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Optimal electronic doping in p-wave superconductors
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∗e-mail: smillan@pampano.unacar.mx

Received 15 January 2021; accepted 9 April 2021

Recently, within a generalized Hubbard model which includes correlated nearest (∆t) and next-nearest hopping interactions (∆t3), a com-
parative study betweend- ands∗- wave superconducting ground states on a square lattice was performed. It was found that the critical
temperature of transitionTc(n), as a function of the electron concentrationn, reaches a maximum (Tc−max) at a given optimal doping
(nop) for each value of the ratiot′/t, wheret andt′ are the tight-binding nearest and next-nearest hopping parameter of a square lattice,
respectively. From all values obtained forTc−max(t

′/t, nop) a global minimum one was encountered for both symmetries. Likewise, in the
same space, a minimal ground state energyEg was also obtained. Ford-wave channel both minima are localized around the same optimal
doping. However, fors∗ symmetry, the two minima are located at different electron concentrations. In this work, we additionally study how
thep-wave ground-state energy and the critical temperature depend on the hoppings parameters and the electron concentration. The results
show that forp-wave, minimum global values ofTc−max andEg in the(t′/t, nop) space do exist too, and are found around half filling but,
as occurs fors∗- wave, the minimum ofTc−max does not occur at the same point asEg. Moreover, we present a ground-state phase diagram
in the space(t′/t, nop) where it is possible to find zones of coexistence and competition between thes∗-, p- andd-wave symmetries. Also,
an analysis of the shape of the Fermi surface and the single-particle energy, as functions of the wave vector of an electron in the Cooper pair,
has been done for different regions of the mentioned space.
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1. Introduction

The possibility of realization of anisotropic superconduc-
tivity with triplet pairing has been subject of interest since
the 1970s, when the discovery of superfluity was found in
the fermionic isotope3He, with p-wave Cooper pairs of
atoms and a critical transition temperature of about 1 mK
[1]. In 1994, Y. Maeno [2] reported that strontium ruthenate
(Sr2RuO4), with a critical temperature of 1.5 K, could pos-
sess a superconducting gap withp-wave symmetry. In this
system, the critical temperature of the superconducting state
cannot be tuned by changing the electron density or concen-
tration as in cuprate superconductors such as La2−xSrxCuO4

[3], where an optimal doping of holesxop ≈ 0.15 from half
filling leads to a maximum critical temperatureTc−max ≈
40 K. Nevertheless, Sr2RuO4 (SRO) and La2−xSrxCuO4

(LSCO) have similar tetragonal crystal structures but, in the
former, the planes where the particles flow without any resis-
tance are RuO2, whereas in the latter are CuO2 [2]. Although
Ru atoms may play an analogous role for electronic pairing
as Cu in LSCO, these systems SRO and LSCO have very

distinct superconducting properties; in particular, the former
could havep-wave Cooper pairs and the latter has ad-wave
superconducting gap. It has been suggested that in the un-
derdoping regime, ford-wave superconductors, the antifer-
romagnetic state could be a precursor of the superconduct-
ing state [4], whereas the ferromagnetic state would be ap-
propriate forp-wave superconductors, as possibly occurs in
the family of superconductors compounds with uranium (U),
such as UTe2, UGe2, URhGe2 and UCoGe [5], with critical
temperatures around 1.5 K. A model which accounts for both
p- andd-wave superconductivity, within the same theoreti-
cal framework, is the generalized Hubbard model (GHM) [6-
8], where nearest and next-nearest-neighbor correlated hop-
pings (bond-charge interactions) can lead to the formation
of Cooper pairs with different symmetries. For SRO an in-
finitesimal distortion of the RuO2 square lattice is also con-
sidered. This distortion leads to an asymmetry between the
second-neighbor correlated hoppings along the two diagonals
of the former square lattice, which give rise to twop-wave
superconducting states of different energies [6]. In previ-
ous works, we have studied the dependence of the p-wave
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ground-state critical temperature andp-wave gap amplitude
on the electron density (n) and the electron-electron interac-
tion parameters within the generalized Hubbard model, main-
taining the ratio between first- (t) and second-neighbor (t′)
single-electron hoppings constant [6,7,13]. Also, we have
studied the temperature dependence of thep-wave gap ampli-
tude for a fixed set of Hamiltonian parameters which allows
the calculation of the temperature behavior of the electronic
specific heat, which has shown a good agreement with that
experimentally obtained for SRO [13]. However, in a square
lattice the ratiot′/t determines the energy at which the van
Hove singularities occur, that in turn affect the optimal elec-
tron density where the maximumTc(n) is attained for a given
set of electron-electron interaction parameters. Hence, in this
work, in a similar manner as was recently done ford- and
s∗-wave superconductors [9,10], the superconducting critical
temperature (Tc) versus the electron density (n) and the ratio
t′/t is calculated for a set of electron-electron interaction pa-
rameters. In particular, for the optimal electron density (nop),
i.e., thatn where the critical temperature attains its maximum
Tc,max with the other Hamiltonian parameters fixed, the cor-
responding ground state energy was determined for different
values oft′. For a given set of electron-electron interaction
parameters, the results show that the largestTc,max occurs at
low electron densities, and the minimum ofTc,max can be en-
countered close to half filling (n = 1). Moreover, there could
be a competition betweens∗-, d- and p-wave superconduct-
ing states around half filling. Finally, this study suggest that
the values of the optimal doping (nop) and second-neighbor
hopping (t′) that lead to a critical temperatureTc ≈ 1.5
K, which matches with that of the SRO, are found close to
have filling (nop ∼ 1 ) and for t′ < 0, in agreement with
first-principles studies performed for SRO [11]. Finally, an
analysis of the corresponding Fermi surfaces and the single-
particle excitation energy were performed.

