditions via the dimensionless parameters such as the flow behavior
index, a magnetic parameter related to Lorentz forces, the fluid viscosity ratios and the dimensionless liquid-liquid interface position. This
work contributes to the understanding of the various immiscible non-conducting fluid pumping techniques that can be used in microdevices.
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1. Introduction

Magnetohydrodynamics (MHD) pertains to flows of electri-
cally conducting fluids that are subject to a magnetic field
and/or an electric current driven by an external voltage [1].
Since the last century, MHD has been used in various scien-
tific and technological applications such as heating, stirring
and levitating liquid metals, magnetic damping, flow con-
trol by magnetic throttles, and electromagnetic flow meters.
Other applications are related to MHD generators and pumps,
continuous casting, liquid metal shaping, and design and con-
struction of liquid metal cooled fusion blankets in nuclear fu-
sion reactors, among others [1, 2]. Typical fluids of MHD
studies are distilled water (10−4), weak (10−4 − 10−2) and
strong (10−2 − 102) electrolytes, molten glass (10 − 102),
plasmas (103 − 106), ionized gases (107), and liquid metals
(106−107). The numbers in parentheses refer to the electrical
conductivity of the materials in S m−1 [3].

Focusing on MHD pumping, this method of transport-
ing material offers some advantages and disadvantages over
conventional pumps. The benefits of MHD pumps are that
they are simple and compact, as well as silent due to propul-
sion without any moving parts [4]. They have simple fab-
rication processes, lower actuation voltages, reduced risk of
clogging and damage to molecular materials, reduced risks
of mechanical fatigue, and continuous fluid flow [5]. Addi-
tionally, they can withstand very high-temperature environ-

ments as in the cases of molten metals (Na, Pb) and their al-
loys (Pb-Bi) or molten salts (especially fluoride salts) [6, 7].
On the other hand, they present certain disadvantages such
as reverse flow due to the fringing fields effects, the major
expense of large magnets, a lack of accurate analytical mod-
els [4], a short electrode lifetime and bubble generation due to
electrolysis [8]. The advantages and disadvantages of MHD
pumps mentioned above may be related to microscale and
macroscale applications. However, it is necessary to clarify
that the present work is focused only on microdevices.

In this context, with the technological advancements in
the miniaturization of the devices (bioMEMS - biological
microelectromechanical systems,µTAS - micro total analy-
sis systems, LOCs - labs on chips) for analysis and diagnos-
tics in the chemical, medical and biological areas, the study
of fluid flow has become essential. Here, research on sub-
millimeter-dimension devices is covered by microfluidics to-
gether with the application of magnetohydrodynamics as a
method of transporting conducting fluids [9–13].

Considering the previous application areas, the study of
MHD flows on the microscale has been addressed by the sci-
entific community for many years, through investigations on
transport of homogeneous single-phase fluids based on elec-
trolyte solutions. Some of these investigations are described
below. Lim and Choi [14] realize an analytical, numerical,
and experimental study about an MHD micropump formed
by a trapezoidal microchannel where the working fluid is a
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PBS solution (phosphate-buffered saline). In this study, the
performance of the MHD micropump is obtained by measur-
ing the flow rate under various operation currents and mag-
netic flux densities. For their part, Huanget al. [15] re-
port a theoretical and experimental work on a DC-type MHD
micropump using working fluids such as sodium hydroxide
(NaOH) in water, ammonium chloride (NH4Cl) in water,
ethyl alcohol, and tap water. Here, the average flow rates
measured for a range of applied potentials are affected by the
generation of bubbles due to electrolysis. In another investi-
gation, Patel and Kassegne [5] conduct an analytical effort to
investigate different flow channel geometries, effects of non-
uniform magnetic and electric fields, Joule heating, and elec-
troosmosis in MHD micropumps; here, they use saline solu-
tions based on sodium chloride (NaCl). The reader can re-
view other investigations on MHD micropumps handling ho-
mogeneous single-phase fluids such as the studies conducted
by Homsyet al. [11], Chatterjee and Amiroudine [16], Bau
et al. [17], Rivero [18], Azimi-Boulaliet al. [19], Moghad-
dam [20], Jian and Chang [21], Mondal and Wongwises [22],
and many others cited in these works.

A common characteristic of all the investigations men-
tioned in the previous paragraph is that they all use fluids
with Newtonian behavior. However, several biological or
polymeric fluids present a non-Newtonian behavior, which
has also been investigated for MHD pumps, as in the study
performed by Moghaddam [23], who models the transport of
power-law fluids. The work reports that the flow behavior
index has a strong effect on the volumetric flow rate in the
MHD micropump. Pourjafaret al. [24] conduct a numerical
investigation of an MHD micropump wherein the test fluid
is assumed to be viscoplastic obeying the Papanastasiou-
Bingham rheological model. Their results suggest that a the
yield stress of a fluid can dramatically affect the flow kine-
matics in MHD pumps, even under creep conditions. Ad-
ditionally, it is predicted that the M-shaped velocity profiles
established in the literature for Newtonian fluids become vir-
tually U-shaped, provided that the Bingham number is suf-
ficiently large. Other studies about the importance of con-
sidering the non-Newtonian behavior of fluids in MHD mi-
cropumps are discussed in references [25–27]. In the afore-
mentioned investigations, different values of the magnetic,
material, and physical parameters, in conjunction with com-
plex rheological properties of the fluids, help control the flow
field.

