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Nowadays, nonlinear fractional partial differential equations have been extensively used to model physical phenomena. It is very important
to achieve exact solutions of fractional differential equations for understanding complex phenomena in mathematical physics, and therefore,
studies on fractional differential equations have increased. In this study, new exact traveling wave solutions of the space-time fractional Phi-4
equation have been achieved by using two powerful different techniques, and solutions have additionally been checked. The space-time
fractional Phi-4 equation has been expressed through Atangana’s conformable derivative. Obtaining new solutions to this equation shows
that methods are effective to ascertain other nonlinear complex problems in particle and nuclear physics.
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1. Introduction However, there are similar features between conformable

fractional derivatives and ordinary derivatives. For instance,
Studies on fractional differential equations have recently inthe product derivative and the quotient derivative of two func-
creased to model some complex phenomena more accuratefiyns. Thus, mathematicians, physicists, and engineers have
There are many different definitions of fractional derivativesmade many studies on conformable derivatives [28].

in literature. Some of them are the Caputo derivative [1],pefinition 2: Atangana’s beta-derivative is as following
the Caputo-Fabrizio derivative [2], the Riemann-Liouville

derivative [1], Jumarie’s modified Riemann-Liouville deriva- ‘4 [t n L} 1-a )
tive [3], and Atangana-Baleanu derivative [4]. Fractional par- , 9 < T(a) g
tial differential equations (FPDES) have been used in various 0 D¢ (g)(t) = ;1:% c - (2

areas such as physics, control theory, biology, mathematical , L

physics, applied mathematics, optics, chemistry [5-10]. Atar_wganas derivative allows us _to remove some We_ak
In this article. two reliable methods have been app"eopropemes of the conformable derivative. For example; A dif-

to reach the exact solutions of the fractional Phi-4 equatioriéréntiable function’s derivative is equal to zero at the zero

with Atangana’s beta-derivative. One of the methods is th?©iNts [29]. Thanks to beta derivative, real-world problems
functional variable method [11-12] and the other one is firstVhich arise in applied mathematics and physics are modeled

integral method [13-14]. In some applications in literature,MOre accurately. Thus, the physical behavior of the graphics
various techniques have been applied to FPDEs [15-26].  ¢&n be interpreted more precisely. _

The paper is organized as follows: Some basic definitions _Atangana’s derivative can be preferred because it pro-
and properties of Atangana’s beta-derivative are introduced iifides the maximum properties of the fundamental deriva-

Sec. 2. In Sec. 3, the functional variable method and the firdiVe€S- Some important features for Atangana’s beta deriva-

integral method are examined in detail. In Sec. 4, methoddves [30]:

are applied to the fractional Phi-4 equation to obtain some | Let us takeh £ 0 andg are two function differentiable
new exact solutions. The final section includes a conclusion with 5-order and3 € (0, 1]. Then

containing all outputs in this article. ’

A na _ , Apa .
2. Definition of Atangana’s beta-derivative 0 Dz{ag(z) + bh(z)} = ag Di{g()}

b DA for a,beR. 3
Definition 1: Leth : [0,00) — R be a function. Then its +00 Dz {h(@)} “ ©)
fractional conformable derivative éfordera is, e Foranyd € R. Then,
o . h(z+ex't™) —h(z
4D (o)1) = i MEFEL TN ZRD g -

Khalil et al. defined the above theorem for the fractional
derivatives [27]. °
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o Di{d}Hg(2)h(x)} = h(2)§ Dg{g(x)}

T (@) D2 {h()}. 5)
are [ 9@) | _h(@)iD{g(@)}+g(@)A D2 {h(x)}
0P {h<x> } - B2 () ©

Using Eq. (2).e = (z+ (1/T())) " f, if ¢ — 0 then
f — 0. The Eq. (7) has been obtained.

405 (o) = (a+ F(la)) wia)
and
”%(”@)a» (8)

where~ is a constant. Finally, we can write the following
equation

dg(u)

i 9

aD{g(w)} =

3. Description of methods

3.1. Functional variable method (FVM)

A brief description of the suggested method:
Step 1.FPDE can be written in the form:

F(u,()4 D?‘,g1 D;‘u,um,ut,...) =0. (20)

Step 2.Using wave transformation

u(z,t) = U(E),

ety 2ty

(11

Taking into account Eq. (12), we reduce the FPDE to a

nonlinear ordinary differential equation:

P(U(&),U'(€),U"(€),.-.) =0

whereU’ (&) = dU (£)/d€.
P is a polynomial ofU and its derivatives while,, =
du/d¢, uge = d?u/dé? and so on.

(13)

Step 3.We introduce a functional variable for making a new

transformation to unknown functiai

and some successive derivatives:0f) to following:
U — 1(F2)/
87 9
1
ugee = 5 (F?)"VF?,
]. 2 " 2 ]. 2 " 2 !/
ugeee = 5 | [F°] F2+5 [FP]7[F°]). (15)

Step 4. After substituting (14) and (15) into (13) the ODE
can be reduced as

R(u,F,F',F",..)=0. (16)

After integration, Eq. (16) provides the expressiontof
and this gives the appropriate solutions to the original prob-
lem, together with Eq. (14).