2. The model

We start from a single-band generalized Hubbard model on-
site (U ) and nearest-neighbor (V ) Coulombic interactions,
first- (t) and second-neighbor (t′) hopping parameters, and
first- (∆t) and second-neighbor (∆t3) correlated hopping in-
teractions [6,7]

H = t
∑

<i,j>,σ

c†iσcjσ +
∑

¿i,jÀ,σ

(t′ + χijδ)c
†
iσcjσ

+ U
∑

i

ci↑ci↓ +
V

2

∑

<i,j>,σ

ninj

+ ∆t
∑

<i,j>,σ

c†iσcjσ(ni,−σ + nj,−σ)

+
∑

<i,l><j,l>
¿i,jÀ,σ

(∆t3 + χijδ3)c
†
iσcjσnl, (1)

whereni = ni,↑ + ni,↓, ni,σ = c†i,σci,σ, andc†iσ(ciσ), is
the creation (annihilation) operator with spinσ =↓ or ↑ at
site i. < i, j > and¿ i, j À denote nearest- and the next-
nearest neighbour sites, respectively. In the case of SRO, a
surface distortion of the RuO2 square lattice has been ob-
served by using X-ray diffraction [12]. Hence, we consid-
ered an infinitesimal distortion of the square lattice that leads
to an asymmetry between the second-neighbor hopping (t′)
and correlated hopping (∆t3) along the two square diagonals.
The former undisturbed second-neighbour hopping (t′) and
second-neighbor correlated hopping (∆t3) of a non-distorted
square lattice respectively becomet′+χijδ and∆t3 +χijδ3,
whereχij = +1 if second-neighbour sitesi andj are along
thex̂−ŷ direction, andχij = −1 if they are along thêx+ŷ di-
rection. Hereδ andδ3 characterize the degree of asymmetry
between the mentioned hoppings along the two square diag-
onals. The expressions for the model parameters are given in
Table I in terms of Wannier functions[ϕ(r − Ri)] centred at
lattice siteRi.

The real-space Hamiltonian (Eq. (1)) can be transformed
into reciprocal space by performing a Fourier transform of
the electron operatorsc†k,σ = (1/Ns)

∑
j exp(ik · Rj)c

†
jσ.

After a mean-field Hartree decoupling, the reciprocal-space
Hamiltonian can be written as:

H̄ =
∑

k,σ

εMF ( k )c†k,σc†k ,σ

+
1

Ns

∑

k,k′,q,σ

Wk,k′,qc
†
k+q,σc†-k+q,σc-k’ +q,σck’ +q,σ (2)

TABLE I. Expressions for the Hubbard model parameters.