In this direction, the research on MHD flows with single-
phase fluids has also been extended to the pumping of two
parallel and immiscible fluids as a transport technique by vis-
cous drag or for improvement of the flow rate of the pump-
ing fluids. For this type of research, only the driving fluid
is electrically conducting. The study of Shail [28] consid-
ers the Hartmann flow of a conducting fluid together with
a layer of non-conducting fluid in a channel formed by two
parallel plates. The interest in this configuration stems from
the possibility of reducing the power required to pump oil in
a pipeline through the addition of water. According to the

results, the flow rate can increase by approximately 30 per-
cent for suitable ratios of the thicknesses and viscosities of
the two fluids. In other work, Lohrasbi and Sahai [29] study
the two-phase MHD flow and heat transfer in a parallel-plate
channel to understand the effects of slag layers on the heat
transfer characteristics of a coil-fired MHD generator. In the
problem, one of the two fluids is electrically non-conducting,
and the flow is incompressible, steady, one-dimensional, and
fully developed. In the results, velocity profiles as a function
of dimensionless parameters (magnetic, electrical, and phys-
ical) are presented. Umavathiet al. [30] extend the investiga-
tions of Shail [28] and Lohrasbi and Sahai [29] to solve the
unsteady Hartmann flow of two immiscible fluids through a
horizontal channel. This study finds that the properties of the
two fluids can effectively control the flow and heat transfer
characteristics. In another work and to improve the fluid flow
in pipelines, Mateen [31] develops a theoretical analysis of an
MHD flow of two immiscible fluids taking into account the
effects of viscous dissipation and Joule heating. In this sense,
as a method for enhancement of heat transfer, Abbas and
Hasnain [32] study the two-phase magnetoconvection flow
of nanoparticles in a horizontal composite annulus. Here, the
electrically conducting fluid is a kerosene-based ferrofluid
containing ferroparticles of magnetite (Fe3O4). The veloc-
ity and temperature distributions under the influence of in-
volved flow parameters and volume fraction of nanoparticles
are analyzed and discussed. In other investigations, some ap-
plications of two-layered MHD flows in vertical and inclined
channels such as heat transfer analysis, solar collection tech-
nology, and radiative cooling of molten glass are analyzed
by Abbaset al. [33], Malashetty and Umavathi [34], and
Malashettyet al. [35]. Keeping in view the practical impor-
tance of multi-fluid flows in chemical, nuclear and petroleum
industries, and in magnetofluid dynamics, Nikodijevicet al.
[36] investigate the MHD Couette flow and heat transfer of
two immiscible fluids in a parallel-plate channel. Closed-
form solutions for velocity, temperature, and magnetic in-
duction are obtained in the presence of applied electric and
inclined magnetic fields. In another application, Chanturani
and Bharatiya [37] investigate the two-layered MHD model
for parallel-plate hemodialyzers under the influence of a uni-
form transverse magnetic field. The results can be used in
reducing the dialysis time. Here, the transported blood con-
sists of a suspension of red cells and plasma. This suspension
is divided into two Newtonian fluid layers. The first is the
peripheral plasma layer as non-conducting fluid, and the sec-
ond layer is the core region consisting of cells and plasma as
the conducting fluid. The applications mentioned throughout
this paragraph regarding two-layer MHD flows have been fo-
cused on the macroscale and handling only Newtonian fluids.
Therefore, for the reader’s better knowledge, an extensive re-
view on applying two-layer MHD flows has been carried out
in this investigation. It has been concluded that little or no at-
tention has been paid to this flow type on the microscale with
respect to pumping non-conducting fluids by viscous drag.

Despite the above, viscous drag pumping in microfluidic
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devices is being addressed by electrokinetics. Some inves-
tigations about electrokinetic flows of two layers consider
the transport of Newtonian [38–40] and non-Newtonian flu-
ids [41–43]; however, this is limited for weak electrolytes
(<0.1 S m−1). Thus, the pumping by viscous drag effects
caused by MHD flows for the transport of weak and strong
electrolytes (>0.1 S m−1) in microdevices is currently an
open and unexplored field.

Therefore, the aim of this work is focused on analyz-
ing a DC MHD micropump that transports a non-conducting
fluid via viscous drag forces from a neighboring conducting
fluid in a microchannel. Additionally, the conducting fluid
presents characteristics of a power-law fluid, which can be
used to explore the influence of the fluid’s rheology in im-
proving the pumping flow rate. The parametric study pre-
sented here is an investigation that has not been carried out
yet by the scientific community.

2. Problem formulation

2.1. Physical model

The present work analyzes the transport of two immiscible
fluids in a parallel flat plate microchannel of heightH, width
W and lengthL, as shown in Fig. 1. The Cartesian coordi-
nate system (x, y, z) is located at the bottom of the channel
inlet. Fluid pumping primarily occurs through MHD effects;
however, a pressure differential can be generated between the
inlet and outlet of the microchannel (∆p = pout − pin), pro-
ducing a common constant pressure gradient over fluid lay-
ers. The flow field is made up of two layers of fluids divided
by the interface positiony1. For the range of0 < y < y1,
there is a Newtonian fluid (driven fluid), while for the range
of y1 < y < H, there is a non-Newtonian fluid (driving
fluid) composed of a mixture of an ionized solution and a so-
lute which behaves like a power-law fluid. Here,By on the
y−axis is the magnetic field from permanent magnets located
at the upper and bottom walls of the microchannel, andJz on

FIGURE 1. Sketch of the magnetohydrodynamic flow in a parallel
flat plate microchannel.

the z−axis is the electric current density generated by an
electric field from a pair of electrodes placed at the lateral
walls; these interact transversally to each other to produce
the Lorentz forces that act on the electrically conducting non-
Newtonian fluid, resulting in dragging of the electrically non-
conducting Newtonian fluid by viscous forces. On the other
hand, the power-law fluid layer can be divided into two re-
gions A and B, showing the velocity gradient behavior re-
garding the increase (du/dy > 0) and decrease (du/dy < 0)
of the velocity profile slope. The distancey2 as a fictitious
interface indicates the point at which the maximum velocity
of the non-Newtonian fluid is reached.