3.2. Firstintegral method (FIM)

A summary of the FIM is presented,
Step 1.FPDE can be written in the form:

r (u,g‘ D&u, D&u, g, s, . . ) =0. 17)
Step 2.Using wave transformation
u(z,t) = U(§), (18)

IO R

Taking into account Eq. (19), we reduce the FPDE to a
nonlinear ordinary differential equation:

P(U(),U"(€),U"(E),...) = (20)

=0,

whereU’() = dU (§)/d¢.

Step 3. Afterwards, defining some new independent vari-
ables

U(g) = X(¢),
Ue(§) = Y(8), (21)
then we get a new system of the following form:
0X
oY
o " G(X(£),Y(€)) (22)

Step 4.By using the division theorem, we can reach a first
integral to Eq. (22). The exact solutions of Eq. (17) are ob-
tained by solving this equation.

Division Theorem: Suppose thaR(z,y) and Q(z,y)
are polynomials inC|z,y]; and R(x,y) is irreducible in
Clz,y]. If Q(z,y) vanishes at all zero points dt(z,y),
then there exists a polynomial(x, y) in C[z, y] such that

Q(xvy) = R(aja y)H(x’ y)
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4. Solution of the space-time fractional Phi-4 Case 2.If 2m?/n > 0 = m = 0, then

equation
The conformable space-time fractional Phi-4 equation [31]: us(x, 1) = Wcsch( (lzm = lé {m N F(lm}ﬂ
AD2u — $ D2y + mPu + ndu = 0,
0<a,pf<1, (23) —2{t+r(1a)}a+§o ), (31)

& D¢y indicates the Atangana’'s conformable fractional 3
ot ; 2m? m l 1
derivative ofu with respect ta of ordera andm, n are real  y;(z 1) = — esch s )
’ n r

constants. V=X |6 (B
Using the following transformation: \ L e
— St ¢ +&l | 32
ula,t) = U(E), i) e ) (32
! 1\ A 1\ 2m?2 m l 1 )”?
= — + ——|t4+= , 24 = — —
=50 mg) “2(rmm) @9 e T |5 )
stants. Eq. (23) changes into the form an ordinary differential > : (33)
equation:

2 m B
NU"(&) = PU"(&) +mPU(&) +nU?(€) =0.  (25)  us(x,t) —\/QTZSG:ch(\/m [; {erF(lﬁ)}

where¢ is the transformation variable arid\ be the con- A 1 1@
) re

4.1. Solution by functional variable method A\ 1 @
{t-l—r} + & ) (34)
Equation (25) can be written as follows: o (@)
Ve = =™ oo (26)
RENEEPE 2= Case 3.If 2m?2 < 0, then

Then we use the transformatian, = (1/2)(F?)" in
Eqg. (15), we get Eq. (27) from Eq. (26)

(2.1) 2m2 . m l { N 1 }ﬁ
ug(x,t) =1/ — CS — 9T+ =
o ' n A\ Ve m [T T)
(F?) :l2_)\2u+l2_)\2u. (27) .
) PR (35)
Integrating (27) with respect to u and we obtain a ') o)

n 2m? 2m? m l 1"’
F(u) = \/Eum (28)  wuy(z,t) =—4/— p csc (\/m lﬁ {x_q- I‘(B)}

From (14) and (28), we deduce that A { 1 }a ¢
[ + 0
«

du n
= 29
/m@wf VaE—amEten @) o m V
n

where¢, is a integration constant. After integrating (29), we

have the following exact solutions: A I
Case 1.If 2m?/n =0 = m = 0, then T t+ I(w) +ool | (37)
uy (z,t) = + @ 9m?2 m ! { L1 }[’
ug(x,t) = —\/— sec = 9T+ =
1 ? n VO =12) | 8 INGE)

e o T s VO

(30) o
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4.2. Solution by first integral method Under the conditions given by Egs. (46) and (47) in

. ] . ] Eq. (40), we have,
Using Eg. (21) and Eq. (22), we can write two dimensional

autonomous system

dX B m? 2n(12—\2)

€'Y Y(g)_i< @) 2N X2<5)>' “o
dY m?

e mx(f) B /\2X3(§) (39)

Using Eg. (48) and Eg. (11), we can convert to Eq. (48)
According to the first integral method, we suppose thafollowing Ricatti equation

X andY are non-trivial solutions of the Eq. (39). Also,

Q(X,Y) = Y a;(X)Y' is an irreducible polynomial in

C[X,Y], such that U’(f)—:l:( : m2 N 2n(12—\?) U2(§)> (49)
n

m . (12_)\2) 2(12_)\2)
QX(8),Y(8) = Zai(X(Q)Y' ()=0, (40)