Single-particle parameters

ti,j =
∫

d3r ϕ∗(r − Ri)b−~2∇2

2m
+ u(r)cϕ(r − Ri); u(r ) is the lattice periodic potential

t = ti,j for < i, j >

t′ = ti,j for¿ i, j À
Electron-electron interaction parameters

Ukl
ij =

∫
d3rd3r ′ϕ∗(r − Rj)ϕ

∗(r ′ − Rj)v(r − r ′)ϕ(r − Rk)ϕ(r ′ − Rl);

v(r − r ′) is the interaction potential between two electrons in the lattice

U = U ii
ii ; ∆t = U ij

ii with < i, j >; ∆t3 = U il
lj with < i, l >, < j, l > and¿ i, j À
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where the Fourier transform of the electron-electron interac-
tion for electrons with the same spin component is given by:

Wk,k′,q =
V

2
β(k − k′) + ∆t+3 γ( k +q, k′ + q)

+ ∆t−3 ζ(k + q,−k′ + q) (3)

with

β(k) = 2(cos[kxa] + cos[kya]), (4)

γ(k,k’ ) = 2 cos(a[kx + k′y]) + 2 cos(a[k′x + ky]), (5)

ζ(k,k’ ) = 2 cos(a[kx − k′y]) + 2 cos(a[k′x − ky]), (6)

wherea is the lattice parameter and∆t±3 = ∆t3±δ3. Notice
that the real-space term∆t3+χijδ3 in Eq. (1) leads, after the
Fourier transform, to∆t+3 and∆t−3 depending on the value
of χij(±1). Also, εMF (k) is the mean-field dispersion rela-
tion andNs is the total number of lattice sites. In this case,
εMF (k) is given by:

εMF (k) = EMF + 2tMF (cos[kxa] + cos[kya])

+ 2t′MF,+ cos(a[kx + ky])

+ 2t′MF,− cos(a[kx − ky]), (7)

with

EMF =
(

U

2
+ 4V

)
n, (8)

tMF = t + n∆t, (9)

t′MF,± = t′± + 2n∆t±3 = t′ ± δ + 2n(∆t3 ± δ3), (10)

wheren is the electron density andt′± = t′ ± δ. Notice
that the mean-field single-particle hoppingstMF andt′MF,±,
depend on the electron density(n) and correlated hoppings
(∆t,∆t3), in particular on the distorted values of the second-
neighbor correlated hopping (∆t±3 = ∆t3 ± δ3).

In general, the BCS coupled integral equations can be
written as [6,7]:

∆(k) = − 1
2NS

∑

k′

Wk,k’ ,0∆(k′)
E(k′)

tanh
(

E(k′)
2kBT

)
, (11)

and

n− 1 = − 1
2NS

∑

k′

εMF (k′)− µ

E(k′)
tanh

(
E(k′)
2kBT

)
, (12)

whose solution gives the chemical potential (µ) and the am-
plitude of the superconducting gap for givenn andT . For
the particular case of an interactionWk,k’,q given by Eq. (3),
Eqs. (11) and (12) admit a solution for the superconducting
gap (∆(k)) of the form:

∆p(k) = ∆p(sin[kxa]± sin[kya]), (13)

known asp-wave superconducting gap, where∆p is the
temperature-dependent superconducting gap amplitude and
the sign± indicates the direction of the real-space distortion.
It is worth mentioning that, in general, the gap of a supercon-
ducting state formed by triplet Cooper pairs could have an-
other symmetry different fromp-wave, such asf -wave sym-
metry, and the possible symmetries depend on the form of the
electron-electron interaction potentialWk,k’,q .

By substituting (13) in Eqs. (11) and (12) we obtain:

1 = − (V ∓ 4δ3)a2

4π2

∫∫

1BZ

(sin[kxa]± sin[kya])2

2E(k)

× tanh
(

E(k)
2kBT

)
dkxdky, (14)

1− n = − a2

4π2

∫∫

1BZ

εMF (k)− µ

E(k)

× tanh
(

E(k)
2kBT

)
dkxdky, (15)

where the sums over the first Brillouin zone (1BZ), defined
as

[−π

a
,
π

a

]
⊗

[−π

a
,
π

a

]

have been transformed into integrals. HereE(k) is the quasi-
particle energy given by:

E(k) =
√

(εMF (k)− µ)2 + ∆2
p(k). (16)

It is important to mention that the chiralp-wave gap given
by

∆chi−p(k) = ∆chi−p(sin[kxa]± i sin[kya]), (17)

also satisfies Eqs. (11) and (12) withWk,k’,q given by Eq. (3),
where the second term in the square root of Eq. (16) is

∆chi−p(k)∆∗
chi−p(k) = ∆2

chi−p

× (sin2[kxa] + sin2[kya]), (18)

instead of

∆2
p(k) = ∆2

p(sin[kxa]± sin[kya])2. (19)

However, in this work, the chiral case will not be considered
because it does not seem to successfully apply to SRO [13].