2.2. General governing equations

The governing equations for incompressible fluids that de-
scribe the flow field are given by the continuity equation

∇ · v = 0 (1)

and the Cauchy momentum equation

ρ
Dv
Dt

= −∇p−∇ · τττ + F, (2)

wherev is the velocity vector,ρ is the fluid density,t is the
time, p is the pressure,τττ is the stress tensor, andF is the
body force vector. Here, body forces appear due to the appli-
cation of the electric and magnetic fields; their magnitude is
determined by

F = J×B, (3)

where J represents the electric current density given by
Ohm’s law asJ = σ(E + V × B); σ denotes the electric
conductivity, andE andB are the electric and magnetic field
vectors, respectively. On the other hand, the generalized con-
stitutive equation for the power-law fluid is expressed as

τττ = −η (γ̇̇γ̇γ) γ̇̇γ̇γ, (4)

whereη is the dynamic viscosity anḋγ̇γ̇γ is the rate-of-strain
tensor defined aṡγ̇γ̇γ = ∇v+(∇v)T. Furthermore, the viscos-
ity for fluids that follow a behavior based on the rheological
power-law model is

η (γ̇̇γ̇γ) = mγ̇̇γ̇γn−1, (5)

wherem is the flow consistency coefficient andn is the flow
behavior index. In the case of a Newtonian fluid with con-
stant viscosityµ, from Eq. (4), η (γ̇̇γ̇γ) = µ.

2.3. Simplified mathematical model

The mathematical model used to solve the MHD flow can
be simplified by taking into account the following consid-
erations:i) Steady, laminar and fully developed flow is as-
sumed [5, 12, 14, 34].ii) The electrical and physical prop-
erties of fluids are assumed to be constant [32, 44, 45].iii)
Laminar flow is assumed for low Reynolds number,i.e.,
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Re(= ρHuc/η) = O(1) or less, whereuc is the charac-
teristic flow velocity.iv) The densities of fluids can be con-
sidered equal or matched; thus, the gravitational effects are
neglected [30, 31, 36].v) The microchannel is long enough
in relation to its height,i.e., L À H, to use lubrication the-
ory [46] and neglect the end effects [47].vi) An infinite ex-
tent of the flow domain is assumed along thez−axis, i.e.,
W À H, to disregard any effects of the sidewalls and sec-
ondary flows [46, 47].vii) In MHD micropumps, induced
magnetic fields due to the fluid motion are extremely weak
and can be disregarded [18, 48].viii) By maintaining the
electric potential across the electrodes in contact with the
aqueous solution within a few mV around the standard equi-
librium voltage of 1.23 V [8,18,49] and establishing an elec-
tric current between electrodes of less than 0.1 mA [50], the
bubble formation by electrolysis can be neglected. To eval-
uate the orders of magnitude presented in this paragraph and
throughout this work, see the physical and geometric param-
eters presented in Sec. 4.

With the assumptions mentioned above, a unidirectional
flow and a planar liquid-liquid interface between the fluids
can be considered. Specifically for the conducting fluid, the
well-known Hartmann flow is recovered [3, 18, 47]. There-
fore, the governing equations given by Eqs. (1) and (2) are
simplified in Cartesian coordinates for the Newtonian fluid as

0 = −dp

dx
+ µ

d2u1

dy2
(6)

and for the non-Newtonian fluid as

0 = −dp

dx
+m

d

dy

[∣∣∣∣
du2

dy

∣∣∣∣
n−1 (

du2

dy

)]

− σB2
yu2 + σByEz, (7)

whereu1 = u1(y) and u2 = u2(y) are the fluid veloc-
ities, Ez is the electric field on thez−axis, and the pres-
sure gradient, provided by a syringe pump, is defined as
dp/dx = px = (pout − pin)/L.

2.4. Boundary conditions

To solve the flow field established by Eqs. (6) and (7), the fol-
lowing boundary conditions are presented depending on the
type of interface, beginning with the no-slip boundary condi-
tions on the walls located at the upper and lower solid-liquid
interfaces of the channel, that is,

u2 = 0 at y = H (8)

and
u1 = 0 at y = 0. (9)

For the liquid-liquid interface aty = y1, the velocity con-
tinuity condition is considered as follows:

u2 = u1, (10)

together with the shear stress balance condition

m

∣∣∣∣
du2

dy

∣∣∣∣
n−1 (

du2

dy

)
= µ

du1

dy
. (11)

2.5. Dimensionless mathematical model

To normalize the mathematical model that describes the
MHD flow behavior, the following dimensionless variables
are introduced:

ȳ =
y

H
, ū1,2 =

u1,2

uc
, (12)

where the characteristic velocity is defined byuc =
σrefEzByH2/ηref [48]; the subscript“ref” indicates a
reference condition for aqueous electrolyte solutions with
Tref = 298.15 K [51–55]. Hence, the momentum conser-
vation equations described in Eqs. (6) and (7) can be written
in dimensionless form as

0 = −Γ + µ̄
d2ū1

dȳ2
(13)

and

0 = −Γ + η̄
d

dȳ

[∣∣∣∣
dū2

dȳ

∣∣∣∣
n−1 (

dū2

dȳ

)]