) o Some special solutions are achieved:
wherea,,,(X) # 0andi =0, 1, ..., m. By division theorem

Japolyn.g(X) + h(X)Y, such that Type 1.1f 1/(i*~X?) > 0, then
dQ  dQdX  dQdy

¢~ dX d¢ ' dY df
m ﬁ
= (g(X)+ h(X)Y) Zai(X)Yi. (41)  wo(z,t) = \/Ttan <’ [ v 50 [
=0

Assume thain = 1 then coefficients ot'(i = 0,1) in A 1

Eq. (40), we have: ' - — { + 1“(a)} +&o >7 (50)
ay(X) = a1(X) - h(X), (42) [3
ah = ag(X) - h(X) + ar(X) - g(X),  (43) ‘m(®D= \/ n " tan (\/ 2 [

m? n
a1(X)'(12_)\2X_12_)\2X3) 2{t+rl} +&o >7 (51)

(@)
= ao(X) - g(X). (44)

2 [3
Sincea;(X) are polynomials, then we deduce thatX)  w(x,t) = 4/ M ot (1 [ l
is constant and(X) = 0. Let us take:z; (X) = 1 and for the n 2(1

equilibrium of ag(X) and g(X) degreesdeg(g(X)) = 1.

Suppose thag(X) = Ay + A; X and we find A {t N F(1 )} e ) 2
et a
1
ao(X) = ApX + S A X7+ C, (45) ﬁ
where(C is the integration constant. We obtain a nonlinear%13(, t) \/ " COt ( [
system of the algebraic equations fram(X), ¢(X), and
R -2 {t+ ! }a +¢ (53)
2n(1%2 — \2) a [(a) 0
="
m2
C=—— Ay =0, 46 L2
Y 0 (46)  Type 2.1f 1/(I> — X?) < 0, then
and
2n(12 — \2) \/7 ﬁ
n — t —
=T e 2 —12)
m’ A 1
C=-—F———= A=0. 47 A
2n(12 — X% ’ “7 a1t (a +€o (54)
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5. Graphical representations

) . m2 I 1 )? 5.1. Graphs of solutions with FVM
t J— _
(@, t) = == tanh | o501 5 {x * F(ﬁ)}

|

m2 l 1 B
uye(z,t) = —coth( _l2)lﬁ{x+m}
—g{H%} +§o>, (56)

m? m?2 l 1)’

uir(z,t) = — - coth ( 02 B lB {x—i— m}

(67)
FIGURE 1. Graph of ofu; forn = 1.7, A = 0.2 andl = —1.5.

FIGURE 2. a) Graph ofus form = —0.6, n = 1.06, A = —0.2 and! = —0.7. b) Graph ofu; for m = —0.2,n = 1.7, A = —0.1 and
[ =-0.7.

1.5}

b) S

FIGURE 3. @) Graph ofuy for m = —0.8, n = 0.3, \ = —0.4 andl = 0.9. b) Graph ofus for m = —0.8,n = 0.6, A = —1 andl = 1.3.

Rev. Mex. Fis67 050707
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FIGURE 6. Graph ofu;s form = 1.17,n = —0.57, A = 1.96 and
| = 4.36.

FIGURE 4. a) Graph ofus form = —0.4,n = —1.3, A = 0.9 and
! = —1.1 b) Graph ofug form = —0.4,n = —1.3, A = 0.5 and
[=-1.1.

5.2. Graphs of solutions with FIM
P FIGURE 7. Graph ofu;s form = 1.64,n = —2.72, A\ = 1.7 and
| = —2.45.

FIGURE 5. Graph ofuio form = —3.2, n = 0.51, A = —2.98
andl = 3.03. FIGURE 8. Graph ofi;7 form = —0.83, n = 1.4, A = —0.96

andl = 4.14.

Rev. Mex. Fis67 050707
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In this section, 3D graphs of the solutions have been in6. Conclusions
cluded. Some specific parameters have been chosen to reach ] . ]
different types of wave graphs. Figures 2, 3, and 4 can givéh this paper, two powerful and reliable analytical technlqu'es
an opinion about the physical behavior of solutions based ofaveé been applied to Atangana’s conformable space-time
the change of amplitude and width of the waves. While pefractional Phi-4 equation. Tha main advantage of FVM is
riodic solutions, hyperbolic solutions and rational solutionsitS Wide applicability. The main idea of FIM is reducing
have been achieved by using FVM (Figs. 1-4), hyperbolic solractional partial differential equation to ordinary differential
waves and bell-shaped soliton waves whereas the second ofigect. Thanks to FVM and FIM, we have obtained more

helpful to understand the physical behavior of other nonlin/matica program. Additionally, physical behaviors of solution
ear FPDESs in mathematical and nuclear physics. functions have been examined for some appropriate values of

the parameters. Results show that the proposed methods are
very effective, straightforward, and strong to solve nonlinear
FPDEs defined by Atangana’s derivative.
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