The critical temperatureTc can be determined from
Eqs. (14) and (15) considering that∆p(T = Tc) = 0. In
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this case, these equations transform into:

1 = − (V ± 4δ3)a2

4π2

∫∫

1BZ

(sin[kxa]± sin[kya])2

2|εMF (k)− µ|

× tanh
( |εMF (k− µ|

2kBTc

)
dkxdky, (20)

n− 1 = − a2

4π2

∫∫

1BZ

εMF (k)− µ

|εMF (k)− µ|

× tanh
( |εMF (k)− µ|

2kBTc

)
dkxdky. (21)

Here, for given Hamiltonian interaction parameters and
n, the two-coupled equations determine the values ofTc and
µ. Moreover, the ground state energy (Eg) per site is given
by [14]:

Eg =
1

Ns

∑

k

(εMF (k)− µ)− 1
Ns

∑

k

E(k)

+
1

Ns

∑

k

∆2(k)
2E(k)

+ µN −
(

U

4
+ 2V

)
n2, (22)

which, in the case of ap-symmetry superconducting gap
Eq. (13) can be simplified to:

Eg =
1

Ns

∑

k

[εMF (k)− E(k)] +
∆2

p

4δ3 − V

+ (n− 1)µ−
(

U

4
+ 2V

)
n2. (23)

It is important to mention that forp-wave superconduc-
tors,U plays a similar role in the superconducting gap equa-
tion as for d-wave ones,i.e., it does not affect the shape
of εMF , and only modifies the electron self-energy (EMF )
shifting the numerical value of the superconducting chemical
potential (µ) without changing the superconducting critical
temperature. ThereforeU can be taken equal to zero. More-
over, to obtain a solution for the superconducting gap equa-
tion [Eq. (7)], (V − 4δ3) should be negative and therefore the
conditionV < 4δ3 must to be satisfied. In order to keep a
minimum set of parameters but considering that a p-wave su-
perconducting gap can be generated fromδ3, V will be set to
zero too. It is worth mentioning that models which consider
a negativeV can lead to triplet pairing in frustrated lattices
[15], however, this term would also lead to a phase separated
state, where electrons double occupy sites over a macroscopic
region of the lattice, which would strongly compete with the
superconducting state [16].

3. Results

Figure 1a) shows the critical temperatureTc of p-wave su-
perconducting states as a function of the electron concen-
tration n and the second-neighbor hopping parametert′ for
∆t=0.5|t|,

FIGURE 1. a) Critical temperature (Tc) versus electronic den-
sity (n) and t′/t for p-wave superconductors withU = V = 0,
∆t = 0.5|t|, δ = ∆t3 = 0.05|t|, and δ3 = 0.08|t| (red cir-
cles), witht = −1 eV. The dark gray circles corresponds depicts
the maximumTc for each value oft′/t. b) Critical temperature
(Tc) versus electronic density (n) for ap-wave superconductor with
t′/t = −0.15 and the same interaction parameters as in Fig. 1a).

∆t3 = δ = 0.05|t|, andδ3 = 0.08|t|. Likewise, Fig. 1b)
shows the critical temperature versus the electronic density
(n) for a particular value of−t′/t = −0.15. The value of
n, where the maximum critical temperature (Tc−max) is at-
tained for each value oft′/t is called the optimal electron
densitynop.

The p-channel maximum critical temperature (Tc−max)
versus the optimal electronic density (nop) and t′/t, for
the same interaction parameters∆t and ∆t3 can be ob-
tained from Fig. 1a). These curves are shown in Fig. 2a)
for different values ofδ3. The projections of these curves
Tc−max(nop, t

′/t) on the(nop, t
′/t) plane are presented in

Fig. 2b). For a givenδ3, a global maximum ofTc−max can be
found fort′ > 0 (solid magenta triangles) within of the inter-
valsnop−max ∈ [0.08, 0.32] andt′ ∈ [0.47, 0.43]. The latter
interval is very narrow. On the other hand, for a givenδ3,
minimum values ofTc−max can be found fort′ < 0. These
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TABLE II. Maximum and minimum values ofTc−max with the corresponding ground state energies forp-wave superconductors with
∆t = 0.5 eV, δ = ∆t3 = 0.05 eV and different values ofδ3.