−Ha2ū2 + Ω∗Ha2, (14)

where the dimensionless parameters that appear are

Γ =
pxH2

ηrefuc
, µ̄ =

µ

ηref
, η̄ =

η

ηref
,

Ha = HBy

√
σ

ηref
, Ω∗ =

Ez

ucBy
, (15)

whereΓ is the ratio of pressure to magnetic forces, while
µ̄ and η̄ represent the viscosity ratios of the Newtonian and
non-Newtonian fluid, respectively. As a reference for this
work, considerpx ∼ σEzBy [11,48], whose sign depends on
whether the pressure gradient favors or adversely affects the
flow. Therefore,Γ ∼ (±σ/σref ). On the other hand,Ha is
the Hartmann number and indicates the relationship between
the magnetic forces and the viscous forces, andΩ∗ is the load
parameter. Here,η ∼ m (uc/H)n−1 represents the order of
magnitude of the non-Newtonian fluid viscosity. The param-
eterΩ∗Ha2 = uc,2/uc indicates the ratio of magnetic effects
acting on a power-law fluid compared with the influence on a
reference Newtonian fluid, whereuc,2 ∼ σEzByH2/η. De-
rived from the physical and geometric conditions of the mi-
crochannel system in this work, the following orders of mag-
nitude are considered:Γ = O(1), µ̄ = O(1), η̄ = O(1),
Ha ¿ 1, Ω∗ À 1 and0 ≤ Ω∗Ha2 ≤ 100.

Following the same procedure to obtain the dimension-
less expressions of the boundary conditions, which consists
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of substituting Eq. (12) into Eqs. (8)-(11), the following re-
sults were achieved. For the solid-liquid interfaces, the no-
slip conditions on the walls of the microchannel are

ū2 = 0 at ȳ = 1 (16)

and
ū1 = 0 at ȳ = 0. (17)

For the liquid-liquid interface at̄y = ȳ1, the velocity con-
tinuity condition is

ū2 = ū1, (18)

together with the shear stress balance condition

η̄

∣∣∣∣
dū2

dȳ

∣∣∣∣
n−1 (

dū2

dȳ

)
= µ̄

dū1

dȳ
. (19)

3. Solution methodology

3.1. Velocity profile for the Newtonian fluid

For the Newtonian fluid, the velocity profile is quickly found
by integrating Eq. (13) twice with respect to the transverse
coordinatēy, yielding

ū1 =
Γ
2µ̄

ȳ2 + C1ȳ + C2, (20)

whereC1 andC2 are integration constants.

3.2. Velocity profile for the power-law fluid

To obtain the velocity profile of the non-Newtonian fluid
layer, first, the Hartmann number is assumed to be very small,
i.e., Ha ¿ 1, due to the microchannel scale and the type of
buffer solution [18, 56], causing the third term on the right-
hand side of Eq. (14), known as the Hartmann breaking term,
to be neglected, yielding

0 = −Γ + η̄
d

dȳ

[∣∣∣∣
dū2

dȳ

∣∣∣∣
n−1 (

dū2

dȳ

)]
+ Ω∗Ha2. (21)

Then, integrating once with respect to the transverse co-
ordinateȳ, in Eq. (21) results in

∣∣∣∣
dū2

dȳ

∣∣∣∣
n−1 (

dū2

dȳ

)
= λ(C3 − ȳ), (22)

where C3 is an integration constant, andλ = (−Γ +
Ω∗Ha2)/η̄, which may be positive or negative. On the other
hand, when the velocity profile of the power-law fluid has a
maximum or minimum in the rangēy1 ≤ ȳ ≤ 1, the non-
Newtonian fluid has two regions corresponding to positive
and negative signs for the velocity gradient, being positive
for region-A and negative for region-B (see Fig. 1), a circum-
stance that must be considered within the absolute value of
Eq. (22) [57, 58]. Equation (22) for each case is then rewrit-
ten as follows:

(
dū2,A

dȳ

)n−1 (
dū2,A

dȳ

)
= λ(C3,A − ȳ) (23)

and

(
−dū2,B

dȳ

)n−1 (
dū2,B

dȳ

)
= λ(C3,B − ȳ), (24)

where C3,A and C3,B are the corresponding integration
constants for region-A and region-B, respectively. Hence,
Eqs. (23) and (24) can be simplified as follows:

dū2,A

dȳ
= λs(C3,A − ȳ)s for region-A (25)

and
dū2,B

dȳ
= −λs(ȳ − C3,B)s for region-B, (26)

wheres = 1/n, and to avoid any singularity with theλ sign
in the process,λs = λ|λ|s−1 [58]. Finally, the velocity pro-
file for each section is obtained by integrating Eqs. (25) and
(26), yielding the following expressions:

ū2,A = −λ|λ|s−1

(s + 1)
(C3,A − ȳ)s+1 + C4,A

for region-A (27)

and

ū2,B = −λ|λ|s−1

(s + 1)
(ȳ − C3,B)s+1 + C4,B

for region-B, (28)

whereC4,A andC4,B are integration constants.

3.2.1. Analysis of the fictitious interface atȳ2

To determine the values of the integration constantsC3,A,
C3,B , C4,A andC4,B , first, the boundary conditions corre-
sponding to the fictitious interface position̄y = ȳ2 are es-
tablished, which can be represented in dimensionless form as
the velocity continuity condition

ū2,B = ū2,A (29)

and the shear stress balance condition

η̄

(
−dū2,B

dȳ

)n−1 (
dū2,B

dȳ

)

= η̄

(
dū2,A

dȳ

)n−1 (
dū2,A

dȳ

)
. (30)

However, since both sides of Eq. (30) refer to the same
fluid, from Eqs. (23) and (24), the shear stress balance con-
dition can be rewritten as follows:

λ(C3,B − ȳ) = λ(C3,A − ȳ). (31)
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For ȳ = ȳ2, Eq. (31) results in

C3,B = C3,A. (32)

In addition to the aforementioned boundary conditions,
we can also assume that the maximum or minimum in the
velocity profile is reached at̄y = ȳ2, which means that the
velocity gradient is equal to zero at the interface positionȳ2:

λs(C3,A − ȳ2)s = 0 (33)

and
− λs(ȳ2 − C3,B)s = 0. (34)

In this process, Eqs. (33) and (34) were obtained from
Eqs. (25) and (26), respectively. As a result of Eqs. (33) and
(34), C3,A = C3,B = ȳ2. On the other hand, applying the
velocity continuity condition,i.e., substituting Eqs. (27) and
(28) into Eq. (29), yields

−λ|λ|s−1

(s + 1)
(ȳ − C3,B)s+1 + C4,B

= −λ|λ|s−1

(s + 1)
(C3,A − ȳ)s+1 + C4,A. (35)

For ȳ = ȳ2, with ȳ2 = C3,B = C3,A, Eq. (35) yields

C4,B = C4,A. (36)

Therefore,C3 = C3,B = C3,A andC4 = C4,B = C4,A.
Eqs. (27) and (28) can then be rewritten as

ū2,A = −λ|λ|s−1

(s + 1)
(C3 − ȳ)s+1 + C4 for region-A (37)

and

ū2,B = −λ|λ|s−1

(s + 1)
(ȳ − C3)s+1 + C4 for region-B. (38)

As a result of this analysis, it is concluded that the inte-
gration constantC3 corresponds to the position of the ficti-
tious interfacēy2, while C4 corresponds to the maximum or
minimum velocity of the power-law fluid at that position.

3.3. Application of boundary conditions at real inter-
faces

To find the integration constantsC1, C2, C3 andC4 of the ve-
locity profiles given in Eqs. (20), (37) and (38), the boundary
conditions given by Eqs. (16)-(19) must be applied. First,
Eq. (16) is substituted into Eq. (38) at ȳ = 1, yielding

0 = −λ|λ|s−1

(s + 1)
(1− C3)s+1 + C4. (39)

Second, Eq. (17) is substituted into Eq. (20) at ȳ = 0,
resulting in

0 = C2. (40)

Third, Eqs. (20) and (37) are substituted into Eq. (18) at
ȳ = ȳ1, yielding the following expression:

0 =− λ|λ|s−1

(s + 1)
(C3 − ȳ1)s+1 + C4

− Γ
2µ̄

ȳ2
1 − C1ȳ1 − C2. (41)

Fourth, Eqs. (20) and (23) are substituted into Eq. (19) at
ȳ = ȳ1, where it is considered thatC3,A = C3, yielding

0 = η̄ [λ (C3 − ȳ1)]− µ̄

(
Γ
µ̄

ȳ1 + C1

)
. (42)

To find the constantsC1, C3 and C4, the Newton-
Raphson method [59] is used to solve the system of non-
linear equations formed by Eqs. (39), (41) and (42); here,
the convergence criterion is10−6, and the proposed initial
value is1.

3.4. Flow rate

The total dimensionless flow rate is determined by integrat-
ing the velocity profile of each fluid layer with respect to the
transverse coordinatēy, which means that

Q̄T = Q̄1 + Q̄2. (43)

Here,Q̄1 represents the flow rate of the Newtonian fluid,
which is defined as

Q̄1 =

ȳ1∫

0

ū1dȳ, (44)

while Q̄2 corresponds to the flow rate of the non-Newtonian
fluid, given by

Q̄2 =

ȳ2∫

ȳ1

ū2,Adȳ +

1∫

ȳ2

ū2,Bdȳ. (45)

Solving the integrals and taking into account thatC2 = 0
andȳ2 = C3 leads to

Q̄1 =
Γ
6µ̄

ȳ3
1 +

C1

2
ȳ2
1 (46)

and

Q̄2 = C4(1− ȳ1)− λ|λ|s−1

(s + 1)(s + 2)

× [
(1− C3)s+2 + (C3 − ȳ1)s+2

]
. (47)

Finally, a mathematical expression for the total flow rate
is found by substituting Eqs. (46) and (47) into Eq. (43),
leading to

Q̄T =
Γ
6µ̄

ȳ3
1 +

C1

2
ȳ2
1 + C4(1− ȳ1)− λ|λ|s−1

(s + 1)(s + 2)

× [
(1− C3)s+2 + (C3 − ȳ1)s+2

]
, (48)
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where the dimensionless variable for this process isQ̄ =
Q/Qc; Qc = ucH represents the characteristic flow rate. All
aforementioned values are per unit of the channel width.

4. Results and discussion

For this result analysis, the following physical and geometric
parameters are used to establish the corresponding values of
the dimensionless parameters:10 < H ≤ 500 µm, 0 ≤ σ ≤
10 S m−1, 0.5 < n ≤ 1.5, 10−2 ≤ µ ≤ 10−4 N s m−2,
10−2 ≤ m ≤ 10−4 N sn m−2, Ez ≤ 105 V m−1 andBy ≤ 1
T. The following references [8, 14, 15, 18, 20, 23, 60, 61] can
be consulted to verify and deduce the ranges of values previ-
ously mentioned.