δ3 (eV) nop −t′/t Max [Tc−max] (K) Eg (meV) nop −t′/t Min [Tc−max] (K) Eg (meV)

0.100 0.320 0.429250 285.18 -554.862 0.863 -0.190 6.14 -1035.20

0.090 0.295 0.429625 228.55 -515.152 0.884 -0.175 3.00 -1003.648

0.080 0.265 0.431875 177.77 -467.880 0.898 -0.150 1.24 -973.712

0.070 0.225 0.437500 133.57 -404.334 0.913 -0.130 0.40 -946.0469

0.060 0.185 0.445550 96.34 -338.897 0.921 -0.105 0.09 -923.498

FIGURE 2. a) Maximum superconducting critical temperature
(Tc−max) versus the optimal electronic density (nop) and−t′ for
U = V = 0, ∆t = 0.5|t|, δ = ∆t3 = 0.05|t|, and δ3 ∈
[0.06|t|, 0.1|t|] (colors lines). b) Projections of the curves depicted
in Fig. 2a) on the plane (nop,−t′/t). The magenta solid (open)
triangles correspond to maxima (minima) ofTc−max.

minima are located within the intervalsnop ∈ [0.863, 0.921]
and t′ ∈ [−0.190,−0.105] (open magenta triangles). The
values ofnop andt′ where the global maxima and minima of
Tc−max occur, for eachδ3, are shown in Table II.

It is important to underline that fort′ < 0, nop is close
to half filling and, in this region,Tc−max abruptly dimin-
ishes. Moreover, as shown below, in this zonep-wave su-
perconducting states compete with extendeds-wave (s∗) and
d-wave ones.

FIGURE 3. Maximum critical temperature (Tc−max) as a function
of δ3 for (nop,−t′/t) = (0.868,−0.57).

It is also worth mentioning that close to (nop,−t′/t) =
(0.868,−0.57), nop is almost the same for allδ3. Figure 3
showsTc−max versusδ3 at this point.

Moreover, whenδ3 = 0.045 eV, the maximum crit-
ical temperature (Tc−max) of the state (nop,−t′/t) =
(0.868,−0.57) agrees with the critical temperature of SRO,
i.e., Tc ≈ 1.5 K. Other points that satisfyTc−max ≈ 1.5 K
with different values ofδ3 are summarized in Table III. Two
cases correspond tot′ > 0: (nop,−t′/t) = (0.684, 0.115)
with δ3 = 0.07 eV; and (nop,−t′/t) = (0.586, 0.210)
with δ3 = 0.06 eV. The other cases correspond tot′ < 0.
Taken into account that the distortion of the square lattice
is assumed to be very small, it is expected that the pa-
rameterδ3 should be very small. Hence, according with
the results of this work, the smaller value ofδ3 satisfying
Tc−max ≈ 1.5 K, corresponds toδ3 = 0.045 eV, which
is attained at (nop,−t′/t) = (0.868,−0.57). However,
it has been estimated, by using first-principles calculations
[11], that the first- and second-neighbor hoppings of SRO
on the RuO2 planes satisfy−t′/t = −0.3 and then, the
states(nop,−t′/t) = (0.960,−0.26) with δ3 = 0.08 and
(1.027,−0.385) with δ3 = 0.07 eV, both of which also have
small values ofδ3 and optimal electron concentrations (dop-
ings) close to half-filling, are good candidates to be the ex-
perimentally observedp-wave ground state of SRO.

Rev. Mex. Fis.67061601
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TABLE III. Superconducting physical properties of (nop,−t′/t) p-wave states satisfyingTc−max = 1.5 K.

δ3 (eV) nop −t′/t Tc−max (K) ∆p−max (meV) ∆0 (meV) Eg (meV) E(con) (meV) EF (meV)

0.08 0.815 -0.045 1.50 0.169 0.335 -981.456 -0.007 -322.263

0.08 0.960 -0.260 1.50 0.174 0.302 -960.071 -0.214 265.916

0.07 0.684 0.115 1.47 0.171 0.341 -925.830 -51.9 -811.084

0.07 1.027 -0.385 1.52 0.178 0.233 -924.312 6.0× 10−6 494.374

0.06 0.586 0.210 1.46 0.179 0.347 -849.282 −3.7× 10−6 -1108.611

0.06 1.008 -0.450 1.49 0.182 0.183 -962.571 -0.036 498.879

0.045 0.868 -0.570 1.50 0. 121 0.335 -1174.628 -0. 0145 364.411

FIGURE 4. a) The maximum gap amplitude (∆max) for the same
p-wave superconductors as in Fig. 2. b). Ground state energy (Eg)
of the systems depicted in Fig. 4a).