4.1. Velocity field

In Fig. 2, the transport of two immiscible fluids driven by
purely MHD forces is analyzed. Figure 2a) presents the ve-
locity profile as a function of the dimensionless transverse

FIGURE 2. Dimensionless a) velocity profile and b) shear stress
distribution for a purely MHD flow for different values of the flow
behavior indexn.

coordinatēy, as well as the combination of the dimensionless
parameters shown in the graph. The liquid-liquid interface
position ȳ1 = 0.2 indicates the spatial distribution of each
fluid layer in the channel, where it can be observed that most
of the space corresponds to the non-Newtonian fluid layer.
Furthermore, considering that the Newtonian fluid is electri-
cally non-conducting, the magnitude of the velocity profile
depends mainly on the electrical properties of the power-law
fluid, while the Newtonian fluid moves due to viscous drag
effects. In this graph, the results are based on different values
of the flow behavior indexn in the range of0.5 ≤ n ≤ 1.5.
Shear-thickening fluids (also called dilatant fluids) are ob-
tained for values ofn > 1, while shear-thinning fluids (also
called pseudoplastic fluids) result forn < 1, and whenn = 1,
the case of a Newtonian fluid is recovered. Taking into ac-
count that the viscositȳη is a function of the rate-of-strain
tensorγ̇̇γ̇γ (see Eq. (5)), the highest velocity is achieved when
n = 0.5 due to the fact that for a shear-thinning fluid, an
increase in the shear rate will reduce the viscosity [57], also
causing fluid conduction to improve. The opposite effect oc-
curs for a shear-thickening fluid,i.e., the lowest velocity is
reached whenn = 1.5. Although the velocity increase is
more pronounced in the central region of the power-law flu-
ids, a significant difference is shown between the velocity
profiles. This difference tends to diminish when approaching
the liquid-liquid and solid-liquid interfaces due to the viscous
drag resistance and the no-slip boundary condition, respec-
tively. It is clear that the use of shear-thinning fluids increases
the velocity of the non-conducting Newtonian fluid. On the
other hand, the point̄y2 where the maximum velocity is lo-
cated in the non-Newtonian fluid layer, moves away from the
liquid-liquid interface position̄y1 when the value of the flow
behavior indexn decreases. Correspondingly, in Fig. 2b), the
shear stress distribution as a function of the transverse coor-
dinateȳ is shown, for the same combination of dimension-
less parameters as in Fig. 2a). The generalized relationship
for the dimensionless shear stress for any fluid in the present
investigation is obtained from Eq. (4) as

τ̄xy = −η̄ |dū/dȳ|n−1 (dū/dȳ) , (49)

whereτ̄xy = τxyH/ηrefuc. Therefore, the shear stress for
the non-Newtonian fluid is determined from Eq. (49) and
with the aid of Eq. (22), yielding the expression̄τxy,2 =
−η̄λ(C3 − ȳ) in the range of̄y1 ≤ ȳ ≤ 1. In the case of the
Newtonian fluid, the shear stress is determined from Eq. (49)
together with Eq. (20), and by considering thatn = 1 and
η̄ = µ̄, obtaining the relationship of̄τxy,1 = −Γȳ − µ̄C1

applied at0 ≤ ȳ ≤ ȳ1. As can be seen in Fig. 2b), the
greatest shear stresses are located at the extreme limits of the
driving non-Newtonian fluid,i.e., at the liquid-liquid inter-
face placed at̄y = ȳ1 and the solid-liquid interface placed
at ȳ = 1, locations where the fluid offers the highest flow
resistance. In this context, the non-Newtonian fluid offers
the lowest resistance to flow when̄τxy,2 = 0 at the posi-
tions ȳ2 = 0.5764, 0.5456, 0.5200, 0.5006, and 0.4861 for

Rev. Mex. Fis.67060601
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n = 0.5, 0.75, 1, 1.25, and1.5, respectively. The aforemen-
tioned finding indicates that the slope or velocity gradient at
these positions isdu2/dy = 0 (see Fig. 2a) for how the veloc-
ity profile reaches the maximum velocity and the change in
sign of the velocity gradient occurs for the rheological power-
law model), which occurs when̄y2 = C3. In the case of
the Newtonian fluid that lies between the limitsȳ = 0 and
ȳ = ȳ1, both the shear stress and the velocity gradient remain
constant (see Fig. 2a) for the slanted velocity profile).

Figure 3 shows an increase in the velocity profile due to
an increment in the magnetic effects applied to the power-
law fluid; compared to the influence on a reference Newto-
nian fluid, this behavior is reflected by the parameterΩ∗Ha2,
which is sensitive to the reference conditions. For this case,
the flow behavior index isn = 1.4, describing a shear-
thickening fluid. Furthermore, it can be seen that the mag-

FIGURE 3. Dimensionless velocity profile for a purely MHD flow
for different values ofΩ∗Ha2.

FIGURE 4. Dimensionless velocity profile for the combined MHD
and pressure-driven flow for different values ofΓ andµ̄.

netic effects act on transverse coordinateȳ, which creates the
parabolic shape in the flow field of the power-law fluid. This
result is possible when the Hartmann number is assumed to
be very small,i.e., Ha ¿ 1, since in this limit, the Hartmann
breaking term is neglected. However, when the velocity pro-
file reaches the liquid-liquid interface atȳ = ȳ1, it exhibits
a linear behavior since the Newtonian fluid is not an electric
conductor, and its displacement is due to the viscous drag
effect. Additionally, it is shown that the velocity of the non-
conducting Newtonian fluid increases significantly with the
parameterΩ∗Ha2 compared with the previous Fig. 2 where
Ω∗Ha2 = 10 was used.

Figure 4 analyzes the velocity field of the viscous mi-
cropump under combined MHD and pressure-driven effects;
here, three values of parameterΓ(= −2, 0, 2) and two values
of the dynamic viscosity of the non-conducting Newtonian
fluid µ̄(= 0.7, 1) are used. The pumped fluid is a shear-
thinning fluid with n = 0.8. The pressure gradient values
depend on the pressure exerted at the inlet and outlet of the
channel, which is generated with a syringe pump. Under this
scheme, the positive values are reached whenpout− pin > 0
and negative values result whenpout − pin < 0, while for
pout − pin = 0 the pressure gradient effects are consid-
ered null and the purely magnetohydrodynamic flow is con-
sequently recovered. For the first caseΓ = 2, the pressure
at the outlet is higher than that at the channel inlet, which
means that the pressure gradient is applied in the negative
direction of thex-axis, opposing the Lorentz forces; as a re-
sult, the lowest velocity profiles in magnitude are obtained.
This behavior is shown by the solid lines, where it is ob-
served that the power-law fluid moves in the same direction
as the flow, and the Newtonian fluid moves opposite to the
flow because it is only affected by pressure forces. For the
second caseΓ = 0, the only driving forces are the magnetic
effects exerted by the parameterΩ∗Ha2 = 5. For the third
caseΓ = −2, the pressure at the inlet is higher than that at
the channel outlet, the pressure forces are in the same direc-
tion as the flow, and consequently, greater magnitude velocity
profiles are achieved. The linear velocity profile of the New-
tonian fluid is lost when the pressure gradient is imposed,
i.e., whenΓ = −2 andΓ = 2. Additionally, the viscosity pa-
rameter turns out to be relevant in fluid conduction since it is
responsible for regulating the resistance to movement offered
by the fluid layer. For de above, by decreasing the viscos-
ity ratio µ̄ = 1 (lines without symbols) tōµ = 0.7 (lines
with symbols), the Newtonian fluid pumping is increased in
favor of or against the flow, and the pressure gradient effects
magnify this situation.

The purely MHD flow is shown in Fig. 5. As previously
mentioned, shear-thinning fluids have better conduction
than shear-thickening fluids. The aforementioned is reflected
by the magnitude difference between lines with symbols for
n = 0.6 compared to lines without symbols forn = 1.2. On
the other hand, the flow resistance imposed by the power-law
fluid is represented by the viscosity ratiōη in the range of
0.7 to 1.3, which means that the flow resistance is lower for
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FIGURE 5. Dimensionless velocity profile for a purely MHD flow
for different values of the viscosity ratiōη and flow behavior in-
dexn.

FIGURE 6. Dimensionless velocity profile for a purely MHD flow
for different values of the interface position̄y1 and flow behavior
indexn.

values less than unity, which is transmitted as better con-
duction of the Newtonian fluid. In comparison, for values
greater than unity, the flow resistance increases, and lower
conduction of the Newtonian fluid is consequently presented.
Finally, η̄ = 1 indicates that the viscosity of the reference
Newtonian fluid is reached. In this sense, the highest velocity
magnitudes are achieved when the viscosity offers less resis-
tance to flow, which is achieved with̄η = 0.7.

Figure 6 represents the micropump flow field formed by
two layers of immiscible fluids, where, as in the previous fig-
ures, the power-law fluid works as a driving fluid and the
Newtonian fluid as a driven fluid. Here, two cases corre-
sponding to the driving fluid are presented, the first for a
shear-thinning fluid ofn = 0.75 and the second for a shear-
thickening fluid ofn = 1.25. In addition to this, three liquid-
liquid interface positions (given bȳy1 = 0.25, 0.5, 0.75)

that modify the thickness of each fluid layer are established.
These interface positions̄y1 are selected to analyze the be-
havior of the flow field, taking into account the following sit-
uations when the thickness of the non-conducting fluid is less
than, equal to or greater than the thickness of the conducting
fluid. However, the number of possible combinations is not
limited to only these three values. As can be seen, when the
thickness of the driving fluid is greater than that of the driven
fluid (for ȳ1 = 0.25), due to the application of the Lorentz
forces in a larger cross-section, velocity profiles with greater
magnitude are obtained. Contrariwise, when the thickness
of the driving fluid is less than that of the driven fluid (for
ȳ1 = 0.75), velocity profiles with less magnitude are ob-
tained. The aforementioned situation occurs for both cases
of driving fluid with n = 0.75 andn = 1.25.

On the other hand, we should remember that the the fic-
titious interface position̄y2 represents an important aspect in
flow field analysis for the power-law conducting fluid since
it allows us to know the location of the maximum or mini-
mum in the velocity profile, as well as the location where the
change in sign of the velocity gradient occurs. Therefore, Ta-
ble I shows the interface position̄y2 of Figs. 2 and 3, while
Table II displays the corresponding interface positionȳ2 of
Figs. 4 and 5. From Tables I and II, it is determined that all
the dimensionless parameters analyzed in this work influence

TABLE I. Comparison of the interface position̄y2 under the influ-
ence of the flow behavior indexn and the parameterΩ∗Ha2.

Fig. 2 Fig. 3

Parameter Interface Parameter Interface

n ȳ2 Ω∗Ha2 ȳ2

0.5 0.5764 100 0.4323

0.75 0.5456 75 0.4403

1 0.52 50 0.4513

1.25 0.5006 25 0.4694

1.5 0.4861

TABLE II. Comparison of the interface position̄y2 under the influ-
ence of the pressure gradientΓ and the viscosity ratiōµ, as well as
the viscosity ratiōη and the flow behavior indexn.

Fig. 4 Fig. 5

Parameter Interfacēy2, Parameter Interfacēy2,

Γ with µ̄ = 0.7 η̄ with n = 0.6

−2 0.5435 0.7 0.6699

0 0.5620 1 0.6495

2 0.6177 1.3 0.6284

Γ with µ̄ = 1 η̄ with n = 1.2

−2 0.5734 0.7 0.5710

0 0.5877 1 0.5470

2 0.6323 1.3 0.5301
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FIGURE 7. Dimensionless flow rate for a purely MHD flow as a
function of the parameterΩ∗Ha2 for different values of the inter-
face position̄y1.

the position ofȳ2; however, the most representative for the
location of this fictitious interface is the flow behavior index.