The p-wave gap amplitude (∆p−max) and the ground
state energy (Eg) of the systems depicted in Fig. 2a) are
shown in Figs. 4a) and 4b), respectively. Notice that, al-
though there is a global minimum ofTc−max and∆p−max,
and a local minimum ofEg, they are not located at the
same(nop,−t′/t) point as occurs ford-wave superconduct-
ing states [9].

Figures 5a)-d) show the Fermi surfaces (FS) correspond-
ing to the states listed in Table III. Likewise, Figs. 6a)-d)
show the corresponding single-particle excitation energies
(∆0). This energy is defined as the minimum energy nec-
essary to break a Cooper pair when the momentumk of
the pairing electrons are along the angleθ = ky/kx. No-

tice that the FS are symmetric with respect to thekx + ky

diagonal. It is also important to point out that the states
(nop = 0.586, t′ = 0.2|t|, δ3 = 0.06 eV), (nop = 0.684,
t′ = 0.115|t|, δ3 = 0.07 eV), (nop = 0.815, t′ = −0.045|t|,
δ3 = 0.08 eV) whose single-particle excitation gaps are de-
picted in Figs. 6a)-6c),∆0 ≈ 2∆p at the antinode. How-
ever, for the other cases, the FS is more elongated along the
kx + ky diagonal, and the relation∆0 ≈ 2∆p is not fulfilled
at the antinode. In the case (nop = 0.868, t′ = −0.570|t|,
δ3 = 0.045 eV), the FS is disconnected, see Fig. 5d).

Besidesp-wave superconducting ground states, the first-
(∆t) and second-neighbor (∆t3) correlated hoppings can also
induce extendeds-wave (s∗) and d-wave superconducting
states [7], where the respective gaps (order parameters) are
given by ∆s∗(k) = ∆s + ∆s∗ [cos(kxa) + cos(kya)] and
∆d(k) = ∆d(cos[kxa]−cos[kya]). To compare the behavior
of p-wave superconducting systems with those with extended
s- andd-wave superconducting gaps, Fig. 7a) shows those
points (nop,−t′/t) where the critical temperature is maxi-
mum, fors∗- (black line),p- (purple line), andd-wave (gray
line) superconductors. The depictedd- and s∗-wave states
have∆t = 0.5|t|, and∆t3 = 0.05|t| [9,10], whereas the
p-wave ones have, in addition,δ = 0.05 eV andδ3 = 0.06
eV. In each curve, the red open and solid circles correspond
to those states whereTc−max, and Eg, respectively attain
their minimum values. Figure 7b) shows the corresponding
ground state energies for the same systems as in Fig. 7a).
Notice that, at low densities, around the point (nop,−t′/t) =
(0.14, 0.455), all the curves coincide, and the ordering from
lowest to highest value ofEg correspond tos∗-, p- andd-
wave symmetries. However, for higher densities, the maxi-
mum critical temperatures for the different superconducting
symmetries are located in different regions, and can be dis-
tinguished two crossing points; one around(nop,−t′/t) =
(0.260, 0.415), where thes∗ channel curve crosses with the
p-channel one, and other at(nop,−t′/t) = (0.459, 0.310),
where thed-channel crosses with thep-channel one. Close
to these points it is expected that the different possible su-
perconducting symmetries could coexist, if they had similar
ground state energies.

Table IV summarizes the superconducting physical prop-
erties of the mentioned points of possible coexistence.
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FIGURE 5. Fermi surface ofp-wave superconducting states with a) (nop = 0.815, t′ = −0.045|t|, δ3 = 0.08 eV), b) (nop = 0.684,
t′ = 0.115|t|, δ3 = 0.07 eV), c) (nop = 0.586, t′ = 0.2|t|, δ3 = 0.06 eV), and d) (nop = 0.868, t′ = −0.570|t|, δ3 = 0.045 eV).