4.2. Flow rate

In Fig. 7, the dimensionless flow ratēQ of a purely MHD
flow is analyzed as a function of the parameterΩ∗Ha2, as
well as for different positions of the liquid-liquid interface
ȳ1. Here,Q̄T refers to the total flow rate handled by the mi-
cropump, whileQ̄1 is the flow rate of the non-conducting
fluid (Newtonian fluid). The driving fluid is a shear-thinning
fluid with n = 0.8 and a viscosity ratio of̄η = 1.2. As can
be seen, the flow rate tends to increase with the increment
of the parameterΩ∗Ha2, reaching a maximum value when
Ω∗Ha2 = 100 and a minimum value whenΩ∗Ha2 = 0.
In the absence of magnetic effects,i.e., at the hydrodynamic
limit when Ω∗Ha2 → 0, the classical Poiseuille flow can be
recovered ifΓ 6= 0 (a case that was not included in the flow
rate analysis because these effects do not correspond to the
main focus, which is the transport of a non-conducting fluid
by viscous drag effects from a neighboring conducting fluid
induced by Lorentz forces). On the other hand, the magni-
tude of the total flow ratēQT increases when the thickness
of the driving fluid increases. However, this behavior is not
repeated in the case of̄Q1 since the maximum flow rate is
obtained when̄y1 = 0.5 (which occurs when the thickness of
both layers is the same). The above means thatQ̄1 decreases
when the liquid-liquid interface position̄y1 moves away from
the microchannel center. The latter effect results because
when the thickness of the Newtonian fluid layer is greater
(whenȳ1 = 0.75), the driving fluid is not able to pump large
amounts of liquid, and when the thickness of the Newtonian
fluid layer is less (when̄y1 = 0.25), the amount of pumped
fluid decreases due to the reduction in cross-sectional area.

Figure 8 shows the dimensionless flow rateQ̄ of a purely
MHD flow as a function of the interface position̄y1 for dif-

FIGURE 8.Dimensionless flow rate for a purely MHD flow as a
function of the interface position̄y1 for different values of the flow
behavior indexn.

ferent values of the flow behavior indexn. In the graph, the
maximum total flow rates̄QT (lines without symbols) are
achieved when the thickness of the driving fluid (power-law
fluid) is greater than that of the driven fluid (Newtonian fluid),
which happens when̄y1 → 0. However, in this condition,
the driven fluid (Newtonian fluid) tends to have the minimum
flow rateQ̄1 (lines with symbols) because it occupies a tiny
channel cross-section until reaching the condition ofQ̄1 = 0
at ȳ1 = 0, which corresponds to the absence of the driven
fluid. In the contrary case,̄QT andQ̄1 tend to diminish as
ȳ1 → 1 because the driving fluid is thinner, therefore dimin-
ishing the driving force to move the fluids until reaching the
condition ofQ̄T = 0 andQ̄1 = 0 at ȳ1 = 1, i.e., the absence
of the driving fluid. Because the purpose of this work is to
pump the non-conducting fluid (Newtonian fluid), the maxi-
mum flowQ̄1 will be obtained when the position̄y1 is located
near the microchannel center, more specifically,ȳ1 = 0.49,
ȳ1 = 0.5 andȳ1 = 0.52 for n = 1.25, n = 1 andn = 0.75,
respectively. Furthermore, it is clear that the flow rateQ̄1

increases with shear-thinning fluids.

Figure 9 evaluates the dimensionless flow rate as a func-
tion of the flow behavior index, which ranges from a shear-
thinning fluid of n = 0.5 to a shear-thickening fluid of
n = 1.5; additionally, the analysis is performed under three
flow conditions determined by the viscosity ratios ofη̄ =
0.6, 1, 1.4. In this case, it is assumed that the thickness of the
driving fluid layer is less than that of the driven fluid layer
through a liquid-liquid interface located atȳ1 = 0.6 and that
in the absence of a pressure gradient, the flow field is pumped
only by magnetic effects given byΩ∗Ha2 = 25. The results
are prepared for both the total flow ratēQT and the flow rate
of the driven fluidQ̄1. The graph shows that the largest flow
rate values correspond to shear-thinning fluids (n < 1) up to
a maximum value ofn = 0.5, which then decrease when ap-
proaching the value of the shear-thickening fluid ofn = 1.5.
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FIGURE 9. Dimensionless flow rate for a purely MHD flow as a
function of the flow behavior indexn, for different values of the
viscosity ratioη̄.

The changes in the viscosity ratio parameter fromη̄ = 1.4 to
η̄ = 0.6 allow for decreased resistance of the driving fluid op-
posed to the flow, and consequently, higher volumetric flows
are achieved. This increase is shown forQ̄T andQ̄1, indi-
cating that in both cases, the maximum flow rate is achieved
with η̄ = 0.6 and the minimum is achieved with̄η = 1.4.

5. Conclusions

The present work studied the transport of a non-conducting
fluid by viscous drag forces from a neighboring conducting
fluid. The micropump pumping mechanism is based on the
MHD principle, where the pumping source arises from the
Lorentz forces. Some important findings that improve the
flow rate of the non-conducting fluid are that the thickness
values of both fluid layers (conducting and non-conducting)
should be similar,i.e., the liquid-liquid interface should be
located near the center of the microchannel; additionally, the
flow rate is enhanced when the conducting fluid is of the
shear-thinning variety. On the other hand, external pressure
gradient effects and moving parts can be omitted because
the magnetic Lorentz forces can provide adequate pumping
of the non-conducting fluid. This study’s development can
contribute to understanding non-conducting immiscible fluid
transport in microfluidic system applications.
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