TABLE IV. Superconducting physical properties ofs∗, p and d-wave superconducting states with∆t = 0.5 eV, ∆t3 = 0.05 eV,
U = 2.0 eV andδ = δ3 = 0 (s∗- andd-wave) orδ = 0.05 eV, δ3 = 0.06 eV (p-wave).

Symmetryα nop −t′/t Tc (K) Eg (meV) ∆α (meV) Econd (meV) EF (meV)

s∗ 0.140 0.455 162.53 -613.027 -022.126, 0.700 -1707.073

s 16.962

p 0.140 0.4572 93.87 -262.703 14.559 0. 245 -1863.602

d 0.140 0.455 129.36 -260.216 14.501 0.241 -1844.425

s* 0.260 0.414 168.50 -690.708 -17.926 1.839 -1447.564

s 13.993

p 0.260 0.415 77.8 -456.167 10.753 0.152 -1723.577

d 0.455 0.310 126.14 -700.532 11.630 0.152 -1410.959

p 0.459 0.310 10.31 -719.364 1.3490 0.001 -1421.150
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FIGURE 6. Single-particle excitation energies (∆0) for the same systems as Figs. 5a)-d), respectively.

FIGURE 7. a) (nop,−t/t) states where the maximum critical temperature (Tc−max) is attained fors∗- (black line),p- (purple line), and
d-wave (gray line) superconducting states with∆t = 0.5|t|, and∆t3 = 0.05|t|. The red open and solid circles correspond to minimum of
Tc−max, and ground state energy (Eg), respectively. b) Ground state energies (Eg) of the superconducting states depicted in Fig. 7a).

Rev. Mex. Fis.67061601



OPTIMAL ELECTRONIC DOPING INP -WAVE SUPERCONDUCTORS 9

4. Conclusions

For the first time, by means of the generalized Hubbard
model, we have studied the variation of the maximum crit-
ical temperature (Tc−max), the gap amplitude (∆p) and the
ground state energy (Eg) of p-wave superconducting ground
states in a square lattice within the (nop, t

′/t) space for fixed
values of the electron-electron interaction parameters, where
nop denotes the optimal electron density where the maximum
Tc is attained for a given value of the second-neighbor hop-
ping (t′). In contrast to previous studies, here the effects
of different values oft′ on the superconducting properties
were analyzed. The ground state energies (Eg) were obtained
for all optimal electron concentrations (nop) where the crit-
ical temperature (Tc) is maximum, for systems with given
values of the second-neighbor hopping (t′) andδ3 and with
∆t = 0.5 eV, δ = ∆t3 = 0.05 eV. It is important to em-
phasize that it is not possible to define a supremum value for
the set of maximum critical temperatures (Tc−max), as oc-
curs ford-wave superconducting states [9], where the mini-
mum ground state energy is found for that state with the min-
imum value ofTc−max. Moreover, the results presented in
this work suggest that thep-wave superconducting ground
states that reproduceTc ≈ 1.5 K, are found close to half
filling (nop ∼ 1), and should possest′ < 0, in agreement
with first-principles calculations. In addition, in this param-

eter zone the Fermi surface is close and the single-particle
excitation energy [∆0(θ)] possess a clearp-wave pattern.
Moreover, within this zone, thep-wave ground state ener-
gies are lower than the surroundingd- and s∗-wave super-
conducting states. In contrast to previous works [6,7,13], this
study indicates that the Hamiltonian-parameter zone where
stablep-wave superconductivity with low critical tempera-
tures can be found embraces positive and negative values
of t′, and thus other superconducting materials whose pair-
ing symmetry has not been established can be studied
under the framework considered in this work. For exam-
ple the iron-based superconductors, where the K-doping of
Sr1−xK−xFe−2As2, modifies the former lattice and elec-
tronic structure [17]. In addition, we can also investigate
compounds such as RuSr2−xBaxGdCu2O8 which contains
both Ru-O and Cu-O planes, and could have superconduct-
ing gaps with different symmetries [18].
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7. L. A. Pérez, J. S. Milĺan, and C. Wang, Spin singlet and triplet
superconductivity induced by correlated hopping interactions,
Int. J. Mod. Phys. B24 (2010) 5229,https://doi.org/
10.1142/S0217979210057353 .

8. J. S. Millán, I. R. Ortiz, L. A. Ṕerez, and C. Wang, First-
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